
A Logic-Based Redundancy Filtering Approach for Web Service
Composition

SHIYANG Deng1, 2, a and YUYUE Du 1, b
1 College of Information Science and Engineering, Shandong University of Science and Technology,

Qingdao, 266590, China
2 College of Computer Engineering, Weifang University, Weifang, 261061, China

agmdsy@163.com, byydu001@163.com

Keywords: Web Service Composition; Planning Graph; Redundancy Filtering; Conjunctive Normal
Form; Disjunctive Normal Form

Abstract. Targeting the redundancy filtering problem of Web service automatic composition, this
paper proposes a novel approach to find the solutions with logic formula. For an original service
composition getting by the parallel layered planning graph, it constructs composite services with a
backward method according to the source services of parameters starting from the user request
outputs. The combination process of the source services is treated as a process of converting a
conjunctive normal to a disjunctive normal form, which can filter all the redundant services and
reduce the combination scale rapidly. Experiments with large service repository illustrate that the
approach is correct and can improve the efficiency of service composition.

Introduction

Web Services are self-describing and platform-agnostic computational elements, and are
advocated to support service oriented architecture, distributed computing and software reuse [1].
With the popularity of Web service application, service composition has become the hot spot of
current research.

The parallel layered composition approach based on planning graph [2-6] is a frequently-used
approach of Web service composition based on artificial intelligence. It separates the process of
service composition into two stages of forward searching and backward combining. It constructs a
parallel layered service composition at the stage of forward searching. And then, at the backward
stage, it constructs composite services according to the source services of parameters starting from
the user request outputs.

In large scale service repository, for the inflating of search space, efficiency has become a
problem to most of the method of service composition. Some researchers [7-10] give out service
discovery methods based on service clustering to reduce search space and other researchers propose
QoS-aware methods to reduce the scale of composition [2-6,11,12]. These methods are helpful to
improve the efficiency of service composition in large scale service repository, but there is lack of
efficient method for filtering redundancy in service composition. This paper proposes a novel
approach based on logic formula which treats the process of combining services as converting a
conjunctive normal form to a disjunctive normal form. It can filter all the redundant services and
reduce the composition scale rapidly and thus improve the efficiency of service composition.

Problem definition

Service composition is to find a group of services which can execute in a certain order with
some given inputs and the final outputs of the services can meet the user request. This group of
services can be called as a composite service and its formal definition is as follows.

Definition 1（Composite Service）A composite service is a triple S={I,O,G}, where

(1) I is the input parameter set of S;

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 1008

(2) O is the output parameter set of S;

(3) G=(V, E) is a directed acyclic graph, where

a) V={si, s1, s2, …, sn, so} is a vertex set and each vertex represents a service in the composition,
where si is a virtual service using S.I as outputs but no inputs and so is a virtual service using S.O as
inputs but no outputs.

b) E is the set of edges of the graph. The outgoing and incoming edges of a vertex represent the
output and input parameters of the service, respectively.

c) For Vsk , let },...,,{
21 mkkkk sssV be the source service set of sk which contains all the

vertices having directed edges to sk and OsOV
jk

m

j
k ..

1
 , then OVIs kk .. ; for }{'

jkkk sVV

(mj 1), OVIs kk .. ' ; if sk≠so, then Vs j and IsOs jk .. .

The diagram of a composite service is shown as Fig.1.

Fig.1. A composite service diagram

The parallel layered composition approach based on planning graph does service composition
according to definition 1, but it can not solve the redundancy problem effectively. For example,
there is an original service composition created in the forward stage of the parallel layered
composition approach shown as Fig.2. There are two kinds of redundant services: (1) According to
definition 1, service sx is redundant because it is not so and has no post service. (2) The virtual
service so has 3 input parameters p9, p10 and p11 and their source service set are {s3}, {s3, s4} and {s5,
s6} respectively. By selecting one service from each set, we can get 4 kinds of combination – {s3, s3,
s5}, {s3, s3, s6}, {s3, s4, s5} and {s3, s4, s6} and any of them can provide all the input parameters for So.
Easy to know that, service s3 is duplicated in the first two combinations and service s4 is redundant
in the last two combinations. The backward stage can remove the first kind of redundancy like sx
easily but it should find an effective method to solve the second kind of redundancy like s3 and s4.

