
Formal Aspects of Computing (1994) 6:512-535
@ 1994 BCS Formal Aspects

of Computing

A Logic for Reasoning about Time and
Reliability 1

Hans Hansson and Bengt Jonsson

Department of Computer Systems, Uppsala University, Uppsala, Sweden

Keywords: Markov chains; Modal logic; CTL; Real time; Probability; Soft dead-

lines; Automatic verification; Model checking

Abstract. We present a logic for stating properties such as, "after a request for
service there is at least a 98% probability that the service will be carried out
within 2 seconds". The logic extends the temporal logic CTL by Emerson, Clarke

and Sistla with time and probabilities. Formulas are interpreted over discrete
time Markov chains. We give algorithms for checking that a given Markov chain
satisfies a formula in the logic. The algorithms require a polynomial number

of arithmetic operations, in size of both the formula and the Markov chain. A
simple example is included to illustrate the algorithms.

1. Introduction

Research on formal methods for specification and verification of computer sys-

tems has to a large extent focussed on correctness of computed values and
qualitative ordering of events, while ignoring aspects that deal with real-time
properties such as bounds on response times. For many systems, such as control
systems, timing behaviour is an important aspect of the correctness of the system,

1 This paper is a revised and extended version of a paper that has appeared under the title "A
Framework for Reasoning about Time and Reliability" in the Proceeding of the 10 th IEEE Real-time
Systems Symposium, Santa Monica CA, December 1989. The work presented here was performed
while the authors were employed by the Swedish Institute of Computer Science (SICS), and partially
supported by the Swedish Board for Technical Development (ESPRIT/BRA project 3096, SPEC) and
the Swedish Telecommunication Administration (project: PROCOM).
Correspondence and offprint requests to: Hans Hansson, Department of Computer Systems, Uppsala
University, Box 325, S-751 05, Uppsala, Sweden. Email: hansh@docs.uu.se

A Logic for Reasoning about Time and Reliability 513

and the interest for research on these aspects of formal methods seems to be
increasing (see e.g. [Jos88, Vytgl, dBH92]).

For some systems, it is very important that certain time bounds on their

behaviour are always met. Examples are flight control systems and many process
control systems. Methods for reasoning about such hard deadlines can be obtained
by adding time to existing methods. One can add time as an explicit (virtual)
variable and use standard verification techniques (e.g. [PnH88, ShL87, OsW87]),

or develop logics that deal explicitly with time quantities (e.g. [Bell81, JAM86,
KVR83, EMS92]).

For some systems, one is interested in the overall average performance, such
as throughput, average response times, etc. Methods for analyzing such properties

usually employ Markov analysis. Often the systems are described by different vari-
ants of timed or stochastic Petri nets [Mo182, ABC86, Zub85, RAP84, HoV87b].

In this paper, we shall investigate methods for reasoning about properties
such as "after a request for a service, there is at least a 98 percent probability
that the service will be carried out within 2 seconds". We call such properties

soft deadlines. Soft deadlines are interesting in systems in which a bound on the

response time is important, but the failure to meet the response time does not
result in a disaster, loss of lives, etc. Examples of systems for which soft deadlines
are relevant are telephone switching networks and computer networks.

In this paper, we present a logic called PCTL for stating soft deadlines. The
logic is based on Emerson, Clarke, and Sistla's Computation Tree Logic (CTL)
[CES86]. CTL is a modal (temporal) logic for reasoning about qualitative pro-

gramme correctness. Typical properties expressible in CTL are: p will eventually
hold on all future execution paths (AFp), q will always hold on all future exe-

cution paths (AGq), and r will hold continuously on some future execution path
(EGr). Independently of the work presented here, Emerson, Mok, Sistla, and
Srinivasan [EMS92] have extended CTL to deal with quantitative time. Examples
of properties expressible in the extended logic (RTC TL) are:p will become true

within 50 time units (AF<-5~ and q will continuously hold for 20 time units
(AG<-2~ RTCTL is suited for specification and verification of hard deadlines.

In PCTL, we have equipped temporal operators with time bounds in the same
way as in RTCTL, i.e., time is discrete and one time unit corresponds to one

transition along an execution path. To enable reasoning about soft deadlines we
have replaced path quantifiers by probabilities. Thus, instead of saying that some

property holds for all paths or for some paths, we can express that a property
holds for a certain fraction of the paths. Examples of properties expressible in our

/ lt?<20 logic are: with at least 50% probability p will hold within 20 time units ~->_-0.5 P)
and, with at least 99% probability q will hold continuously for 20 time units
(~<20 ~>~0.99 q)" We interpret formulas in our logic over structures that are discrete
time Markov chains. This relates our work to probabilistic temporal logics, as
defined e.g., by Hart and Sharir [HAS84] and others [LeS82, CWW86]. However,
these works only deal with properties that either hold with probability one or
with a non-zero probability.

The paper is organised as follows. In section 2, we define our logic, Probabilistic
real time Computation Tree Logic (PCTL) and in section 3 we provide examples
of properties that can be expressed in PCTL. In section 4, we present and discuss
algorithms for checking if a given structure is a model of a PCTL-formula.
Section 5 presents a verification of a simple communication protocol. In section
6, we discuss related work. In section 7, we summarise the results and indicate
directions for further work.

514 H. Hansson and B. Jonsson

2. Probabilistic Real Time Computation Tree Logic

In this section, we define a logic, called Probabilistic real time Computation Tree
Logic (PCTL), for expressing real-time and probability in systems.

Assume a finite set A of atomic propositions, denoted by a, ab etc. Formulas

in PCTL are built from atomic propositions, propositional logic connectives and

operators for expressing time and probabilities.

Definition 1. (PCTL Syntax) The syntax of PCTL formulas is defined inductively

as follows:

�9 Each atomic proposition a is a PCTL formula,

�9 If f l and f2 are PCTL formulas, then so are ~ f l and (fl /k f2),

�9 If f l and f2 are PCTL formulas, t is a nonnegative integer or o0, and p is a real

number with 0 < p < 1, then fx U_~p f2 and f l U>; f2 are PCTL formulas.
[]

We shall use f , f b etc. to range over PCTL formulas. Intuitively, the PCTL

formulas represent properties of states. The propositional connectives -, and A

have their usual meanings. The operator U is the (strong) until operator. The

formula f l U>_<-~ f~ expresses that with at least probability p both f2 will become
true within t time units and that f l will be true from now on until f2 becomes

true. The formula f l U~p f2 has analogous meaning.
PCTL formulas are interpreted over structures that are discrete time Markov

chains. A specified initial state is associated with the structure, and for each state

there is an assignment of truth values to atomic propositions appearing in a given

formula.

Definition 2. (Structure) A structure is a quadruple (S, s i, Y--, L), where

S is a finite set of states, ranged over by s, Sl, etc.,

s ~ E S is the initial state,

J - : S x S ~ [0, 1] is a transition probability function, such that for all s in S

Z J(s,s') = i ,
s' ES

L : S ~ 2 A is a labelling fimction assigning atomic propositions to states. []

Intuitively a structure represents a system, which at any instant is in one of

its states. At each time unit, the system changes state according to a probability

distribution given by the transition probability function. Thus, each transition

can be considered to require one time unit. We will display structures as tran-

sition diagrams, where states (circles) are labelled with atomic propositions and
transitions with non-zero probability are represented as arrows labelled with their

probabilities (e.g., the arrow from state sk to state Sl is labelled with ~--(Sk, sI)). The
initial state (s i) is indicated with an extra arrow. For example, Figure 1 shows a
structure (K) with 4 states and 5 transitions with non-zero probability. The state

A, labelled with ab ae, is the initial state.

