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Abstract. We present a logic for stating properties such as, "after a request for 
service there is at least a 98% probability that the service will be carried out 
within 2 seconds". The logic extends the temporal logic CTL by Emerson, Clarke 

and Sistla with time and probabilities. Formulas are interpreted over discrete 
time Markov chains. We give algorithms for checking that a given Markov chain 
satisfies a formula in the logic. The algorithms require a polynomial number 

of arithmetic operations, in size of both the formula and the Markov chain. A 
simple example is included to illustrate the algorithms. 

1. Introduction 

Research on formal methods for specification and verification of computer sys- 

tems has to a large extent focussed on correctness of computed values and 
qualitative ordering of events, while ignoring aspects that deal with real-time 
properties such as bounds on response times. For many systems, such as control 
systems, timing behaviour is an important aspect of the correctness of the system, 

1 This paper is a revised and extended version of a paper that has appeared under the title "A 
Framework for Reasoning about Time and Reliability" in the Proceeding of the 10 th IEEE Real-time 
Systems Symposium, Santa Monica CA, December 1989. The work presented here was performed 
while the authors were employed by the Swedish Institute of Computer Science (SICS), and partially 
supported by the Swedish Board for Technical Development (ESPRIT/BRA project 3096, SPEC) and 
the Swedish Telecommunication Administration (project: PROCOM). 
Correspondence and offprint requests to: Hans Hansson, Department of Computer Systems, Uppsala 
University, Box 325, S-751 05, Uppsala, Sweden. Email: hansh@docs.uu.se 
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and the interest for research on these aspects of formal methods seems to be 
increasing (see e.g. [Jos88, Vytgl, dBH92]). 

For some systems, it is very important that certain time bounds on their 

behaviour are always met. Examples are flight control systems and many process 
control systems. Methods for reasoning about such hard deadlines can be obtained 
by adding time to existing methods. One can add time as an explicit (virtual) 
variable and use standard verification techniques (e.g. [PnH88, ShL87, OsW87]), 

or develop logics that deal explicitly with time quantities (e.g. [Bell81, JAM86, 
KVR83, EMS92]). 

For some systems, one is interested in the overall average performance, such 
as throughput, average response times, etc. Methods for analyzing such properties 

usually employ Markov analysis. Often the systems are described by different vari- 
ants of timed or stochastic Petri nets [Mo182, ABC86, Zub85, RAP84, HoV87b]. 

In this paper, we shall investigate methods for reasoning about properties 
such as "after a request for a service, there is at least a 98 percent probability 
that the service will be carried out within 2 seconds". We call such properties 

soft deadlines. Soft deadlines are interesting in systems in which a bound on the 

response time is important, but the failure to meet the response time does not 
result in a disaster, loss of lives, etc. Examples of systems for which soft deadlines 
are relevant are telephone switching networks and computer networks. 

In this paper, we present a logic called PCTL for stating soft deadlines. The 
logic is based on Emerson, Clarke, and Sistla's Computation Tree Logic (CTL) 
[CES86]. CTL is a modal (temporal) logic for reasoning about qualitative pro- 

gramme correctness. Typical properties expressible in CTL are: p will eventually 
hold on all future execution paths (AFp), q will always hold on all future exe- 

cution paths (AGq), and r will hold continuously on some future execution path 
(EGr). Independently of the work presented here, Emerson, Mok, Sistla, and 
Srinivasan [EMS92] have extended CTL to deal with quantitative time. Examples 
of properties expressible in the extended logic (RTC TL) are:p will become true 

within 50 time units (AF<-5~ and q will continuously hold for 20 time units 
(AG<-2~ RTCTL is suited for specification and verification of hard deadlines. 

In PCTL, we have equipped temporal operators with time bounds in the same 
way as in RTCTL, i.e., time is discrete and one time unit corresponds to one 

transition along an execution path. To enable reasoning about soft deadlines we 
have replaced path quantifiers by probabilities. Thus, instead of saying that some 

property holds for all paths or for some paths, we can express that a property 
holds for a certain fraction of the paths. Examples of properties expressible in our 

/ lt?<20 logic are: with at least 50% probability p will hold within 20 time units ~->_-0.5 P) 
and, with at least 99% probability q will hold continuously for 20 time units 
(~<20 ~>~0.99 q)" We interpret formulas in our logic over structures that are discrete 
time Markov chains. This relates our work to probabilistic temporal logics, as 
defined e.g., by Hart and Sharir [HAS84] and others [LeS82, CWW86]. However, 
these works only deal with properties that either hold with probability one or 
with a non-zero probability. 

The paper is organised as follows. In section 2, we define our logic, Probabilistic 
real time Computation Tree Logic (PCTL) and in section 3 we provide examples 
of properties that can be expressed in PCTL. In section 4, we present and discuss 
algorithms for checking if a given structure is a model of a PCTL-formula. 
Section 5 presents a verification of a simple communication protocol. In section 
6, we discuss related work. In section 7, we summarise the results and indicate 
directions for further work. 
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2. Probabilistic Real Time Computation Tree Logic 

In this section, we define a logic, called Probabilistic real time Computation Tree 
Logic (PCTL), for expressing real-time and probability in systems. 

Assume a finite set A of atomic propositions, denoted by a, ab etc. Formulas 

in PCTL are built from atomic propositions, propositional logic connectives and 

operators for expressing time and probabilities. 

Definition 1. (PCTL Syntax) The syntax of  PCTL formulas is defined inductively 

as follows: 

�9 Each atomic proposition a is a PCTL formula, 

�9 If  f l  and f2 are PCTL formulas, then so are ~ f l  and (fl /k f2), 

�9 If  f l  and f2 are PCTL formulas, t is a nonnegative integer or o0, and p is a real 

number with 0 < p < 1, then fx U_~p f2 and f l  U>; f2 are PCTL formulas. 
[] 

We shall use f ,  f b  etc. to range over PCTL formulas. Intuitively, the PCTL 

formulas represent properties of  states. The propositional connectives -, and A 

have their usual meanings. The operator U is the (strong) until operator. The 

formula f l  U>_<-~ f~ expresses that with at least probability p both f2 will become 
true within t time units and that f l  will be true from now on until f2 becomes 

true. The formula f l  U~p f2 has analogous meaning. 
PCTL formulas are interpreted over structures that are discrete time Markov 

chains. A specified initial state is associated with the structure, and for each state 

there is an assignment of truth values to atomic propositions appearing in a given 

formula. 