Fig.2. An original service composition

Annotation: Fig.2 is a detailed form of directed acyclic graph which can easily denote the
parameter dependency among services. Actually, it is the famous Petri net [13]. In Fig.2, a rectangle
denotes a service, a circle denotes a parameter and directed arcs denote the input or output relations
between service and parameter.

Analyzing the combination process, we can know that, the source service set of a parameter can
be denoted as a logic disjunctive form because any service of it can output this parameter, and
simultaneously, all the source service sets of a service’s input parameters can be denoted as a

1009

conjunctive normal form because a combination must select one service from each source set to
output all the inputs for the service. Analogously, a combination can be denoted as a logic
conjunctive form and all the combinations can be denoted as a disjunctive normal form. So the
process of combing the source services of a service can be regard as converting a conjunctive
normal form to a disjunctive normal form and we can construct service compositions by filtering
redundant service with logic formula.

Construct Service Compositions with Logic Formula

The logic formulas used in this paper are shown as follows.

Absorptive law: A(AB)=A A(AB)=A (1)

Commutative law: AB =BA AB=BA (2)

Associative law: (AB)C =A(BC) (AB)C =A(BC) (3)

Definition 2（Minimal Cover）[14] For a given family of sets F={F1, F2,…, Fn}, H is called a
minimal cover set of F, and set Mc(F)={H | H is a minimal cover set of F } is called a family of
minimal cover sets of F, if

(1) ii FHFF ,

(2) ii FHFFHH '' ,,

According to definition 2, combing the source services of a service is to find the family of
minimal cover sets of its parameters’ source sets, and if treating a family of sets as a conjunctive
normal form, the family of minimal cover sets can be treat as the equivalent disjunctive normal
form of it.

Theorem 1 For a given family of sets F={F1, F2,…, Fn}, if)(jiFF ji , then Mc(F)=

Mc(F-{Fj}).

Proof: Treat F as a conjunctive normal form of F1F2…Fn, because of FiFj, there must
exist a set G and Fj=FiG. According to absorptive law (formula 1), FiFj=Fi(FiG)= Fi. That
means the two conjunctive normal forms of F and F-{Fj} are equivalent, then the disjunctive
normal forms of then are equivalent. According to definition 2, Mc(F)= Mc(F-{Fj}). ■

According to theorem 1, before combing the source services of a service, we can check the
source service sets. If one set contains another, it can be removed and the combing result is the
same as the original one. For example, service s has 3 input parameters p1, p2 and p3 and their
source service set are {s1}, {s1, s2} and {s3, s4} respectively. Because {s1}{s1,s2}, set {s1,s2} can
be removed and the result can be got by combing {s1} and {s3,s4}. This method can filter
redundancy and improve the efficiency by reducing the scale of combinations.

Nevertheless, it can not remove all the redundant services only using theorem 1. There is a
service s with 4 input parameters and the source sets are {s1, s2}, {s3}, {s1, s4} and {s3, s4}.
According theorem 1, the set {s3, s4} can be removed because it contains {s3}. Then, we can get
four combinations - {s1, s3, s1}, {s1, s3, s4}, {s2, s3, s1} and {s2, s3, s4}. Because service s1 is
duplicated, the first combination will become {s1, s3}. Further, service s4 is redundant in the second
combination and service s2 is redundant in the third one. Thus, there are only two combinations -
{s1, s3} and {s2, s3, s4} on the source services of s. To this problem, we can also use logic formula to
filter redundant service in the combing process.

Theorem 2 Let F={F1, F2,…, Fn-1} be a given family of sets, the family of minimal cover sets
of F be Mc(F)={H1, H2,…, Hm}, Fn+1 be a set and G=F{Fn+1} , if HHi and 1ni FHU ,

then)(GMH ci and for Ufk , if HH j and jki HfH }{ , then)(}){(GMfH ckj .