A path a from a state so in a structure is an infinite sequence so Sl s2 ... of
states with so as the first state. The state sn in a is denoted a[n], and the prefix

so ... s~ of a is denoted ~rTn.
For each structure K and state s we will define a probability measure/~s K on

the set of paths from s.

A Logic for Reasoning about Time and Reliability 515

Fig. 1. The sample structure K.

Definition 3. (Probability measure) Let path~ denote the set of paths of K

starting in so. In accordance with measure theory, we define:

�9 For any sequence so ... sn, starting in so

#~({a �9 path~] aTn = so ... s,)) = ~-(s0,s1) X ' ' " X ~-'(Sn--l,Sn)

i.e., the measure of the set of paths ~ for which a'rn = so ... s, is equal to

the product J(so, sl) • "'" x Y-(s,_l,s,).

�9 For n = 0

�9 I = so}) = 1.

�9 For any countable set {Xi}iei of disjoint subsets of pathfso

K
= Z,,so(X,

icI icI

Note that the sum is well-defined, since it is bounded by 1 and each summand

is non-negative.

�9 I f X is a subset of pathS, then the measure of the complement set path~ \ X
is defined as:

#Kso(path ~ \ X) = 1 -- pK(x) []

As an illustration, consider the labelled Markov chain K in Fig. 1. The set of

paths path~ of K is infinite. The set of paths with non-zero probability can be

characterised by the co-regular expression AB(CAB)*D% The probability measure

for the set of paths in K for which C is visited exactly n times is given by

pKA({AB(CAB)"D~ = 0.6"x0.4

For n 5~ m the set of paths {AB(CAB)"D C~ is disjoint from {AB(CAB)mD~
Hence,

I~KA({AB(CAB)*D~176 = Z P~({AB(CAB)iD~ = 1
icJV"

Also, it follows that the measure of the set of paths which never reaches D is 0.

In the definition of PCTL we will use the auxiliary path formula fl U <-t f2 to

represent properties of paths, i.e., sequences of states. Intuitively, f l U <-t f2 holds

516 H. Hansson and B. Jonsson

for a particular path if f2 becomes true within t time units and f l holds until

then.
We will define the truth of PCTL-formulas for a state s in a structure K by a

satisfaction relation

S ~ K f

which intuitively means that the PCTL-formula f is true at state s in the structure
K. In order to define the satisfaction relation for states, it is helpful to use another

relation

a ~ K f l U <-t f2

which intuitively means that the path a in K satisfies the path formula f l U <<-t f2.

Definition 4. (PCTL Semantics) The relations

defined as follows:

S ~ K a

s ~K ~ f

s ~K f l /x f2

,~ ~K f l U <-~ f 2

S ~ K f l U_~pf2

S ~K f l U~p f2

~K and ~K

ill" a ~ L(s)

iff not s ~K f

iff s ~K fl and s ~K f2

iff there exists an i _< t such that

o-[i] ~ K f2 and

~r[j] ~ K f b f o r a l l j : 0 _ < j < i .

iff/~f({a I a[0] = s A a ~ K f l U <-t f2}) --> P.

iff #~({a] a[0] = s A a ~ K f l U <-t f2}) > P.

We will use ~K f to denote s i ~ K f , where s i is the initial state of K.

In the following we will use the abbreviations (derived operators)"

f l V f2 = -~(~/1 A ~f2)

f i e f 2 --= ~f l V f2

f l og>~p f2

f l ~< ; f2

are inductively

[]

- < i _ . - - I s , v s l)

=- ~ U~,l_p-~(fl V f2)

Intuitively, the propositional connectives V and ~ have their usual meanings.

The operator ~// is the <t unless (or weak until) operator. The formula f l ~//;v f2
means that with at least probability p either f l will remain true for at least t-time
units, or f2 will become true within t time units and f l will be true from now on
until f2 becomes true. The formula f l 0g~p f2 has analogous meaning.

3. Properties Expressible in PCTL

In this section we present examples of properties that can be expressed in PCTL.
First, we discuss why PCTL is suitable for specification of soft and hard deadlines.

The main difference between PCTL and branching time temporal logics such

A Logic for Reasoning about Time and Reliability 517

as CTL, is the quantification over paths and the ability to specify quantitative

time. CTL allows universal (A f) and existential (E f) quantification over paths,

i.e., one can state that a property should hold for all computations (paths) or

that it should hold for some computations (paths). It is not possible to state that
a property should hold for a certain portion of the computations, e.g. for at least

50% of the computations. In PCTL, on the other hand, arbitrary probabilities
can be assigned to path formulas, thus obtaining a more general quantification

over paths. Consider for instance the PCTL formula f l U<~.5 f2 which does not
have a CTL analogue. Analogues to universal and existential quantifications in
CTL can however be expressed in PCTL, e.g.

A[f l V f2] = f l 0 < 7 f2

E[f l U f2] = f l U>~f2

AGf =- f ~ false

AF f = true U~_~ f

EGf - f qi<~ false

EFf - true U ~ f

Intuitively, A[fl U f2] means that f l U f2 holds for all paths, or more precisely,
for a set of paths with probability measure 1. The formula E [fl U f2] means that
there exists a path for which f l U f2 holds, or more precisely, there exists a set of
paths with non-zero probability measure for which f l U f2 holds. The formula
AGf means that f is always true (in all states that can be reached with non-zero

probability), AFf means that a state where f is true will with probability 1
eventually be reached, EGf means that there is a non-zero probability for f to be

continuously true, and EFf means that there exists a state where f holds which
can be reached with non-zero probability.

Quantitative time allows us to specify time-critical properties that relate the oc-
currence of events in a system in real-time. This is very important for programmes
that operate in distributed and real-time environments, e.g., communication pro-

tocols and industrial control systems. In PCTL it is possible to state that a
property will hold continuously during a specific time interval, or that a property
will hold sometime during a time interval, e.g. we can define

ql;_p false

F~ f =-- true U~tp f

Intuitively, G_~p f means that the formula f holds continuously for t time units
<t with a probability of at least p, and F_~p f means that the formula f holds within

t time units with a probability of at least p.

An important requirement on most real-time and distributed systems is that
they should respond to stimuli with an appropriate action, e.g., every time a
controller receives an alarm signal from a sensor the controller should take
an appropriate action. Owicki and Lamport [OWL82] have defined a leads-to

518 H. Hansson and B. Jonsson

operator (a ~-~ b), with the intuitive meaning that whenever a becomes true, b will

eventually hold. We can in PCTL define a quantified leads-to operator as follows:
_<t

f l ~ f2 ==- AG(f l ~ F~_~ f2)
~p

_<t

Intuitively, f l ~ f2 means that whenever f l holds there is a probability of at
_>p

least p that f2 will hold within t time units.

As an example consider an industrial controller which monitors the level of

fluid in a container. An alarm is raised when the fluid reaches a critical level. The

controller should respond to an alarm by opening a valve within 4 time units.

This can in PCTL be expressed as:
_<4

alarm ~ open valve
>1

For some systems, it might be sufficient that the deadline is almost always met

(e.g. in 99% of the cases). This relaxed property can in PCTL be expressed as

follows:
_<4

alarm ~ open valve
_>0.99

Relaxing the timing requirement might enable a less costly implementation that

still shows acceptable behaviour. To be on the safe side we could add a strict

upper limit to the relaxed property, combining the hard and soft deadlines above.