Definition 2. (Structure) A structure is a quadruple (S, s i, Y--, L), where 

S is a finite set of states, ranged over by s, Sl, etc., 

s ~ E S is the initial state, 

J -  : S x S ~ [0, 1] is a transition probability function, such that for all s in S 

Z J(s,s') = i ,  
s' ES 

L : S ~ 2 A is a labelling fimction assigning atomic propositions to states. [] 

Intuitively a structure represents a system, which at any instant is in one of 

its states. At each time unit, the system changes state according to a probability 

distribution given by the transition probability function. Thus, each transition 

can be considered to require one time unit. We will display structures as tran- 

sition diagrams, where states (circles) are labelled with atomic propositions and 
transitions with non-zero probability are represented as arrows labelled with their 

probabilities (e.g., the arrow from state sk to state Sl is labelled with ~--(Sk, sI)). The 
initial state (s i) is indicated with an extra arrow. For example, Figure 1 shows a 
structure (K) with 4 states and 5 transitions with non-zero probability. The state 

A, labelled with ab ae, is the initial state. 

A path a from a state so in a structure is an infinite sequence so Sl s2 ... of  
states with so as the first state. The state sn in a is denoted a[n], and the prefix 

so ... s~ of a is denoted ~rTn. 
For each structure K and state s we will define a probability measure/~s K on 

the set of paths from s. 
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Fig. 1. The sample structure K. 

Definition 3. (Probability measure) Let path~ denote the set of  paths of  K 

starting in so. In accordance with measure theory, we define: 

�9 For any sequence so ... sn, starting in so 

#~({a �9 path~ ] aTn = so ...  s,)) = ~-(s0,s1) X ' ' "  X ~-'(Sn--l,Sn) 

i.e., the measure of  the set of  paths ~ for which a'rn = so ... s, is equal to 

the product J(so, sl) • "'" x Y-(s,_l,s,). 

�9 For n = 0 

�9 I = so} )  = 1. 

�9 For any countable set {Xi}iei of  disjoint subsets of  pathfso 

K 
= Z,,so(X,  

icI icI 

Note that the sum is well-defined, since it is bounded by 1 and each summand 

is non-negative. 

�9 I f  X is a subset of pathS,  then the measure of  the complement set path~ \ X  
is defined as: 

#Kso(path ~ \ X) = 1 -- pK(x) [] 

As an illustration, consider the labelled Markov chain K in Fig. 1. The set of  

paths path~ of K is infinite. The set of  paths with non-zero probability can be 

characterised by the co-regular expression AB(CAB)*D% The probability measure 

for the set of  paths in K for which C is visited exactly n times is given by 

pKA({AB(CAB)"D~ = 0.6"x0.4 

For n 5~ m the set of  paths {AB(CAB)"D C~ is disjoint from {AB(CAB)mD~ 
Hence, 

I~KA({AB(CAB)*D~176 = Z P~({AB(CAB)iD~ = 1 
icJV" 

Also, it follows that the measure of  the set of  paths which never reaches D is 0. 

In the definition of PCTL we will use the auxiliary path formula fl  U <-t f2 to 

represent properties of  paths, i.e., sequences of  states. Intuitively, f l  U <-t f2 holds 
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for a particular path if f2 becomes true within t time units and f l  holds until 

then. 
We will define the truth of PCTL-formulas for a state s in a structure K by a 

satisfaction relation 

S ~ K  f 

which intuitively means that the PCTL-formula f is true at state s in the structure 
K. In order to define the satisfaction relation for states, it is helpful to use another 

relation 

a ~ K  f l  U <-t f2  

which intuitively means that the path a in K satisfies the path formula f l  U <<-t f2. 

Definition 4. (PCTL Semantics) The relations 

defined as follows: 

S ~ K  a 

s ~K ~ f  

s ~K f l  /x f2 

,~ ~K f l U <-~ f 2 

S ~ K f l  U_~pf2 

S ~K f l  U~p f2 

~K and ~K 

ill" a ~ L(s )  

iff not s ~K f 

iff s ~K fl and s ~K f2 

iff there exists an i _< t such that 

o-[i] ~ K  f2 and 

~r[j] ~ K f b f o r a l l j  : 0 _ < j < i .  

iff/~f({a I a[0] = s A a ~ K  f l  U <-t f2}) --> P. 

iff #~({a ] a[0] = s A a ~ K  f l  U <-t f2}) > P. 

We will use ~K f to denote s i ~ K  f ,  where s i is the initial state of K. 

In the following we will use the abbreviations (derived operators)" 

f l  V f2 = -~(~/1 A ~f2) 

f i e f 2  --= ~f l  V f2 

f l  og>~p f2 

f l  ~< ;  f2 

are inductively 

[] 

- < i _ . - - I s ,  v s l) 

=- ~ U~,l_p-~(fl  V f2) 

Intuitively, the propositional connectives V and ~ have their usual meanings. 

The operator ~// is the <t unless (or weak until) operator. The formula f l  ~//;v f2 
means that with at least probability p either f l  will remain true for at least t-time 
units, or f2 will become true within t time units and f l  will be true from now on 
until f2 becomes true. The formula f l  0g~p f2 has analogous meaning. 

3. Properties Expressible in PCTL 

In this section we present examples of properties that can be expressed in PCTL. 
First, we discuss why PCTL is suitable for specification of soft and hard deadlines. 

The main difference between PCTL and branching time temporal logics such 
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as CTL, is the quantification over paths and the ability to specify quantitative 

time. CTL allows universal (A f) and existential (E f) quantification over paths, 

i.e., one can state that a property should hold for all computations (paths) or 

that it should hold for some computations (paths). It is not possible to state that 
a property should hold for a certain portion of the computations, e.g. for at least 

50% of the computations. In PCTL, on the other hand, arbitrary probabilities 
can be assigned to path formulas, thus obtaining a more general quantification 

over paths. Consider for instance the PCTL formula f l  U<~.5 f2 which does not 
have a CTL analogue. Analogues to universal and existential quantifications in 
CTL can however be expressed in PCTL, e.g. 

