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ABSTRACT 

As part of an on-going project to understand the found* 
tions of Knowledge Representation, we are attempting to 
characterize a kind of belief that forms a more appropriate 
basis for Knowledge Representation systems than that cap 
tured by the usual possible-world formalizations begun by 
Hintikka. In this paper, we point out deficiencies in current 
semantic treatments of knowledge and belief (including re- 
cent syntactic approaches) and suggest a new analysis in 
the form of a logic that avoids these shortcomings and is 
also more viable computationally. 

The kind of belief that underlies terms in AI such as ‘Know!- 
edge Representation” or “knowledge base” has never been ade- 
quately characterized. r As we discuss below, the major existing 
formal model of belief (originated by Hintikka in [l]) requires the 
beliefs of an agent to be closed under logical consequence, and 
thus can place unrealistic computational demands on his reason- 
ing abilitites. Here we describe and formalize a weaker sense of 
belief that is much more attractive computationally and forms 
a more plausible foundation for the service to be provided by a 
Knowledge Representation utility. This formalization is done in 
the context of a logic of belief that has a truth-based semantic 
theory (like the possible-world approach but unlike its recent 
syntactic competitors). This logic is also shown to have con- 
nections to relevance logic and, in a certain sense, to subsume 
it. 

1. Logical Omniscience & Possible Worlds 

A recurring problem in the modelling of belief or knowledge 
is what has been called in [z] logical omniscience. In a nutshell, 
all formalizations of belief based on a possible-world semantics 
suffer from the fact that at any given point, the set of sentences 
considered to be believed is closed under logical consequence. It 
is simply built into the logic that if a is believed and a logically 
implies ,8, then B is believed as well. Apart from the fact that 
this does not allow for a resource-limited agent who might fail 
to draw any connection between a and fi, this has at least three 
other serious drawbacks from a modelling point of view: 

1. Every valid sentence must be believed. 

2. If two sentences are logically equivalent, then one must be 
believed if the other is. 

‘Because what is represented in a knowledge base is typically not required 
to be true, to be consistent with most philosophers and computer scientists, 
we are calling the attitude involved here ‘belief” rather than “knowledRe”. 

3. If a sentence and its negation are both believed, then so 
must every sentence. 

Any one of these might cause one to reject a possible-world for- 
malization as unintuitive at best and completely unrealistic at 
worst. 

There is, however, a much more reasonable way of interpret- 
ing the possible-world characterization of belief. As discussed 
in [3], instead of taking logical omniscience as an idealization 
(or heuristic) in the modelling of the beliefs of an agent, we can 
understand it to be dealing realistically with a different though 
related concept, namely, what is implicit in what an agent be- 
lieves. For example, if an agent imagines the world to be one 
where a is true and if o logically implies B, then (whether or not 
he realizes it) he imagines the world to be one where B also hap 
pens to be true. In other words, if the world the agent believes 
in satisfies cy, then it must also satisfy ,8. Under this interpreta- 
tion, we examine not what an agent believes directly, but what 
the world would be like if what he believed were true. There are 

often very good reasons for examining the consequences of what 
an agent believes even if the agent himself has not yet appreci- 
ated those consequences. 

If the proper understanding of a possible-world semantics is 
that it deals not with what is believed, but what is true given 
what is believed, what then is an appropriate semantics for deal- 
ing with the actual beliefs of an agent? Obviously, we need a 
concept other than the one formalized by possible worlds. If we 
use the terminology that a sentence is ezplicitly believed when 
it is actively held to be true by an agent and implicitly believed 
when it follows from what is believed, then what we want is a 

formal logical language that includes two operators, B and L: 
Ba will be true when a is explicitly believed while La will be 
true when Q is implicit in what is believed. While a possible- 
world semantics (like that of [l] or [4]) is appropriate for dealing 
with the latter concept, the goal of this paper is to present one 
for the former. 

2. The Syntactic Approach 

When talking about what an agent actually believes, we want 
to be able to distinguish between believing only a and (a > 8) 
on the one hand, and believing a, (CY > a) and @, on the other. 
While the picture of the world is the same in both cases, only 
the second involves realizing that /3 is true. This is somewhat of 
a problem semantically, since the two sets of beliefs are true in 
nreciselv the same possible worlds and so, in some sense, seman- 
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tically indistinguishable. This might suggest that any realistic the syntactic and the possible-world approaches so that different 
semantics for belief will have to include (something isomorphic sets of sentences can represent the same beliefs without requir- 
to) a set of sentences to distinguish between the two belief sets ing that all logically equivalent sets do so. We now show that 
above. The usual way to interpret a sentence like La in a stan- there is a reasonably intuitive semantics for belief that has these 
dard Kripke framework is to have a model structure that con- properties. 
tains a set of possible worlds, an accessibility relation and other 
things. It appears that to interpret a sentence like Ba, a model 
structure will have to contain an explicit set of sentences. This is 3. Situations 
indeed what happens in the formalizations of belief of [S] and (61 
that share our goal of avoiding logical omniscience. A slightly On closer examination, the reason the possible-world ap 