If we assume that we want the controller to always respond within 10 time units,

and almost always within 4 time units we get the property:
~<10 _<4

(a l a r m , ~ open valve) A (alarm ~ open valve)
_>1 >_0.99

4. Model Checking in PCTL

In this section, we present a model checking algorithm, which given a structure
K = (S, s i, J-, L) and a PCTL formula f determines whether ~ ; f . The algorithm

is based on the algorithm for model checking in CTL [CES86]. It is designed so

that when it terminates each state will be labelled with the set of subformulas of
f that are true in that state. One can then conclude that ~K f iff the initial state
(s i) is labelled with f .

For each state s of the structure, the algorithm uses a variable label(s)
to indicate the subformulas that have been found to be true in s. Initially,

each state s is labelled with the atomic propositions that are true in s, i.e.,
label(s) := L(s), Vs c S. The labelling is then performed starting with the smallest

subformulas of f that have not yet been labelled, and ending with labelling states
with f itself. Composite formulas are labelled based on the labelling of their
parts. Assuming that we have performed the labelling of f l and f2, the labelling

corresponding to negation (~f l) and propositional connectives (fl A f2, f l V f2,

and f1 ~ f2) is straightforward, i.e.,

A Logic for Reasoning about Time and Reliability

Table 1. Combinations of p and t parameter values in formulas.

Probability Time

0 finite oo

> 0 s ~K f2 E[fl O <-t f2] CTL E[f l U f2]

(r o(ISI)

s ~ g f2 The general case "probabilistic CTL"

0 < p < 1 (9(tx(IS] + IEI)) C~ TM)

or (9(log tx[Sl 3)

>__ 1 s ~z(f2 A[fl U -<t f;] CTL A[fl U f2]
~(lsl) e(lso

519

label(s) := label(s) U {~fl}

label(s) := label(s) u {fl A f2}

label(s) := label(s) U {fl V f2}

label(s) := label(s) U {fl --* f2}

if f l ~ label(s),

if f b f 2 E label(s),

if f l E label(s) or f2 E label(s),

if f l ~ label(s) or f2 E label(s),

where in addition the new formula must be a subformula of f .

In the sequel, we shall treat the modal operators. Section 4.1 presents algo-

rithms for labelling states with the modal subformulas of PCTL. In section 4.2

we present more efficient algorithms for labelling in cases with extreme parameter

values (e.g. p = 1 and p = 0).

4.1. Labelling States with the Modal Subformulas of PCTL

In this section we give algorithms for labelling states with formulas of type
<t <t

and f l U~p f2. f l U~_p f2 We will present several algorithms with different suit-

ability for different values of the t and p parameters. Table 1 gives a classification

of possible combinations of p and t parameter values as well as complexities of

performing the labelling using the algorithms we will propose.

For the three entries in the left column, corresponding to t = 0, the labelling
problem collapses to the problem of labelling states with f2. The cases in the

middle row of Table 1 will be considered in this section. Note that, we will

give two algorithms for the case with finite t value and 0 < p < 1. The first is

suitable for small t parameter values, while the second performs better for large

t values. In section 4.2 we will present alternative algorithms for the remaining

cases of the table: fx U ~ f2, f l U<~ f2, f l U_~ f2, and f l U_~ f2, where t < o0.

As indicated in the table, model checking for f l U ~ f2 is analogous to CTL

model checking for the formula E [fl U f2]. Likewise, f l U>_-<~ ~ f2 corresponds to

CTL model checking of A[fl U f2]. Model checking for f l U ~ f2 amounts to

check if there exists a sequence of states satisfying f l U -<t f2. This is analogous

to RTCTL model checking [EMS92] for the formula E[fl U <-t f2]. Likewise,

f l U<~ f2 corresponds to RTCTL model checking of A[fl U -<t f2].

520 H. Hansson and B. Jonsson

Modal Subformulas with Finite t Parameter Value

We shall give an algorithm for labelling states with the formula f l U>_<-~ f2,

assuming that we have done the labelling for formulas f l and f2, and that t-~ m.

Definition 5. (Measure for Paths Satisfying Until-Formulas) For a state s E S

in a structure K and an integer t > 0, we define the function ~(t , s) to be the

measure for the set of paths a in p a t h f for which a NK f l U <-t f2. If t < 0, we

define ~(t , s) = 0. []

Proposition 1. If t > 0 then ~(t , s) satisfies the following recurrence equation:

~(t ,s) = if f2 E label(s) then 1

else if f l ~ label(s) then 0
(1)

else ~ J-(s, s') x ~ (t - 1, s')

sr ES

Proof. For states s and integers t, let Z(t, s) be the set of finite sequences

s sl ... sj of states from s such that j <_ t, sj ~K f2, and for all i with 0 < i < j

we have si ~K f l and si [:/=K f2. Let ~(t , s) denote the measure of the set of paths

a in p a t h ~ for which a ~K f l U <-t f2. By definition, ~(t , s) satisfies

~ (t , s) = Z J " (S , S1) X ' ' " X ~ " (S j - I , S j)

s Sl ... s jez(t , s)

We consider three cases.

Case s ~K f2: By definition, any path a in p a t h ~ satisfies a ~/(f l U <-t f2 when

t _> 0, hence ~(t , s) = 1.

Case s ~K f2 and s ~:K f l : By definition, for any path a in paths~s we have

a ~i(f l U <-t f2, hence ~(t , s) = 0.

Case s ~:K f2 and s ~K f l : Here we consider two cases.

Case t = 0: By definition, for a path a in p a t h f we have a ~K f l U -<~ f2 iff

s ~K f2, thus N(t, s) = 0.

Case t > 0: Since s ~K f2, any finite sequence in z(t, s) will have at least two
states. Hence we can denote each such sequence a as s a', where a t is the

sequence a minus its first state. For such a sequence we have a E Z(t, s) iff

a' c Z (t - 1,a'[1]). Hence we have

~ (t , s) = y~ 'C-(s , s l) x . . . x Y (s j _ l , s j)

s sl ,.. s jez(t ,s)

= Z J"(S, $1) X ~~ $2) X ' ' " X ~'-(Sj--1, Sj)
sl Sl ... s jEz(t - - l , s l)

: ~ ~-(S, S1) X ~ (t - 1, Sl)

Sl

Recurrence equation 1 gives

if ~(t , s) > p.
Recurrence equation 1 can also be formulated in terms of matrix multiplica-

tion. Let sl , SN be the states in S. Partition S into three subsets, Ss, Sf, and Si,
as follows:

[]

an algorithm that labels the state s with f l U~p f2

A Logic for Reasoning about Time and Reliability 521

Ss - the success states, are states labelled with f2 (i.e., states for which f2 E

label(s)).

S T - the failure states, are states which are not labelled with f l nor f2 (i.e., states

for which f l , f2 ~ label(s)).

Si - the inconclusive states, are states labelled with f l but not with f2 (i.e., states

for which f l E label(s) and f2 ~ label(s)).

Define the ISI x ISI-matrix M by

{ J'(Sk, Sl) if Sk C Si
M[&, sl] -- 1 if Sk (~ Si A k = l (2)

0 otherwise

For t > 0, let N(t) be a column vector of size ISI whose ith element ~(t)i is

~(t, si). Thus N(0)i is 1 if si c Ss and otherwise 0.

Proposition 2. It follows that

t

A

~(t) = ~ / x M x . . . xM~x~(0) = M ' x ~ (0) (3)

for t > 0 .

Proof We will use equa t ion l . When t =_0 the proposition follows by definition.

For t > 0 equation 3 gives ~(t) = M x ~ (t - 1). We consider three cases:

1. if s, E Ss then_ (since M[sn, s'] = 1 if sn = s' otherwise 0) i t follows that ~(t) ,

is equal to ~ (t - 1),. Since ~(0) , = 1 we conclude that ~(t)n = 1.

2. if s, ~ Sf then analogously to Case 1. it follows that ~(t) , = 0.