A[f l  V f2] = f l  0 < 7  f2 

E[f l  U f2] = f l  U>~f2  

AGf =- f ~ false 

AF f = true U~_~ f 

EGf - f qi<~ false 

EFf  - true U ~  f 

Intuitively, A[fl U f2] means that f l  U f2 holds for all paths, or more precisely, 
for a set of paths with probability measure 1. The formula E [fl U f2] means that 
there exists a path for which f l  U f2 holds, or more precisely, there exists a set of 
paths with non-zero probability measure for which f l  U f2 holds. The formula 
AGf means that f is always true (in all states that can be reached with non-zero 

probability), AFf  means that a state where f is true will with probability 1 
eventually be reached, EGf means that there is a non-zero probability for f to be 

continuously true, and EFf  means that there exists a state where f holds which 
can be reached with non-zero probability. 

Quantitative time allows us to specify time-critical properties that relate the oc- 
currence of events in a system in real-time. This is very important for programmes 
that operate in distributed and real-time environments, e.g., communication pro- 

tocols and industrial control systems. In PCTL it is possible to state that a 
property will hold continuously during a specific time interval, or that a property 
will hold sometime during a time interval, e.g. we can define 

ql;_p false 

F~  f =-- true U~tp f 

Intuitively, G_~p f means that the formula f holds continuously for t time units 
<t with a probability of at least p, and F_~p f means that the formula f holds within 

t time units with a probability of at least p. 

An important requirement on most real-time and distributed systems is that 
they should respond to stimuli with an appropriate action, e.g., every time a 
controller receives an alarm signal from a sensor the controller should take 
an appropriate action. Owicki and Lamport [OWL82] have defined a leads-to 
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operator (a ~-~ b), with the intuitive meaning that whenever a becomes true, b will 

eventually hold. We can in PCTL define a quantified leads-to operator as follows: 
_<t 

f l  ~ f2 ==- AG( f l  ~ F~_~ f2) 
~p 

_<t 

Intuitively, f l  ~ f2 means that whenever f l  holds there is a probability of at 
_>p 

least p that f2 will hold within t time units. 

As an example consider an industrial controller which monitors the level of 

fluid in a container. An alarm is raised when the fluid reaches a critical level. The 

controller should respond to an alarm by opening a valve within 4 time units. 

This can in PCTL be expressed as: 
_<4 

alarm ~ open valve 
>1 

For some systems, it might be sufficient that the deadline is almost always met 

(e.g. in 99% of the cases). This relaxed property can in PCTL be expressed as 

follows: 
_<4 

alarm ~ open valve 
_>0.99 

Relaxing the timing requirement might enable a less costly implementation that 

still shows acceptable behaviour. To be on the safe side we could add a strict 

upper limit to the relaxed property, combining the hard and soft deadlines above. 

If we assume that we want the controller to always respond within 10 time units, 

and almost always within 4 time units we get the property: 
~<10 _<4 

( a l a r m , ~  open valve) A (alarm ~ open valve) 
_>1 >_0.99 

4. Model Checking in PCTL 

In this section, we present a model checking algorithm, which given a structure 
K = (S, s i, J-, L) and a PCTL formula f determines whether ~ ;  f .  The algorithm 

is based on the algorithm for model checking in CTL [CES86]. It is designed so 

that when it terminates each state will be labelled with the set of subformulas of  
f that are true in that state. One can then conclude that ~K f iff the initial state 
(s i) is labelled with f .  

For each state s of  the structure, the algorithm uses a variable label(s) 
to indicate the subformulas that have been found to be true in s. Initially, 

each state s is labelled with the atomic propositions that are true in s, i.e., 
label(s) := L(s), Vs c S. The labelling is then performed starting with the smallest 

subformulas of f that have not yet been labelled, and ending with labelling states 
with f itself. Composite formulas are labelled based on the labelling of their 
parts. Assuming that we have performed the labelling of f l  and f2, the labelling 

corresponding to negation (~f l )  and propositional connectives (fl A f2, f l  V f2, 

and f1 ~ f2) is straightforward, i.e., 
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Table 1. Combinations of p and t parameter values in formulas. 

Probability Time 

0 finite oo 

> 0 s ~K f2 E[fl O <-t f2] CTL E[f l  U f2] 

(r o(ISI) 

s ~ g  f2 The general case "probabilistic CTL" 

0 < p < 1 (9(tx(IS] + IEI)) C~ TM) 

or (9(log tx[Sl 3) 

>__ 1 s ~z( f2 A[fl U -<t f;] CTL A[fl U f2] 
~(lsl) e(lso 
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label(s) := label(s) U {~fl} 

label(s) := label(s) u {fl A f2} 

label(s) := label(s) U {fl V f2} 

label(s) := label(s) U {fl --* f2} 

if f l  ~ label(s), 

if f b f 2  E label(s), 

if f l  E label(s) or f2 E label(s), 

if f l  ~ label(s) or f2 E label(s), 

where in addition the new formula must be a subformula of  f .  

In the sequel, we shall treat the modal operators. Section 4.1 presents algo- 

rithms for labelling states with the modal subformulas of  PCTL. In section 4.2 

we present more efficient algorithms for labelling in cases with extreme parameter 

values (e.g. p = 1 and p = 0). 

4.1. Labelling States with the Modal Subformulas of PCTL 

In this section we give algorithms for labelling states with formulas of type 
<t <t 

and f l  U~p f2. f l  U~_p f2 We will present several algorithms with different suit- 

ability for different values of  the t and p parameters. Table 1 gives a classification 

of possible combinations of p and t parameter values as well as complexities of  

performing the labelling using the algorithms we will propose. 

For the three entries in the left column, corresponding to t = 0, the labelling 
problem collapses to the problem of labelling states with f2. The cases in the 

middle row of Table 1 will be considered in this section. Note that, we will 

give two algorithms for the case with finite t value and 0 < p < 1. The first is 

suitable for small t parameter values, while the second performs better for large 

t values. In section 4.2 we will present alternative algorithms for the remaining 

cases of the table: fx U ~  f2, f l  U<~ f2, f l  U_~ f2, and f l  U_~ f2, where t < o0. 

As indicated in the table, model checking for f l  U ~  f2 is analogous to CTL 

model checking for the formula E [fl U f2]. Likewise, f l  U>_-<~ ~ f2 corresponds to 

CTL model checking of A[fl U f2]. Model checking for f l  U ~  f2 amounts to 

check if there exists a sequence of states satisfying f l  U -<t f2. This is analogous 

to RTCTL model checking [EMS92] for the formula E[fl U <-t f2]. Likewise, 

f l  U<~ f2 corresponds to RTCTL model checking of A[fl U -<t f2]. 
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Modal Subformulas with Finite t Parameter Value 

We shall give an algorithm for labelling states with the formula f l  U>_<-~ f2, 

assuming that we have done the labelling for formulas f l  and f2, and that t-~ m. 