Proof: First, because the minimal cover set Hi can be treat as a conjunctive form and the set Fn+1
can be treat as a disjunctive form, all the minimal cover sets of G extended from Hi can be denote as

1 ni FH . Suppose Ufk , A= Hi -{fk}, B= Fn+1-{fk}, then, Hi can be denoted as ki fAH and

1010

Fn+1 can be denoted as kn fBF 1 . According to formula 3 and formula 1,

ikkkkkni HfAfBfAfBfAFH))(()()(1 , so that, Hi is a minimal cover of G,

that is)(GMH ci . Second, because of jki HfH }{ , there will be }{ kji fHH , according to

definition 2, }{ kj fH is not a minimal cover set of G, that is)(}){(GMfH ckj . ■

Using theorem 1 and 2, this paper gives out an incremental algorithm to filter the redundant
service in the process of service combination. The general steps are as follows.

Step 1: Reduce the family of source service sets H={H1, H2,…, Hm} according theorem 1;

Step 2: Choose the first source set H1, make each service of H1 as a combination and put it into
a list rstL;

Step 3: Choose next source set Hj, for each combination Fi in rstL, if Fi Hj=setU, then
move Fi into a temporary list rstLT from rstL; For each service s in setU, put Xis=Fi -{s} into a hash
map mapX (the key is s, the value is a family of sets,，Xis is an element of it).

Step 4: For each combination Fi in rstL, for each service s in Hj, if there is no set Xis in mapX
where Xis Fi, then combine Fi with s and put Fi into rstLT;

Step 5: Let rstL=rstLT and rstLT=, then redo the steps of 3, 4 and 5, till all the sets in H are
checked.

To the above service s and the family of source service sets H={{s1, s2}, {s3}, {s1, s4}, {s3, s4}},
do step 1, then H={{s1, s2},{s3},{s1, s4}}; do step 2, then rstL={{s1},{s2}}; do step 3, 4 and 5, then
rstL={{s1,s3},{s2,s3}}; redo step 3, because of {s1, s3}{ s1, s4}={s1}，move {s1, s3} to rstLT and
put {s3} into mapX ; do step 4, for the rest combination {s2,s3} in rstL, check the last source service
set {s1,s4}, because s1 is in mapX and {s3}{s2,s3}, then {s2,s3} will not combine with s1; because s4
is not in mapX, add {s2,s3,s4} into rstLT; do step 5, get the final combination list rstL={{s1, s3}，
{s2, s3, s4}}.

Combing source services in the process of constructing composite services is a geometric series
problem. Too many compositions take much execution time and it is difficult to select a suitable
composite service for users. Suppose a service has m parameters and each parameter has k source
services, there will be km combinations. Using the method of this paper, in the best situation, all the
source service sets are same and there are only k combinations, then the execution time is only

1

1
mk

 to the simple method; in the worst situation, every set has no intersection with others, the

number of combinations is the same as the simple method; in other situations, because a service
usually has more than one parameter and there are many similar services in mass service repository,
it is probable that two source service has intersection or one includes another, thus the method of
this paper can reduce the scale of combinations drastically.

Experiments

Experiments in this paper use the parallel layered composition approach based on planning
graph. In the forward stage, we use web service cluster to improve the search efficiency. In the
backward stage, three methods are used to compare the average execution time and service filtration
efficiency. The first one is from literature [5] which uses Qos-based method (QM) to filter
redundant services, the second one uses the logic-based method (LM) of this paper to filter
redundant services, and the third method uses the first two methods (QLM). The programs are
coded by Java language and the hardware environment is ThinkPad R61 (CPU dual core 2.10GHz,
2.97GB RAM).

Analog data is used in the experiments. For each method, five tests are done with the number
of services from 50,000 to 250,000. With randomly created 100 user requests in each test, the
average execution time is recorded and shown in Figure 3. The average execution time of LM is
more than that of QLM and but much less than QM. This illustrates that the runtime efficiency of

1011

LM is higher than QM and using both QM and LM can have higher runtime efficiency than any of
them alone.

0

0.5

1

1.5

2

2.5

50000 100000 150000 200000 250000

number of services

Ex
e
cu
ti
o
n
 t
im

e
(s
e
cs
)

QM LM QLM

Fig.3. Service composition efficiency

With the repository of 250,000 services, the filtration efficiency of the three methods is shown
in Table 1. With the same 100 user requests, the three methods construct composite services with
the original compositions getting by the same forward method. In Table 1, the column of Services
denotes the average total number of the services in the parameter source sets of the end virtual
service before filtration. The column of Service sets denotes the average number of input parameter
source sets of the end virtual service before filtration. The column of combinations is the number of
source service combinations of the end virtual service. From the service number after filtration it
seems that QM has higher filtration efficiency than LM, but the execution time of LM is much less
than QM. That is because LM can filter redundant service in the combination process. The LM
method can not get the composite service with optimal QoS, so we use the QLM method of both
QM and LM to filter redundancy and it can have higher efficiency than those two.