3. if s, c Si then (since M[s,,s'] = Y(s,s')) it follows that

-~(t). = Z J-(sn, Sm) x -~(t - 1)m

smcS

We see that ~(t)i satisfies exactly the same recurrence equation as ~(t, si). []

A possible optimisation is to collapse the sets Ss and Sf into two representative

states" s~ and sf. This will reduce the size of M to (ISil + 2) x (ISil + 2).

For formulas of form f l U~tp f2 we can use the same calculations as for

f~ U~_tp f2, but we will only label states s for which ~(t , s) > p. Model checking

for unless-formulas (fl y/_~tp f2 and f l ~ t p f2) can be done via the dual formulas:

f l ~#_~p f2 -- ~ (~/2) U~(l_pt (-~fl A

f l ~#~p f2 =-- -~ (~f2) U~_(t_p) (~f l A

Alternatively, we can define an analogue to N(t, s) for the Unless case and
construct algorithms similar to algorithms 1 and 2 below. This is done in the

Appendix.

Calculating ~(t, s).
We propose two algorithms for calculating ~(t,s). The first algorithm is more

or less directly derived from equation (1) and the second algorithm uses matrix

multiplication and the matrix M as in equation (3).

522 H. Hansson and B. Jonsson

Algorithm 1.
for i := 0 to t do

for all s e S do

if f2 c label(s) then ~(i, s) := 1

else begin

~(i,s) := 0;

if f l c label(s) then for all s' e S do

~(i,s) := ~(i,s) + 3 - (s , s ') x ~ (i - 1,s')
end

Algorithm 2.
for all s ~ S do

if f2 E label(s) then N(0)[s] := 1

else N(0) [s] := 0;

~(t) = Mt•

Algorithm 1 requires (9(t• 2 arithmetical operations. Ignoring the zero-

probability transitions in Y- we can reduce the number of arithmetical operations

required to (9(t• + IEI)), where IE[is the number of transitions in Y with

non-zero probability. For a fully connected structure these expressions coincide,

since in that case IE[= IS[2. The matrix multiplication in algorithm 2 can be

performed with (9(log(t)• IS I 3) arithmetical operations, since M t can be calculated

with (9(log t) matrix multiplications, each requiring ISI 3 (or less) arithmetical

operations. Let us define the size of a modal operator as log(t), where t is the

integer time parameter of the operator. The size [fl of a PCTL formula f is

defined as the number of propositional connectives and modal operators in f

plus the sum of the sizes of the modal operators in f . Then the problem whether a

structure satisfies a formula f can be decided using at most (9(tmax • ([SI +IEI) x l f I)

or o(ISI 3 • arithmetical operations, depending on the algorithm, where ISI is

the number of states, IEI the number of transitions with non-zero probability, tmax
is the maximum time parameter in a formula, and If[is the size of the formula.

The second expression of complexity is polynomial in the size of the formula and

the structure. In Section 5 we illustrate the use of both algorithms above in the
verification of a simple communication protocol.

Modal subformulas with t : oo

In this section we consider labelling states with the formula f l U_~ f2. The

algorithms above cannot be used in this case, since they would reqmre infinite
calculations. Instead we define ~(oo, s) to be the measure for the set of paths a in

p a t h ~ for which a ~ g f t U -<~176 f2. In this algorithm we extend the failure states
to also include states in Si from which no success state is reachable via transitions
with non-zero probability. We define Q to be the new set of failure states. The first

step of the algorithm is to identify the states in Q. Inspired by Dijkstra's shortest

path algorithm [Gib85] and observing that we only need to consider paths that
are shorter than the number of inconclusive states [Sil we define the algorithm
Idendfy_Q as follows:

2 The actual worst case complexity is ((t + 1)x(ISI + 1)x2xlS[), since the outermost loop will be
run through t + 1 times, the "for all" loops will be run through ISI times, there is one assignment
statement just before the innermost loop, and there are two arithmetical operations in the innermost
assignment statement.

A Logic for Reasoning about Time and Reliability 523

Algorithm 3. (Identify_Q)
unseen := Si u Ss;
fringe := Ss;

mark := 0;

for i:=O to I Sil do
mark := mark U fringe;
unseen := unseen - fringe;

fringe := {s I s e unseen A 3s' E fringe : (~-(s, s') > 0)};
Q : = S \ m a r k ;

Intuitively, the algorithm marks all states from which there is a positive

probability of reaching a state in Ss. Q is the complement of these states�9 In the

algorithm, unseen denotes the set of states in Si and Ss that have not yet been
considered, fringe are the states that are being marked. After passing the for loop

with index i, the algorithm will have marked all states that satisfy f l U ~ f2.

Similar to the definition of Q, we can extend the success states to also include

states s in Si for which the #f-measure for eventually reaching a success state

(s' E Ss) without passing ST is 1. We define R to be the new set of success states�9

The states in R can be identified in a way similar to the identification of states in

Q. An algorithm for identifying the states in R is given in the Appendix. The next

step, when Q and R have been identified, is to solve the set of linear equations

defined by:

 (oo, s) = i f s E R t h e n 1

else i f s E (2 t h e n 0

else Z J (s , s') x ~(oo, s')

s' ES

(4)

These equations can be solved with Gaussian elimination, with a complexity
of (9 [(IS] - [Q] - IR]) 2sl] [AHU74].

Proposition 3. ~(o% s) is the #s n measure for the set of paths a in pathfiss for

which a ~K f l U -<~176 f2.

Proof If s E R or s E Q, then the definitions of R and Q imply the proposition.

In other cases, we can analogously to the proof of Proposition 1 show that the
�9 < C O

measure for the set of paths a in path f i s for whmh a ~ g f l U- f2 satisfies the

same equations as N(oo, s). This shows the existence of a solution of the equations

which is the desired one. The uniqueness of the solution can be seen as follows.

Assume that there are two solutions. Then the difference between them, denoted

A(s) for s 6 S, satisfies the equations

A(s) = f (s , s') • A(s')

s' ES

for s c S \ (R u Q). By definition, A(s) = 0 if s 6 R U Q and ~ J (s , s ') = 1

s' ES

for all s E S. If A =p 0 for a non-empty subset in S \ (R U Q), then we consider

the set Max of states s in S \ (R U Q) for which A(s) has the highest absolute
value, this implies that there are no transitions from a state in Max to a state

outside Max with non-zero probability. This would imply that Max c_ Q which

is a contradiction. []

524 H. Hansson and B. Jonsson

4.2. Special Algorithms when p - 0 or p = 1

In this section we will discuss alternative algorithms for cases when the modal

operator has extreme probability (1 or 0) parameter value. As in section 4.1, we

will only consider Until formulas, since the Unless case can be handled via the

dual modal operators. To improve performance in an actual implementation, it

will probably be desirable to use separate algorithms for the Unless case. Such

algorithms are defined in the Appendix.

The case f l U ~ f2

To label states with fx U<~ f2 we will use the partitioning of states defined in

Section 4.1, i.e., Si, Ss, and Sf. The algorithm will (trivially) label states in Ss.
States in Si will be labelled if there exists a path which is shorter than t + 1

from the state to a state in Ss. This can be done with an algorithm similar to

Algorithm Identify_Q. We define the algorithm L A B E L _ E U as follows:

Algorithm 4. (LABEL_EU)
unseen := Si U Ss;
fringe := Ss;

mr := min(lSil, t);
for i :=0 to mr do

Vs E fringe do addlabel(s,f);

unseen := unseen \ fringe;

fringe := {s I s ~ unseen A 3s' C fringe : (Y-(s, s') > 0)};

Intuitively, unseen is the set of states in Si and Ss that have not yet been

considered for labelling, fringe are the states that are being labelled, and addla-
bel(s,f) labels state s with the formula f , i.e., label(s) := label(s) tJ {f}. After

passing the for loop with index i, the algorithm will have labelled all states that

satisfy f l U ~ f2.
Emerson et al. [EMS92] present a similar algorithm for model checking in

RTCTL. A small difference compared with our algorithm is that they do not

partition the state set.