Definition 5. (Measure for Paths Satisfying Until-Formulas) For a state s E S 

in a structure K and an integer t > 0, we define the function ~(t ,  s) to be the 

measure for the set of paths a in p a t h f  for which a NK f l  U <-t f2. If t < 0, we 

define ~(t ,  s) = 0. [] 

Proposition 1. If  t > 0 then ~(t ,  s) satisfies the following recurrence equation: 

~(t ,s)  = if f2 E label(s) then 1 

else if f l  ~ label(s) then 0 
(1) 

else ~ J-(s, s') x ~ ( t -  1, s') 

sr ES 

Proof. For states s and integers t, let Z(t, s) be the set of finite sequences 

s sl ... sj of states from s such that j <_ t, sj ~K f2, and for all i with 0 < i < j 

we have si ~K f l  and si [:/=K f2. Let ~(t ,  s) denote the measure of the set of  paths 

a in p a t h ~  for which a ~K f l  U <-t f2. By definition, ~(t ,  s) satisfies 

~ ( t , s )  = Z J " ( S ,  S1) X ' ' "  X ~ " ( S j - I , S j )  

s Sl ... s jez( t , s )  

We consider three cases. 

Case s ~K f2: By definition, any path a in p a t h ~  satisfies a ~/( f l  U <-t f2 when 

t _> 0, hence ~(t ,  s) = 1. 

Case s ~K f2 and s ~:K f l :  By definition, for any path a in paths~s we have 

a ~i( f l  U <-t f2, hence ~(t ,  s) = 0. 

Case s ~:K f2 and s ~K f l :  Here we consider two cases. 

Case t = 0: By definition, for a path a in p a t h f  we have a ~K f l  U -<~ f2 iff 

s ~K f2, thus N(t, s) = 0. 

Case t > 0: Since s ~K f2, any finite sequence in z(t, s) will have at least two 
states. Hence we can denote each such sequence a as s a', where a t is the 

sequence a minus its first state. For such a sequence we have a E Z(t, s) iff 

a' c Z ( t -  1,a'[1]). Hence we have 

~ ( t , s )  = y~ 'C-(s ,  s l )  x . . .  x Y ( s j _ l , s j )  

s sl ,.. s jez( t ,s )  

= Z J"(S, $1) X ~~ $2) X ' ' "  X ~'-(Sj--1, Sj) 
sl Sl ... s jEz( t - - l , s l )  

: ~ ~-(S, S1) X ~ ( t -  1, Sl) 

Sl 

Recurrence equation 1 gives 

if ~(t ,  s) > p. 
Recurrence equation 1 can also be formulated in terms of matrix multiplica- 

tion. Let sl . . . .  , SN be the states in S. Partition S into three subsets, Ss, Sf, and Si, 
as follows: 

[] 

an algorithm that labels the state s with f l  U~p f2 
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Ss - the success states, are states labelled with f2 (i.e., states for which f2 E 

label(s)). 

S T - the failure states, are states which are not labelled with f l  nor f2 (i.e., states 

for which f l ,  f2 ~ label(s)). 

Si - the inconclusive states, are states labelled with f l  but not with f2 (i.e., states 

for which f l  E label(s) and f2 ~ label(s)). 

Define the ISI x ISI-matrix M by 

{ J'(Sk, Sl) if Sk C Si 
M[&, sl] -- 1 if Sk (~ Si A k = l (2) 

0 otherwise 

For t > 0, let N(t) be a column vector of size ISI whose ith element ~(t)i is 

~(t,  si). Thus N(0)i is 1 if si c Ss and otherwise 0. 

Proposition 2. It follows that 

t 

A 

~(t )  = ~ / x M x . . .  xM~x~(0)  = M ' x ~ ( 0 )  (3) 

for t > 0 .  

Proof We will use equa t ion l .  When t =_0 the proposition follows by definition. 

For t > 0 equation 3 gives ~( t )  = M x ~ ( t -  1). We consider three cases: 

1. if s, E Ss then_ (since M[sn, s'] = 1 if sn = s' otherwise 0 ) i t  follows that ~( t ) ,  

is equal to ~ ( t -  1),. Since ~(0) ,  = 1 we conclude that ~(t)n = 1. 

2. if s, ~ Sf then analogously to Case 1. it follows that ~( t ) ,  = 0. 

3. if s, c Si then (since M[s,,s'] = Y(s,s')) it follows that 

-~(t). = Z J-(sn, Sm) x -~(t - 1)m 

smcS 

We see that ~(t)i satisfies exactly the same recurrence equation as ~(t, si). [] 

A possible optimisation is to collapse the sets Ss and Sf into two representative 

states" s~ and sf. This will reduce the size of M to (ISil + 2) x (ISil + 2). 

For formulas of form f l  U~tp f2 we can use the same calculations as for 

f~ U~_tp f2, but we will only label states s for which ~(t ,  s) > p. Model checking 

for unless-formulas (fl y/_~tp f2 and f l  ~ t p  f2) can be done via the dual formulas: 

f l  ~#_~p f2 -- ~ (~/2) U~(l_pt (-~fl A 

f l  ~#~p f2 =-- -~ (~f2) U~_(t_p) (~f l  A 

Alternatively, we can define an analogue to N(t, s) for the Unless case and 
construct algorithms similar to algorithms 1 and 2 below. This is done in the 

Appendix. 

Calculating ~(t, s). 
We propose two algorithms for calculating ~(t,s). The first algorithm is more 

or less directly derived from equation (1) and the second algorithm uses matrix 

multiplication and the matrix M as in equation (3). 
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Algorithm 1. 
for i := 0 to t do 

for all s e S do 

if f2 c label(s) then ~(i, s) := 1 

else begin 

~(i,s) := 0; 

if f l  c label(s) then for all s' e S do 

~(i,s) := ~(i,s) + 3 - ( s , s ' ) x ~ ( i -  1,s') 
end 

Algorithm 2. 
for all s ~ S do 

if f2 E label(s) then N(0)[s] := 1 

else N(0) [s] := 0; 

~( t )  = Mt•  

Algorithm 1 requires (9(t• 2 arithmetical operations. Ignoring the zero- 

probability transitions in Y- we can reduce the number of arithmetical operations 

required to (9(t• + IEI)), where IE[ is the number of transitions in Y with 

non-zero probability. For a fully connected structure these expressions coincide, 

since in that case IE[ = IS[ 2. The matrix multiplication in algorithm 2 can be 

performed with (9(log(t)• IS I 3) arithmetical operations, since M t can be calculated 

with (9(log t) matrix multiplications, each requiring ISI 3 (or less) arithmetical 

operations. Let us define the size of a modal operator as log(t), where t is the 

integer time parameter of the operator. The size [fl of  a PCTL formula f is 

defined as the number of propositional connectives and modal operators in f 

plus the sum of the sizes of the modal operators in f .  Then the problem whether a 

structure satisfies a formula f can be decided using at most (9(tmax • ([SI +IEI) x l f I) 

or o(ISI 3 • arithmetical operations, depending on the algorithm, where ISI is 

the number of states, IEI the number of transitions with non-zero probability, tmax 
is the maximum time parameter in a formula, and If[ is the size of the formula. 