Table 1. Filtration efficiency of the three algorithms

filter method Services service sets
Services

after filtration
Service sets

after filtration
Combinations execution time

QM 1609.08 9.24 23.58 9.24 4.98 2.22
LM 1609.08 9.24 509.36 3.73 36.18 0.689

QLM 1609.08 9.24 5.73 2.46 3.21 0.445

Conclusions

This paper proposes a novel approach for filtering redundancy in the process of Web service
automatic composition. It constructs composite services with a backward method according to the
source services of parameters starting from the user request outputs. The combination process of the
source services is treated as a process of converting a conjunctive normal to a disjunctive normal
form, which can filter all the redundant services and reduce the combination scale rapidly.
Experiments with large service repository illustrate that the approach is correct and can improve the
efficiency of service composition.

Acknowledgements

This work is supported by the National Basic Research Program of China under grant
2010CB328101; the National Natural Science Foundation of China under grants 61170078 and
61173042; the doctoral program of higher education of the specialized research fund of China under
grant 20113718110004; and the Science and Technology Development Program of Weifang City of
China under grant 2010rkx011.

1012

References

[1] D. Berardi, F. Cheikh, et al. Automatic service composition via simulation [J]. Int. J. Found.
Comput. S. 2008, 19(2): 429–452.

[2] M. Naseri and A. Tomhidi. QoS-Aware Automatic Composition of Web Services using AI
planners[C]. Proceedings of Internet and Web Applications and Service(ICIW’07): IEEE
Computer Society, 2007: 29-35

[3] Z.Q. Huang, J. Wei, et al. Effective pruning algorithm for QoS-aware service composition [C].
Proceedings of IEEE Conference on Commerce and Enterprise Computing: IEEE Computer
Society, 2009:519-522

[4] J. Wei, C. Zhang, et al. QSynth: A Tool for QoS-Aware Automatic Service Composition [C].
Proceedings of International Conference of Web Services(ICWS2010): IEEE Computer Society,
2010: 42-49

[5] S.G. Deng, B. Wu, et al. QoS Optimal Automatic Composition of Semantic Web Services [J].
Chinese Journal of Computers, 2013, 36(5): 1015-1030.

[6] H. Liu, Z.B. Zheng, et al. A global graph-based approach for transaction and QoS-aware service
composition [J]. KSII Transactions on Internet and Information Systems, 2011, 5(7): 1252-1273

[7] P. Sun and C.J. Jiang, Using service clustering to facilitate process-oriented semantic web
service discovery. Chinese Journal of Computers, 31 (2008) 1340-1353.

[8] X.Z. Liu, G. Huang, H. Mei. Consumer-Centric Service Aggregation: Method and Its
Supporting Framework [J], Chinese Journal of Software, 2007, 18(8): 1883-1895.

[9] S. Han, H.Y. Wang, L.Z. Cui. A user experience-oriented service discovery method with
clustering technology[C]. Second International Symposium on Computational Intelligence and
Design, 2009: 64-67

[10] R. Sudha and S. S. Thamarai. Semantic grid service discovery approach using clustering of
service ontologies [C]. In: Proceedings of IEEE TENCON 2006, Nov. 14-17, pp. 1-4.

[11] EI Haddad J, M. Manouvrier, M. Rukoz. TQoS: Transactional and QoS-aware selection
algorithm for automatic Web service composition. IEEE Transactions on Services Computing,
2010, 39(1), 73-85

[12] L. Wang, Y.X. He. A Web service composition algorithm based on global QoS optimizing with
MOCACO [C]//Proceedings of International Conference on Informatics, Cybernetics, and
Computer Engineering. Melbourne, Australia, 2012:79-86

[13] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 1989,
77(4), 541-580.

[14] H. Zhang, L.F. Wu, et al. An Algorithm of r-Adjustable Negative Selection Algorithm and Its
Simulation Analysis [J]. Chinese Journal of Computers, 2005, 28(10): 1614-1619

1013