The case f l U ~ f2

This case can be reduced to the case f l U<6 f2 by the following proposition, i.e.,

the algorithm LABEL_E U can be used.

lf-<lS~l
Proposition 4. The formula f l U ~ f2 holds in a state iff f l ~>0 f2 holds in

that state.

Proof (~) We first observe that if a path a satisfies f l U <-IS~l f2, then it will

also satisfy f l U -<~176 f2. It follows that the measure of the set of paths satisfying
f l U -<~176 f2 is at least as large as the measure of the set of paths satisfying

f l U <-Is~l f 2.
(~) If a state s satisfies f l U ~ f2 then there exists a finite sequence of states

starting in s whose last state satisfies f2, whose remaining states satisfy f l , and
where all transitions have non-zero probability. We can furthermore choose this

sequence so that no state is visited twice. The longest such sequence has length
ISil, since it can at most visit all states in Si followed by a state in Ss. It follows

that s must also satisfy f l U~lo s~l f 2. []

A Logic for Reasoning about Time and Reliability 525

The case f l U>_-<~ f2

In this case we must ensure that the /~-measure of the set of paths o- in path~
for which a ~K f l U -<-t f2 is 1. The algorithm LABEL_AU is defined as follows:

Algorithm 5. (LABEL_AU)
unseen := Si;
fringe := Ss;

seen := 0;
mr := min(ISi[, t) ;
for i:=0 to mr do

Vs ~ fringe do addlabel(s,f);
unseen := unseen \ fringe;

seen := seen U fringe;

fringe := {s I s ~ unseen A Vs' : (Y-(s, s') > 0 --+ s' E seen)};

Intuitively, seen are the states that have already been labelled. The other
variables have analogous intuitive meanings as in algorithm L A B E L ~ U . After
passing the for loop with index i, the algorithm will have labelled all states that

satisfy f l U>_-<~ f2.

The case f l U ~ f2

Intuitively, the states for which f l U_~ f2 holds are the states from which there
is a 0 probability of eventually reaching a state in Q (as defined in section 4.1).
These states are labelled by the following algorithm:

Algorithm 6. (LABEL_A U ~)
unseen := Si;
fringe := Q;

failure := 0;
repeat

unseen := unseen \ fringe;

failure:= failure U fringe;

fringe := {s I s ~ unseen A 3s' E failure : Y(s, s') > 0}

until fringe = 0;
Vs 6 (S \ failure) do addlabel(s,f);

Intuitively, failure are the states for which it has been established that
f l U_~ f2 does not hold. The other variables have analogous intuitive meanings

as in algorithm LABEL_EU. The algorithm terminates when no more failure-
states can be identified, i.e., after at most ISel iterations. The states which are not
identified as failure states are then labelled with f l U>_-<~ f2.

5. Example

In this section we present a simple example to illustrate the proposed method.
We will verify that a soft deadline is met by a communication protocol. The
protocol, called Parrow's Protocol (PP) [Par85], is a simplified version of the well
known Alternating Bit Protocol [BSW69]. By retransmitting lost messages, PP
provides an error free communication over a medium that might lose messages.
For simplicity it is assumed that acknowledgements (ack) are never lost. PP
consists of three entities: a sender, a medium, and a receiver. The components

526 H. Hansson and B. Jonsson

send
§

SENDER

ack

" ~ ou t
MEDIUM

rec
§

RECEIVER

Fig. 2. The components of Parrow's Protocol.

1

) 1 (,

~

0.9

)
Fig. 3. The behaviour of PP.

and their interactions are described in Fig. 2. The structure in Fig. 3 presents the
behaviour of PP. It is assumed that 10% of the messages are lost.

PP will be used to illustrate the verification of a soft deadline, namely the
property that a rec (receive) will appear in at least 99% of the cases within 5 time
units from the submission of a send. In PCTL, this property can be expressed as:

_<5

f = s e n d ~ rec
_>0.99

5.1. Verification of P P

We will use the model checking algorithms from section 4 to verify that PP is a
model of f. First, f is expanded to allow model checking:

f = send - ' ~ U>0.9 9 ~//>1

\ f2 f3 / f4

f5

7

A Logic for Reasoning about Time and Reliability 527

Table 2. Successive calculations using algorithm 1

time: 0 1 2 3 4 5

state

ack 0 0 0 0 0.9 0.9
send 0 0 0 0.9 0.9 0.99

to 0 0 0.9 0.9 0.99 0.99

in 0 0.9 0.9 0.99 0.99 0.999

out 0 1 1 1 1 1

rec 1 1 1 1 1 1

The labelling of states starts with the smallest subformulas, i.e. fx, f2, f3 and
f4. The state send will be labelled with fl , all states will be labelled with f2,
state rec will be labelled with f3, and no state will be labelled with f4. We will
illustrate labelling of states with f5 using both algorithms for calculation of N(t, s)

presented in section 4.

Algorithm 1: We illustrate the labelling of states with fs using algorithm 1 in

section 4.1. The algorithm assumes that states have been labelled with f2 and
f3. Table 2 shows the result of the successive calculations, performed from left

(time=0) to right (time=5). We can conclude that all states except ack should be
labelled with fs, since after 5 time units p >_ 0.99 for all other states.

Algorithm 2: When labelling states with f5 using algorithm 2 we start by deriving
the matrix M and the column vector N(0) from the structure.

ack send to in out rec

~ / / send 0 0 0 1 0 0 _ send 0
M = to 0 0 0 1 0 0 ~(0)= to 0

in 0 0 0.1 0 0.9 0 in 0
out 0 0 0 0 0 1 out 0
rec 0 0 0 0 0 1 rec 1

m

The next step is to calculate ~(5)"

a c k (0 " 9 I send 0.99

~(5) = MSx~(O)= to 0.99
in 0.999
out 1
rec 1

m

We conclude that all states except ack should be labelled with fs, since N(5)
gives a probability greater than 0.99 for all these states. Not surprisingly, the
probabilities in the vector N(5) are exactly the same as the probabilities after 5

time units obtained with algorithm 1.
Next, we will label all states with f6, since the send state is labelled with fs.

The labelling of states with f can be done via the dual formula (as defined in

section 2)

~(-~false U ~ (~f6 A ~false)).

Note that the labelling procedure in this last step is very naive. It can be drastically

528

f1,fz,f5,f6,f
send

T
f2, f6,f

ack

T
f2,f3,fs,f6,f

rec

f2, fs, f6, f
in

)
f2,f5,f6,f)

OUt

Fig. 4. The resulting labelled structure.

H. Hansson and B. Jonsson

fz, f5,f6,f)
to

simplified by using a special algorithm for labelling states with formulas of the
form AGf' . Such an algorithm is straightforward to construct, since all states

should be labelled with AGf I if all states are labelled with fl. Hence, in our case
all states should be labelled with f , since all states are labelled with f6.

The labelled structure is shown in Fig. 4. We can conclude that f holds for

the structure, since the initial state (send) is labelled with f.