The second expression of complexity is polynomial in the size of  the formula and 

the structure. In Section 5 we illustrate the use of both algorithms above in the 
verification of a simple communication protocol. 

Modal subformulas with t : oo 

In this section we consider labelling states with the formula f l  U_~ f2. The 

algorithms above cannot be used in this case, since they would reqmre infinite 
calculations. Instead we define ~(oo, s) to be the measure for the set of paths a in 

p a t h ~  for which a ~ g  f t  U -<~176 f2. In this algorithm we extend the failure states 
to also include states in Si from which no success state is reachable via transitions 
with non-zero probability. We define Q to be the new set of failure states. The first 

step of  the algorithm is to identify the states in Q. Inspired by Dijkstra's shortest 

path algorithm [Gib85] and observing that we only need to consider paths that 
are shorter than the number of inconclusive states [Sil we define the algorithm 
Idendfy_Q as follows: 

2 The actual worst case complexity is ((t + 1)x(ISI + 1)x2xlS[), since the outermost loop will be 
run through t + 1 times, the "for all" loops will be run through ISI times, there is one assignment 
statement just before the innermost loop, and there are two arithmetical operations in the innermost 
assignment statement. 
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Algorithm 3. (Identify_Q) 
unseen := Si u Ss; 
fringe := Ss; 

mark := 0; 

for i:=O to I Sil do 
mark := mark U fringe; 
unseen := unseen - fringe; 

fringe := {s I s e unseen A 3s' E fringe : (~-(s, s') > 0)}; 
Q : = S \ m a r k ;  

Intuitively, the algorithm marks all states from which there is a positive 

probability of reaching a state in Ss. Q is the complement of these states�9 In the 

algorithm, unseen denotes the set of states in Si and Ss that have not yet been 
considered, fringe are the states that are being marked. After passing the for loop 

with index i, the algorithm will have marked all states that satisfy f l  U ~  f2. 

Similar to the definition of Q, we can extend the success states to also include 

states s in Si for which the #f-measure for eventually reaching a success state 

(s' E Ss) without passing ST is 1. We define R to be the new set of  success states�9 

The states in R can be identified in a way similar to the identification of states in 

Q. An algorithm for identifying the states in R is given in the Appendix. The next 

step, when Q and R have been identified, is to solve the set of linear equations 

defined by: 

 (oo, s) = i f s E R t h e n  1 

else i f s E ( 2 t h e n 0  

else Z J ( s ,  s') x ~(oo, s') 

s' ES 

(4) 

These equations can be solved with Gaussian elimination, with a complexity 
of (9 [(IS] - [ Q ] -  IR]) 2sl] [AHU74]. 

Proposition 3. ~(o% s) is the #s n measure for the set of paths a in pathfiss for 

which a ~K f l  U -<~176 f2. 

Proof If  s E R or s E Q, then the definitions of R and Q imply the proposition. 

In other cases, we can analogously to the proof of Proposition 1 show that the 
�9 < C O  

measure for the set of  paths a in path f i  s for whmh a ~ g  f l  U-  f2 satisfies the 

same equations as N(oo, s). This shows the existence of  a solution of  the equations 

which is the desired one. The uniqueness of the solution can be seen as follows. 

Assume that there are two solutions. Then the difference between them, denoted 

A(s) for s 6 S, satisfies the equations 

A(s) = f ( s ,  s') • A(s') 

s' ES 

for s c S \ (R u Q). By definition, A(s) = 0 if s 6 R U Q and ~ J ( s , s ' )  = 1 

s' ES 

for all s E S. If  A =p 0 for a non-empty subset in S \ (R U Q), then we consider 

the set Max of states s in S \ (R U Q) for which A(s) has the highest absolute 
value, this implies that there are no transitions from a state in Max to a state 

outside Max with non-zero probability. This would imply that Max c_ Q which 

is a contradiction. [] 
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4.2. Special Algorithms when p - 0 or p = 1 

In this section we will discuss alternative algorithms for cases when the modal 

operator has extreme probability (1 or 0) parameter value. As in section 4.1, we 

will only consider Until formulas, since the Unless case can be handled via the 

dual modal operators. To improve performance in an actual implementation, it 

will probably be desirable to use separate algorithms for the Unless case. Such 

algorithms are defined in the Appendix. 

The case f l  U ~  f2 

To label states with fx U<~ f2 we will use the partitioning of states defined in 

Section 4.1, i.e., Si, Ss, and Sf. The algorithm will (trivially) label states in Ss. 
States in Si will be labelled if there exists a path which is shorter than t + 1 

from the state to a state in Ss. This can be done with an algorithm similar to 

Algorithm Identify_Q. We define the algorithm L A B E L _ E U  as follows: 

Algorithm 4. (LABEL_EU) 
unseen := Si U Ss; 
fringe := Ss; 

mr := min(lSil, t); 
for i :=0 to mr do 

Vs E fringe do addlabel(s,f); 

unseen := unseen \ fringe; 

fringe := {s I s ~ unseen A 3s' C fringe : (Y-(s, s') > 0)}; 

Intuitively, unseen is the set of states in Si and Ss that have not yet been 

considered for labelling, fringe are the states that are being labelled, and addla- 
bel(s,f) labels state s with the formula f ,  i.e., label(s) := label(s) tJ {f}. After 

passing the for loop with index i, the algorithm will have labelled all states that 

satisfy f l  U ~  f2. 
Emerson et al. [EMS92] present a similar algorithm for model checking in 

RTCTL. A small difference compared with our algorithm is that they do not 

partition the state set. 

The case f l  U ~  f2 

This case can be reduced to the case f l  U<6 f2 by the following proposition, i.e., 

the algorithm LABEL_E U can be used. 

lf-<lS~l 
Proposition 4. The formula f l  U ~  f2 holds in a state iff f l  ~>0 f2 holds in 

that state. 

Proof ( ~ )  We first observe that if a path a satisfies f l  U <-IS~l f2, then it will 

also satisfy f l  U -<~176 f2. It follows that the measure of the set of  paths satisfying 
f l  U -<~176 f2 is at least as large as the measure of the set of paths satisfying 

f l U <-Is~l f 2. 
( ~ )  If  a state s satisfies f l  U ~  f2 then there exists a finite sequence of  states 

starting in s whose last state satisfies f2, whose remaining states satisfy f l ,  and 
where all transitions have non-zero probability. We can furthermore choose this 

sequence so that no state is visited twice. The longest such sequence has length 
ISil, since it can at most visit all states in Si followed by a state in Ss. It follows 

that s must also satisfy f l U~lo s~l f 2. [] 
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The case f l  U>_-<~ f2 

In this case we must ensure that the /~-measure  of the set of paths o- in path~ 
for which a ~K f l  U -<-t f2 is 1. The algorithm LABEL_AU is defined as follows: 

Algorithm 5. (LABEL_AU) 
unseen := Si; 
fringe := Ss; 

seen := 0; 
mr := min(ISi[, t) ; 
for i:=0 to mr do 

Vs ~ fringe do addlabel(s,f); 
unseen := unseen \ fringe; 

seen := seen U fringe; 

fringe := {s I s ~ unseen A Vs' : (Y-(s, s') > 0 --+ s' E seen)}; 

Intuitively, seen are the states that have already been labelled. The other 
variables have analogous intuitive meanings as in algorithm L A B E L ~ U .  After 
passing the for loop with index i, the algorithm will have labelled all states that 

satisfy f l  U>_-<~ f2. 

The case f l  U ~  f2 

Intuitively, the states for which f l  U_~ f2 holds are the states from which there 
is a 0 probability of eventually reaching a state in Q (as defined in section 4.1). 
These states are labelled by the following algorithm: 

Algorithm 6. (LABEL_A U ~ ) 
unseen := Si; 
fringe := Q; 

failure := 0; 
repeat 

unseen := unseen \ fringe; 

failure:= failure U fringe; 

fringe := {s I s ~ unseen A 3s' E failure : Y(s, s') > 0} 

until fringe = 0; 
Vs 6 (S \ failure) do addlabel(s,f); 

Intuitively, failure are the states for which it has been established that 
f l  U_~ f2 does not hold. The other variables have analogous intuitive meanings 

as in algorithm LABEL_EU. The algorithm terminates when no more failure- 
states can be identified, i.e., after at most ISel iterations. The states which are not 
identified as failure states are then labelled with f l  U>_-<~ f2. 

5. Example  

In this section we present a simple example to illustrate the proposed method. 
We will verify that a soft deadline is met by a communication protocol. The 
protocol, called Parrow's Protocol (PP) [Par85], is a simplified version of the well 
known Alternating Bit Protocol [BSW69]. By retransmitting lost messages, PP 
provides an error free communication over a medium that might lose messages. 
For simplicity it is assumed that acknowledgements (ack) are never lost. PP 
consists of three entities: a sender, a medium, and a receiver. The components 
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send 
§ 

SENDER 

ack 

" ~  ou t  
MEDIUM 

rec 
§ 

RECEIVER 

Fig. 2. The components of Parrow's Protocol. 

1 

) 1  ( ,  

~ 

0.9 

) 
Fig. 3. The behaviour of PP. 

and their interactions are described in Fig. 2. The structure in Fig. 3 presents the 
behaviour of PP. It is assumed that 10% of the messages are lost. 

PP will be used to illustrate the verification of a soft deadline, namely the 
property that a rec (receive) will appear in at least 99% of the cases within 5 time 
units from the submission of a send. In PCTL, this property can be expressed as: 

_<5 

f = s e n d ~  rec 
_>0.99 

5.1. Verification of  P P  

We will use the model checking algorithms from section 4 to verify that PP is a 
model of f. First, f is expanded to allow model checking: 

f = send - ' ~  U>0.9 9 ~//>1 

\ f2 f3 / f4 

f5 

7 
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Table 2. Successive calculations using algorithm 1 

time: 0 1 2 3 4 5 

state 

ack 0 0 0 0 0.9 0.9 
send 0 0 0 0.9 0.9 0.99 

to 0 0 0.9 0.9 0.99 0.99 

in 0 0.9 0.9 0.99 0.99 0.999 

out 0 1 1 1 1 1 

rec 1 1 1 1 1 1 

The labelling of states starts with the smallest subformulas, i.e. fx, f2, f3 and 
f4. The state send will be labelled with fl ,  all states will be labelled with f2, 
state rec will be labelled with f3, and no state will be labelled with f4. We will 
illustrate labelling of states with f5 using both algorithms for calculation of N(t, s) 

presented in section 4. 

Algorithm 1: We illustrate the labelling of states with fs using algorithm 1 in 

section 4.1. The algorithm assumes that states have been labelled with f2 and 
f3. Table 2 shows the result of the successive calculations, performed from left 

(time=0) to right (time=5). We can conclude that all states except ack should be 
labelled with fs, since after 5 time units p >_ 0.99 for all other states. 

Algorithm 2: When labelling states with f5 using algorithm 2 we start by deriving 
the matrix M and the column vector N(0) from the structure. 

ack send to in out rec 

~ / / send 0 0 0 1 0 0 _ send 0 
M =  to 0 0 0 1 0 0 ~(0)= to 0 

in 0 0 0.1 0 0.9 0 in 0 
out 0 0 0 0 0 1 out 0 
rec 0 0 0 0 0 1 rec 1 

m 

The next step is to calculate ~(5)" 

a c k ( 0 " 9  I send 0.99 

~(5) = MSx~(O)= to 0.99 
in 0.999 
out 1 
rec 1 

m 

We conclude that all states except ack should be labelled with fs, since N(5) 
gives a probability greater than 0.99 for all these states. Not surprisingly, the 
probabilities in the vector N(5) are exactly the same as the probabilities after 5 

time units obtained with algorithm 1. 
Next, we will label all states with f6, since the send state is labelled with fs. 

The labelling of states with f can be done via the dual formula (as defined in 

section 2) 

~(-~false U ~  (~f6 A ~false)). 