6. Related Work

6.1. Performance Analysis

One of the most used tools for performance analysis is Petri Nets extended with
time. There are different categories of these nets, e.g, Timed Petri Nets (TPNs)
and Stochastic Petri Nets (SPNs). TPNs were introduced by Zuberek [Zub85]

and extended by Razouk and Phelps [Raz84, RAP84]. The TPN model is based
on Petri nets and associates firing frequencies and deterministic firing times with
each transition in the net. SPN were introduced by Molloy [Mo182] and extended

by Marsan, Balbo, and Conte [ABC86]. In the SPN model a stochastic firing
time is associated to transitions. TPNs and SPNs are mainly used to calculate
performance measures of computer system designs. That is, the system is assumed
given together with the performance of its parts. The aim is to get a performance
measure of the system which is as accurate as possible. Much of the work is
therefore to make the model as faithful as possible to actual systems while
retaining the possibility of analysis.

The key steps in analysising TPNs and SPNs are:

1. Model the system as a Petri-net (TPN or SPN).

2. Generate a finite-state Markov chain or Markov process from the net.

3. Analyze the Markov chain by standard methods to find the long run fraction
of time spent in each state. From this information one can make conclusions
about utilisation of resources such as memory, buses, etc. Waiting times can
be analyzed by looking at the fraction of time spent in waiting states.

TPN and SPN analysis is mainly used for tuning the behaviour of system
components. One can make experiments with various values of system parameters
to determine optimal configurations. Holliday and Vernon have carried out such

A Logic for Reasoning about Time and Reliability 529

analyses for a number of different systems, such as multiprocessor memories
[HoV87a] and cache protocols [Veil86]. There are several software packages
available that help in the analysis for these models, e.g. [HoV86, Chi85, CMT89,

SAM86].
TPNs and SPNs are related to our approach in that our models are essentially

Markov Chains. The use of deterministic time and probabilities makes our model
more closely related to the TPN than the SPN models. The main difference
between the TPN approach and ours is the class of properties that are analyzed
for Markov Chains. We have focussed our attention on soft deadlines, while TPN
analysis mainly deals with steady state analysis.

6.2. Logics for Real Time

Many of the logics employed to state properties of concurrent programmes are
various forms of modal logics [Pnu82, Abr80], the most common ones being forms
of temporal logic. Many of these are suitable for reasoning about how events or
predicates may be ordered in time, without bothering about time quantities. The
logic we use is inspired by a one such logic, CTL [CES86]. CTL has a polynomial
time model-checking algorithm and an exponential time satisfiability algorithm

[EmC82].
Emerson, Mok, Sistla, and Srinivasan [EMS92] extend CTL to deal with

quantitative (discrete) time. Examples of properties expressible in their extended
logic (RTCTL) are: p will become true within 50 time units (AF<-5~ and q will
continuously hold for 20 time units (AG<-2~ RTCTL is suited for specification
and verification of hard deadlines. As in PCTL, one time unit is associated
to each transition. In [Eme92], Emerson generalizes the results in [EMS92] by
defining a quantitative version of the #-calculus. Alur, Courcoubetis, and Dill
[ACDg0] extend CTL in a way similar to RTCTL, but in their logic (TCTL)
formulas are interpreted over models with continuous time. Alur, Courcoubetis,
and Dill have also developed automatic techniques for verification of probabilistic
real-time processes. In [ACD91] they present an algorithm for checking whether
a semi-Markov process satisfy a formula in TCTL, and [ACD92] presents a
corresponding algorithm for properties given as deterministic timed automata

[A1D901.
An early reference to work on extending modal logics with quantitative

time is by Bernstein and Harter [BeH81]. They extend traditional linear time
temporal logic with quantitative time. A related logic is presented in [KVR83].
Timed extensions of linear time temporal logic have also been defined by Ostroff
[Ost89], Pnueli and Harel [PnH88], and Alur and Henzinger [A1H89]. Alur and
Henzinger have also written a nice survey of logics for real-time [AIH92].

The Real-Time Logic (RTL) of Jahanian and Mok [JAM86] is not a modal
logic, but a first-order logic. In RTL, one can reason about occurrences of
events and the elapsed times between them. The logic is decidable without
uninterpreted function symbols, as a special case of Presburger arithmetic. Such
a decision procedure is however highly inefficient. Jahanian and Mok therefore
develop algorithms for checking if restricted sub-classes of finite-state processes
satisfy safety specifications [JAM87]. Hooman [Hoo91] uses another first order
logic to formulate real-time assertions (pre and post conditions) of real-time
programmes, and gives a compositional proof system for verification of Occam-
like programmes.

530 H. Hansson and B. Jonsson

6.3. Probabilistic Logics

The above mentioned logics for real-time are not suitable for expressing or
reasoning about soft deadlines, since probabilities are not included. On the other

hand, there are several examples in the literature of modal logics that are extended
with probabilities (but not time), e.g., PTL by Hart and Sharir [HAS84], and TC

by Lehman and Shelah [LeS82]. However, these works only deal with properties
that either hold with probability one or with a non-zero probability.

Probabilistic modal logics have been used in the verification of probabilistic

algorithms. Mostly, the objective has been to verify that such algorithms satisfy
certain properties with probability 1. The proof methods for these properties
resemble the classical proof methods for proving liveness properties under fairness

assumptions. There are both non-finite state versions [PnZ86], and finite-state
model-checking versions [Var85, Fe183, HSP83, HAS84, VaW86].

Courcoubetis and Yannakakis [COY88, COY89] have investigated the com-
plexity of model-checking for linear time propositional temporal logic of sequen-
tial and concurrent probabilistic programmes. In the sequential case, the models

are (just as our models) Markov chains. They give a model-checking algorithm
that runs in time linear in the programme and exponential in the specification,
and show that the problem is in PSPACE. Also, they give an algorithm for

computing the exact probability that a programme satisfies its specification.
Larsen and Skou [LeS89] define a probabilistic version of Hennessy-Milner

Logic, interpreted over probabilistic labelled transition systems. Christoff and

Christoff [ChC92b] define three recursive logics and corresponding model check-
ing algorithms with which properties of probabilistic labelled transition systems
can be specified and verified.

7. Conclusions and Directions for Further Work

We have defined a logic, PCTL, that enables us to formulate soft deadline
properties, i.e., properties of the form: "after a request for service there is at least
a 98% probability that the service will be carried out within 2 seconds". We

interpret formulas in our logic over models that are discrete time Markov chains.
Several model checking algorithms, with different suitability for different classes

of formulas, have been presented.
The use of Markov chains relates our work to the work on Timed Petri Nets.

TPNs could be used as the basis for defining a specification language with our
structures as underlying semantic model. Thus, it might be possible to integrate
our logic and model checking algorithms into the TPN framework. The main
difference between the TPN approach and ours is the class of properties that are
analyzed for Markov chains. In TPN tradition, one does not usually analyze the
transient behaviour as we do. Our analysis can thus be seen as a complement to
the mean-time analysis for TPNs.

To facilitate modeling of concurrent systems we have developed a structured
specification language (a process algebra) [HaJ90]. The language, TPCCS, is
an extension of Milner's CCS [Mi189] with quantitative time and probabilities.
The TPCCS-models are "concurrent Markov chains" [Var85] in which some
transitions are non-deterministic and others probabilistic. Based on PCTL, we
develop a new modal logic (TPCTL) in [Han91], and define a model checking
algorithm for deciding if a TPCCS-process satisfies a given TPCTL-formula.

A Logic for Reasoning about Time and Reliability 531

Acknowledgements

We are grateful to Ivan Christoff, Linda Christoff, Jozef Hooman, Fredrik Orava,
and Parosh for reading and discussing drafts of this manuscript.