Note that the labelling procedure in this last step is very naive. It can be drastically 
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f1,fz,f5,f6,f 
send 

T 
f2, f6,f 

ack 

T 
f2,f3,fs,f6,f 

rec 

f2, fs, f6, f 
in 

) 
f2,f5,f6,f ) 

OUt 

Fig. 4. The resulting labelled structure. 
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fz, f5,f6,f ) 
to 

simplified by using a special algorithm for labelling states with formulas of the 
form AGf' .  Such an algorithm is straightforward to construct, since all states 

should be labelled with AGf  I if all states are labelled with fl. Hence, in our case 
all states should be labelled with f ,  since all states are labelled with f6. 

The labelled structure is shown in Fig. 4. We can conclude that f holds for 

the structure, since the initial state (send) is labelled with f. 

6. Related Work 

6.1. Performance Analysis 

One of the most used tools for performance analysis is Petri Nets extended with 
time. There are different categories of these nets, e.g, Timed Petri Nets (TPNs) 
and Stochastic Petri Nets (SPNs). TPNs were introduced by Zuberek [Zub85] 

and extended by Razouk and Phelps [Raz84, RAP84]. The TPN model is based 
on Petri nets and associates firing frequencies and deterministic firing times with 
each transition in the net. SPN were introduced by Molloy [Mo182] and extended 

by Marsan, Balbo, and Conte [ABC86]. In the SPN model a stochastic firing 
time is associated to transitions. TPNs and SPNs are mainly used to calculate 
performance measures of computer system designs. That is, the system is assumed 
given together with the performance of its parts. The aim is to get a performance 
measure of the system which is as accurate as possible. Much of the work is 
therefore to make the model as faithful as possible to actual systems while 
retaining the possibility of analysis. 

The key steps in analysising TPNs and SPNs are: 

1. Model the system as a Petri-net (TPN or SPN). 

2. Generate a finite-state Markov chain or Markov process from the net. 

3. Analyze the Markov chain by standard methods to find the long run fraction 
of time spent in each state. From this information one can make conclusions 
about utilisation of resources such as memory, buses, etc. Waiting times can 
be analyzed by looking at the fraction of time spent in waiting states. 

TPN and SPN analysis is mainly used for tuning the behaviour of system 
components. One can make experiments with various values of system parameters 
to determine optimal configurations. Holliday and Vernon have carried out such 
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analyses for a number of different systems, such as multiprocessor memories 
[HoV87a] and cache protocols [Veil86]. There are several software packages 
available that help in the analysis for these models, e.g. [HoV86, Chi85, CMT89, 

SAM86]. 
TPNs and SPNs are related to our approach in that our models are essentially 

Markov Chains. The use of deterministic time and probabilities makes our model 
more closely related to the TPN than the SPN models. The main difference 
between the TPN approach and ours is the class of properties that are analyzed 
for Markov Chains. We have focussed our attention on soft deadlines, while TPN 
analysis mainly deals with steady state analysis. 

6.2. Logics for Real Time 

Many of the logics employed to state properties of concurrent programmes are 
various forms of modal logics [Pnu82, Abr80], the most common ones being forms 
of temporal logic. Many of these are suitable for reasoning about how events or 
predicates may be ordered in time, without bothering about time quantities. The 
logic we use is inspired by a one such logic, CTL [CES86]. CTL has a polynomial 
time model-checking algorithm and an exponential time satisfiability algorithm 

[EmC82]. 
Emerson, Mok, Sistla, and Srinivasan [EMS92] extend CTL to deal with 

quantitative (discrete) time. Examples of properties expressible in their extended 
logic (RTCTL) are: p will become true within 50 time units (AF<-5~ and q will 
continuously hold for 20 time units (AG<-2~ RTCTL is suited for specification 
and verification of hard deadlines. As in PCTL, one time unit is associated 
to each transition. In [Eme92], Emerson generalizes the results in [EMS92] by 
defining a quantitative version of the #-calculus. Alur, Courcoubetis, and Dill 
[ACDg0] extend CTL in a way similar to RTCTL, but in their logic (TCTL) 
formulas are interpreted over models with continuous time. Alur, Courcoubetis, 
and Dill have also developed automatic techniques for verification of probabilistic 
real-time processes. In [ACD91] they present an algorithm for checking whether 
a semi-Markov process satisfy a formula in TCTL, and [ACD92] presents a 
corresponding algorithm for properties given as deterministic timed automata 

[A1D901. 
An early reference to work on extending modal logics with quantitative 

time is by Bernstein and Harter [BeH81]. They extend traditional linear time 
temporal logic with quantitative time. A related logic is presented in [KVR83]. 
Timed extensions of linear time temporal logic have also been defined by Ostroff 
[Ost89], Pnueli and Harel [PnH88], and Alur and Henzinger [A1H89]. Alur and 
Henzinger have also written a nice survey of logics for real-time [AIH92]. 

The Real-Time Logic (RTL) of Jahanian and Mok [JAM86] is not a modal 
logic, but a first-order logic. In RTL, one can reason about occurrences of 
events and the elapsed times between them. The logic is decidable without 
uninterpreted function symbols, as a special case of Presburger arithmetic. Such 
a decision procedure is however highly inefficient. Jahanian and Mok therefore 
develop algorithms for checking if restricted sub-classes of finite-state processes 
satisfy safety specifications [JAM87]. Hooman [Hoo91] uses another first order 
logic to formulate real-time assertions (pre and post conditions) of real-time 
programmes, and gives a compositional proof system for verification of Occam- 
like programmes. 
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6.3. Probabilistic Logics 

The above mentioned logics for real-time are not suitable for expressing or 
reasoning about soft deadlines, since probabilities are not included. On the other 

hand, there are several examples in the literature of modal logics that are extended 
with probabilities (but not time), e.g., PTL by Hart and Sharir [HAS84], and TC 

by Lehman and Shelah [LeS82]. However, these works only deal with properties 
that either hold with probability one or with a non-zero probability. 

Probabilistic modal logics have been used in the verification of probabilistic 

algorithms. Mostly, the objective has been to verify that such algorithms satisfy 
certain properties with probability 1. The proof methods for these properties 
resemble the classical proof methods for proving liveness properties under fairness 

assumptions. There are both non-finite state versions [PnZ86], and finite-state 
model-checking versions [Var85, Fe183, HSP83, HAS84, VaW86]. 

Courcoubetis and Yannakakis [COY88, COY89] have investigated the com- 
plexity of model-checking for linear time propositional temporal logic of sequen- 
tial and concurrent probabilistic programmes. In the sequential case, the models 

are (just as our models) Markov chains. They give a model-checking algorithm 
that runs in time linear in the programme and exponential in the specification, 
and show that the problem is in PSPACE. Also, they give an algorithm for 

computing the exact probability that a programme satisfies its specification. 
Larsen and Skou [LeS89] define a probabilistic version of Hennessy-Milner 

Logic, interpreted over probabilistic labelled transition systems. Christoff and 

Christoff [ChC92b] define three recursive logics and corresponding model check- 
ing algorithms with which properties of probabilistic labelled transition systems 
can be specified and verified. 

7. Conclusions and Directions for Further Work 

We have defined a logic, PCTL, that enables us to formulate soft deadline 
properties, i.e., properties of the form: "after a request for service there is at least 
a 98% probability that the service will be carried out within 2 seconds". We 

interpret formulas in our logic over models that are discrete time Markov chains. 
Several model checking algorithms, with different suitability for different classes 

of formulas, have been presented. 
The use of Markov chains relates our work to the work on Timed Petri Nets. 

TPNs could be used as the basis for defining a specification language with our 
structures as underlying semantic model. Thus, it might be possible to integrate 
our logic and model checking algorithms into the TPN framework. The main 
difference between the TPN approach and ours is the class of properties that are 
analyzed for Markov chains. In TPN tradition, one does not usually analyze the 
transient behaviour as we do. Our analysis can thus be seen as a complement to 
the mean-time analysis for TPNs. 

To facilitate modeling of concurrent systems we have developed a structured 
specification language (a process algebra) [HaJ90]. The language, TPCCS, is 
an extension of Milner's CCS [Mi189] with quantitative time and probabilities. 
The TPCCS-models are "concurrent Markov chains" [Var85] in which some 
transitions are non-deterministic and others probabilistic. Based on PCTL, we 
develop a new modal logic (TPCTL) in [Han91], and define a model checking 
algorithm for deciding if a TPCCS-process satisfies a given TPCTL-formula. 
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A P P E N D I X  

Algorithms for Labelling States with fl ~//<; f2. 

In  this section we present modifications o f  algori thms 1 and 2 for the Unless case. 

Let  us introduce the function ~( t ,  s) for s E S, t an integer. We define ~l(t,  s) to 

be the #~r-measure for the set o f  paths a in p a t h ~  for which "a  ~/~ f l  q/_<t f2", 

I f  t < 0, then we use the convent ion that  ~( t ,  s) = 1. Analogous ly  to ~( t ,  s), we 

can define ~( t ,  s) for t > 0 as follows: 

~( t ,  s) = if f2 6 label(s)  then 1 

else if f l  q~ label(s)  then 0 
(5) 

else ~ F ( s ,  s') x ~ ( t -  1, s') 

st ES 

Note  that  the definitions o f  ~ ( t ,  s) and ~( t ,  s) only differ in the values for 

t < 0. The following algori thm calculates ~ ( t ,  s): 

Algorithm 7. 

for i :=  0 to t do 

for all s E S do 

if f2 E label(s)  

then ~(i ,  s) :=  1 

else 

~(i,s) := 0; 
if f l  E label(s)  then for all s' E S do 

~ ( i , s )  :=  ~ ( i , s )  -I- ~ - - ( s , s ' ) x ~ ( i -  1,s') 
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The state s can be labelled with f l  ~//_~p f2 if N(t, s) > p. 

Analogously to algorithm 7 above we can define an algorithm for the Unless 

case that corresponds to algorithm 2. 

Algorithm 8. 
for all s E S do 

if f2 E label(s) or fa E label(s) 

then N(0)[s] := 1 
else ~(O)[s] := O; 

N(t) = MtxN(O) 

Algorithm for Labelling States with f l  o//~ f2. 

The algorithm LABEL_EUnless labels states s for which s ~K f l  q / ~  f2 with 

f l  q / ~  f2. Intuitively, the algorithm will not label states in Si u Sf from which all 

sequences of states of length < t pass through Sf. 

Algorithm 9. (LABEL_EUnless) 
unseen : =  S i; 

fringe := S S ; 

bad := O; 

mr :--min(ISil, t) ; 
bad:=  bad U fringe; 

unseen := unseen \ fringe; 
for i :=0 to mr do fringe := 

{s I s E unseen A Vs' : (Y-(s, s') > 0 ~ s' ~ bad)}; 

gs E S \  bad do addlabel(s,f); 

Intuitively, the variable bad will after passing through the for-loop with index 

i contain all states in S I u S~ from which all sequences of states of length ___ i pass 

through ST. 

Algorithm for Labelling States with f l  ~_~ f2. 

The algorithm LABEL_A Unless labels states, s, for which s ~/~ f l  q/~] f2 with 

f l  q /~  f2. Intuitively, the algorithm will not label states in Si u Sf from which 

there is a sequence of states in Si u S T of length at most t which ends in Sf. 

Algorithm 10. (LABEL_AUnless) 
unseen := Si; 

fringe := Sf; 
bad := 0; 

mr := min(lSil, t) ; 
bad := bad U fringe; 
unseen :--- unseen \ fringe; 

for i :=0 to mr do fringe := 

{s I s c unseen A 3s' : ( J ( s , s ' )  > 0 ~ s' ~ fringe)}; 

Vs E S \  bad do addlabel(s,f); 
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Intuitively, the variable bad will after passing through the for-loop with index 

i contain all states in S T u Si from which there is a sequence of states of  length 

_< i which passes through Sf without going to Ss. 

Algorithm ldentif y_R 

All states for which the/~m measure is 1 for eventually reaching a success state 

should be included in R. These are exactly the states in Ss, and the states in Si from 

which there is no sequence of transitions outside Ss with non-zero probability, 

leading to Q. 

Algorithm 11. (Identify_R) 
Identify_Q; 

unseen := Si; 
fringe := Q; 

mark := O; 
mark := mark U fringe; 

unseen :-- unseen \ fringe; 
for i:=O to ISil do fringe :-- 

{sl s E unseen A 3s' c fringe �9 (~-(s, s') > 0)}; 

R : = S \ m a r k ;  

In the algorithm, first Q becomes the set of states from which no success 

states are reachable. Then mark becomes the states from which a state in Sf or 

Q is reachable. Thus, R should be the complement of the set mark. 
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