References

[ABC86]

[Abr80]

[ACD90]

[ACD91]

[ACD92]

[A1D90]

[A1H89]

[A1H92]

[AHU74]

[Bell81]

[BSW69]

[ChC92b]

[CES86]

[Chi85]

[CMT89]

[CVW86]

[COY88]

[COY89]

[dBH92]

[EmC821

Ajmone Marsan, M., Balbo, G. and Conte, G.: Performance Models of Multiprocessor
Systems. MIT Press, 1986.
Abrahamson, K.: Decidability and Expressiveness of Logics of Processes. PhD thesis,
Univ. of Washington, 1980.
Alur, R., Courcoubetis, C. and Dill, D.: Model-checking for real-time systems. In Proc.
5 th IEEE Int. Syrup. on Logic in Computer Science, pages 414-425, 1990.
Alur, R., Courcoubetis, C. and Dill, D.: Model-checking for probabilistic real-time
systems. In Proc. 18 th Int. Coll. on Automata Languages and Programming (ICALP),
volume 510 of Lecture Notes in Computer Science, pages 115-126. Springer Verlag, 1991.
Alur, R., Courcoubetis, C. and Dill, D.: Verifying Automata Specifications of Probabilis-
tic Real-Time Systems. In J. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science,
pages 28-44. Springer Verlag, 1992.
Alur, R. and Dill, D.: Automata for modeling real-time systems. In Proc. 17 th Int. Coll.
on Automata Languages and Programming (ICALP), volume 443 of Lecture Notes in
Computer Science, Springer Verlag, 1990.
Alur, R. and Henzinger, T.: A really temporal logic. In Proc. 30 th IEEE Annual Symp.
Foundations of Computer Science, pages 164~169, 1989.
Alur, R. and Henzinger, T.: Logics and Models of Real Time: A Survey. In J. de Bakker,
C. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,
volume 600 of Lecture Notes in Computer Science, pages 28-44. Springer Verlag, 1992.
Aho, A.V., Hopcroft, J.E. and Ullman, J.D.: The Design and Analysis o f Computer
Algorithms. Addison-Wesley Publishing Company, 1974.
Bernstein, A. and Harter, P.K.: Proving real-time properties of programs with temporal
logic. In Proc. 8 th ACM Symp. on Operating System Principles, pages 1-11, Pacific Grove,
California, 1981.
Bartlett, K., Scantlebury, R. and Wilkinson, P.: A note on reliable full-duplex transmis-
sions over half duplex lines. Communications of the ACM, 2(5):260-261, 1969.
Christoff, L. and Christoff, I.: Reasoning about safety and liveness properties for
probabilistic processes. In R. Shyamasundar, editor, Proc. 12 th Conf. on Foundations of

Software Technology and Theoretical Computer Science, volume 652 of Lecture Notes in
Computer Science, pages 342-355. Springer-Verlag, 1992.
Clarke, E.M., Emerson, E.A. and Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specification. ACM Trans. on Programming
Languages and Systems, 8(2):244-263, April 1986.
Chiola, G.: A software package for the analysis of generalized stochastic Petri net
models. In Proc. lnt. Workshop on Time Petri Nets, pages 136-143, July 1985.
Ciardo, G., Muppala, J. and Trivedi, K.S.: Spnp: Stochastic petri net package. In
Proc. o f the third International Workshop on Petri Nets and Performance Models. IEEE
Computer Society Press, Kyoto, Japan, December 1989.
Courcoubetis, C., Vardi, M. and Wolper, P.: Reasoning about fair concurrent programs.
In Proc. 18 th ACM Syrup. on Theory of Computing, pages 283-294, 1986.
Courcoubetis, C. and Yannakakis, C.: The complexity of probabilistic verification. In
Proc. 29 th IEEE Annual Symp. Foundations of Computer Science, pages 338-345, 1988.
Courcoubetis, C. and Yannakakis, C.: The complexity of probabilistic verification. Bell
labs Murry Hill, 1989.
de Bakker, J., Huizing, C., de Roever, W-.P. and Rozenberg, G.: editors. Real-Time:
Theory in Practice, volume 600 of Lecture Notes in Computer Science. Springer Verlag,
1992.
Emerson, E.A. and Clarke, E.M.: Using branching time Temporal Logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

532 H. Hansson and B. Jonsson

[Eme92]

[EMS92]

[Fe1831

[Gib85]
[Han91]

[Ha J90]

[I-Ioo911

[HAS84]

[HSP831

[HoV86]

[HoV87a]

[HoV87b]

[JAM86]

[JaM87]

[Jos88]

[KVR83]

[LeS82]

[LeS89]

[Mi189]
[Mo182]

[OWL82]

[Ost89]

[OsW87]

[Par85]

[PnH88]

[Pnn82]

Emerson, A.: Real-Time and the Mu-Calculus. In J. de Bakker, C. Huizing, W-.P.
de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of
Lecture Notes in Computer Science, pages 176-194. Springer Verlag, 1992.
Emerson, A., Mok, A., Sistla, A. and Srinivasan, J.: Quantitative temporal reason-
ing. Real-Time Systems - The International Journal of Time-Critical Computing Systems,
4:331-352, 1992.
Feldman, Y.A.: A decidable propositional probabilistic dynamic logic. In Proc. 15 th

ACM Symp. on Theory of Computing, pages 298-309, Boston, 1983.
Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, 1985.
Hansson, H.: Time and Probabilities in Formal Design of Distributed Systems. PhD thesis,
Department of Computer Systems, Uppsala University, 1991. Available as report DoCS
91/27, Department of Computer Systems, Uppsala University, Sweden, and as report
05 in SICS dissertation series, SICS, Kista, Sweden. A revised version of the thesis will
appear in the Elsevier book series Real-Time Safety Critical Systems.
Hansson, H. and Jonsson, B.: A calculus for communicating systems with time and
probabilities. In Proc. 11 th IEEE Real -Time Systems Syrup., pages 278-287, Orlando,
FI., December 1990. IEEE Computer Society Press.
Hooman, J.: Specification and Compositional Verification of Real-Time Systems, volume
558 of Lecture Notes in Computer Science. North-Holland, 1991.
Hart, S. and Sharir, M.: Probabilistic temporal logics for finite and bounded models. In
Proc. 16 th ACM Symp. on Theory o f Computing, pages 1-13, 1984.
Hart, S., Sharir, M. and Pnueli, A.: Termination of probabilistic concurrent programs.
ACM Trans. on Programming Languages and Systems, 5:356-380, 1983.
Holliday, M.A. and Vernon, M.K.: The GTPN Analyzer: numerical methods and user
interface. Technical Report 639, Dept. of Computer Science, Univ. of Wisconsin -
Madison, Apr. 1986.
Holliday, M.A. and Vernon, M.K.: Exact performance estimates for multiprocessor
memory and bus interface. IEEE Trans. on Computers, C-36:76-85, Jan. 1987.
Holliday, M.A. and Vernon, M.K.: A generalized timed Petri net model for performance
analysis. IEEE Trans. on Software Engineering, SE-13(12), 1987.
Jahanian, F. and Mok, K.-L.: Safety analysis of timing properties in real-time systems.
IEEE Trans. on Software Engineering, SE-12(9):890-904, Sept. 1986.
Jahanian, F. and Mok, A.K.: A graph-theoretic approach for timing analysis and its
implementation. IEEE Trans. on Computers, 36(8):961-975, August 1987.
Joseph, M.: editor. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
331 of Lecture Notes in Computer Science. Springer Verlag, 1988.
Koymans, R., Vytopil, J. and de Roever, W.P. : Real-time programming and asynchronous
message passing. In Proc. 2 na ACM Symp. on Principles of Distributed Computing, pages
187-197, Montr6al, Canada, 1983.
Lehmann, D. and Shelah, S.: Reasoning with time and chance. Information and Control,
53:165-198, 1982.
Larsen, K.G. and Skou, A.: Bisimulation through probabilistie testing. In Proc. 16 th
ACM Syrup. on Principles of Programming Languages, pages 344-352, 1989.
Milner, R.: Communication and Concurrency. Prentice-Hall, 1989.
Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. on Com-
puters, C-31(9):913-917, Sept. 1982.
Owicki, S. and Lamport, L.: Proving liveness properties of concurrent programs. ACM
Trans. on Programming Languages and Systems, 4(3):455-495, 1982.
Ostroff, J.: Automatic verification of timed transition models. In Sifakis, editor,
Workshop on automatic verification methods for finite state systems, volume 407 of Lecture
Notes in Computer Science, pages 247-256. Springer Verlag, 1989.
Ostroff, J. and Wonham, W.: Modelling, specifying and verifying real-time embedded
computer systems. In Proc. IEEE Real-time Systems Syrup., pages 124-132, Dec. 1987.
Parrow, J.: Fairness Properties in Process Algebra. PhD thesis, Uppsala University,
Uppsala, Sweden, t985. Available as report DoCS 85/03, Department of Computer
Systems, Uppsala University, Sweden.
Pnueli, A. and Harel, E.: Applications of temporal logic to the specification of real-
time systems. In M. Joseph, editor, Proc. Syrup. on Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 331 of Lecture Notes in Computer Science, pages 84-98.
Springer Verlag, 1988.
Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45-60, 1982.

A Logic for Reasoning about Time and Reliability 533

[PnZ86]

[Raz84]

[RAP84]

[ShL87]

[SAM86]

[Var85]

[Veil86]

[VaW86]

[Vyt91]

[Zub85]

Pnueli, A. and Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed
Computing, 1(1):53-72, 1986.
Razouk, R.R.: The derivation of performance expressions for communication protocols
from timed Petri net models. In Proc. ACM SIGCOMM '84, pages 210-217, Montr6al,
Qu6bec, 1984.
Razouk, R.R. and Phelps, C.V.: Performance analysis of timed Petri net models. In
Proc. IFIP WG 6.2 Symp. on Protocol Specification, Testing, and Verification IV, pages
126-129. North-Holland, June 1984.
Shankar, A.U. and Lam, S.S.: Time dependent distributed systems: Proving safety,
liveness and real-time properties. Distributed Computing, 2:61-79, 1987.
Sanders, W.H. and Meyer, J.E: Metasan: a performability evaluation tool based on
stochastic activity networks. In Proc of the ACM-IEEE Comp. Soc. Fall Joint Conf.
IEEE Computer Society Press, November 1986.
Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In
Proc. 26 th IEEE Annual Syrup. Foundations of Computer Science, pages 327-337, 1985.
Vernon, M.K. and Holliday, M.A. : Performance analysis of multiprocessor cache consis-
tency protocols using generalized timed Petri nets. In Proc. of Performance 86 and ACM
SIGMETRICS 1986 Joint conf. on Computer Performance Modelling, Measurement, and
Evaluation, pages 9-17. ACM press, May 1986.
Vardi, M.Y. and Wolper, P.: An automata-theoretic approach to automatic program
verification. In Proc. IEEE Syrup. on Logic in Computer Science, pages 332-344, June
1986.
Vytopil, P.: editor. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
571 of Lecture Notes in Computer Science. Springer Verlag, 1991.
Zuberek, W.: Performance evaluation using extended timed Petri nets. In Proc. Interna-
tional Workshop on Timed Petri Nets, pages 272-278, Torino Italy, 1985. IEEE Computer
Society Press.

A P P E N D I X

Algorithms for Labelling States with fl ~//<; f2.

In this section we present modifications o f algori thms 1 and 2 for the Unless case.

Let us introduce the function ~(t , s) for s E S, t an integer. We define ~l(t, s) to

be the #~r-measure for the set o f paths a in p a t h ~ for which "a ~/~ f l q/_<t f2",

I f t < 0, then we use the convent ion that ~(t , s) = 1. Analogous ly to ~(t , s), we

can define ~(t , s) for t > 0 as follows:

~(t , s) = if f2 6 label(s) then 1

else if f l q~ label(s) then 0
(5)

else ~ F (s , s') x ~ (t - 1, s')

st ES

Note that the definitions o f ~ (t , s) and ~(t , s) only differ in the values for

t < 0. The following algori thm calculates ~ (t , s):

Algorithm 7.

for i := 0 to t do

for all s E S do

if f2 E label(s)

then ~(i , s) := 1

else

~(i,s) := 0;
if f l E label(s) then for all s' E S do

~ (i , s) := ~ (i , s) -I- ~ - - (s , s ') x ~ (i - 1,s')

534 H. Hansson and B. Jonsson

The state s can be labelled with f l ~//_~p f2 if N(t, s) > p.

Analogously to algorithm 7 above we can define an algorithm for the Unless

case that corresponds to algorithm 2.

Algorithm 8.
for all s E S do

if f2 E label(s) or fa E label(s)

then N(0)[s] := 1
else ~(O)[s] := O;

N(t) = MtxN(O)

Algorithm for Labelling States with f l o//~ f2.

The algorithm LABEL_EUnless labels states s for which s ~K f l q / ~ f2 with

f l q / ~ f2. Intuitively, the algorithm will not label states in Si u Sf from which all

sequences of states of length < t pass through Sf.

Algorithm 9. (LABEL_EUnless)
unseen : = S i;

fringe := S S ;

bad := O;

mr :--min(ISil, t) ;
bad:= bad U fringe;

unseen := unseen \ fringe;
for i :=0 to mr do fringe :=

{s I s E unseen A Vs' : (Y-(s, s') > 0 ~ s' ~ bad)};

gs E S \ bad do addlabel(s,f);

Intuitively, the variable bad will after passing through the for-loop with index

i contain all states in S I u S~ from which all sequences of states of length ___ i pass

through ST.

Algorithm for Labelling States with f l ~_~ f2.

The algorithm LABEL_A Unless labels states, s, for which s ~/~ f l q/~] f2 with

f l q /~ f2. Intuitively, the algorithm will not label states in Si u Sf from which

there is a sequence of states in Si u S T of length at most t which ends in Sf.

Algorithm 10. (LABEL_AUnless)
unseen := Si;

fringe := Sf;
bad := 0;

mr := min(lSil, t) ;
bad := bad U fringe;
unseen :--- unseen \ fringe;

for i :=0 to mr do fringe :=

{s I s c unseen A 3s' : (J (s , s ') > 0 ~ s' ~ fringe)};

Vs E S \ bad do addlabel(s,f);

A Logic for Reasoning about Time and Reliability 535

Intuitively, the variable bad will after passing through the for-loop with index

i contain all states in S T u Si from which there is a sequence of states of length

_< i which passes through Sf without going to Ss.

Algorithm ldentif y_R

All states for which the/~m measure is 1 for eventually reaching a success state

should be included in R. These are exactly the states in Ss, and the states in Si from

which there is no sequence of transitions outside Ss with non-zero probability,

leading to Q.

Algorithm 11. (Identify_R)
Identify_Q;

unseen := Si;
fringe := Q;

mark := O;
mark := mark U fringe;

unseen :-- unseen \ fringe;
for i:=O to ISil do fringe :--

{sl s E unseen A 3s' c fringe �9 (~-(s, s') > 0)};

R : = S \ m a r k ;

In the algorithm, first Q becomes the set of states from which no success

states are reachable. Then mark becomes the states from which a state in Sf or

Q is reachable. Thus, R should be the complement of the set mark.

Received November 1990

Accepted in revised form October 1993 by J.E Tucker