more sophisticated approach is that of [7] where the semantic preach to belief or knowledge leads to logical omniscience is that 

structure contains only an initial set of sentences (representing beliefs are characterized completely by a set of possible worlds 

a base set of beliefs) and a set of logically sound deductive rules (namely, those that are accessible from a given possible world). 
for obtaining new derived beliefs. Logical omniscience is avoided Intuitively, these possible worlds are to be thought of as the full 

there by allowing the deductive rules to be logically incomplete. range of what the agent thinks the world might be like. If he 

With or without deductive rules, I will refer to this approach to only believes that p is true, the set of worlds will be all those 
modelling belief as the .yntactic approach since syntactic entities where p is true: some, for example, where q is true, others, where 

have to be included within the semantic structures. q is false. However, because sentences which are tautologies will 

Apart from this perhaps ill-advised mixture of syntax and also be true in all these possible worlds, the agent is thought of 

semantics, the syntactic approach suffers from a serious defect 
as believing them just as if they were among his active beliefs. 

that is the opposite of the problem with possible worlds. A 
In terms of the possible worlds, there is no way to distinguish p 

possible-world semantics is, in some sense, too coarse-grained to 
from these tautologies. 

model belief in that it cannot distinguish belief sets that logically One way to avoid all these tautologies is to to make this no- 

imply the same set of sentences. The syntactic approach, on tion of what an agent thinks the world is like be more relevant 

the ocher hand, is too fine-grained in that it considers any two to what he actually believes. This can be done by replacing the 

sets of sentences as distinct semantic entities and, consequently, possible worlds by a different kind of semantic entity that does 

different belief sets. not necessarily deal with the truth of all sentences. In partic- 

To see why this a problem, consider, for example, the disjunc- ular, sentences not relevant to what an agent actually believes 

tion of LY and 8. There is no reason to suppose that 
(including some tautologies) need not get a truth value at all. 

B(a v ,9) E B(/3V a) 
Following [8] (but not too closely), we will call this sort of partial 
possible world a Gtuation. bughly speaking, a situation may 

would be valid given a syntactic understanding of B since (@VP) support the truth of some sentences and the falsity of others, 
may be in the belief set while (/? V a) may not.2 The trouble but may fail to deal with other sentences at all. 

with this is that if we consider intuitively what For example, consider the situation of me sitting at my ter- 

“It is believed that either o or /I is true.’ minal at work. We might say that this situation supports the 

is saying, the order seems to be completely irrelevant. It is 
fact that I’m at work, that somebody is at my terminal, that 

almost an accident of lexical notation that we had to choose one 
there is either a terminal or a book at my desk, and so on. On 

of the disjuncts to go first. Yet, the syntactic approach makes 
the other hand, it does not support the contention that my wife 

the left to right order of disjuncts semanticallysignificant in that 
is at home, that she is not out shopping, or even that she is at 

we can believe one ordering but fail to believe the other. 
home or not at home. Although the latter is certainly true, me 
sitting at my terminal does not deal with it one way or another. 

The obvious counter to this is that the logic of the syntactic 
approach has to be embellished to avoid these spurious syntactic 

One way of thinking about situations is as generalizations of 

distinctions. For example, we might insist as part of the seman- 
possible worlds where not every sentence in a language is re- 

tics that to be well-formed, any belief set containing (ckVb) must 
quired to have a truth value. Conversely, we can think of pos- 

also contain (/? V cr) (or, for Konolige, the obvious deduction 
sible worlds as those limiting cases of situations where every 

rule must be present). The trouble with this kind of constraint 
sentence does have a truth value. Indeed, the concept of a pos- 

is that it is semantically unmotivated. For example, should we 
sible world being compatible with a situation is intuitively clear: 

also insist that any set containing 11~ must also contain cr? 
every sentence whose truth is supported by the situation should 

Should every belief set containing a and b also contain (a ha)? 
come out true in that possible world and every sentence whose 

Should every belief set contain the ‘Lobviousn tautologies such 
falsity is supported should come out false. Again drawing from 

as (a > a)? Where do we stop ? Clearly, it would be preferable 
(81, we will also allow for incoherent situations with which no 

to have a semantics where restrictions such as these follow from 
possible world is compatible. These are situations that (at least 

the meaning of Ba and not the other way around. In other 
seem to) support both the truth and falsity of some sentence. 

words, we want a semantics (like that of possible worlds) that 
From the point of view of modelling belief, these are very useful 

is based on some concept of truth rather than on a collection 
since they will allow an agent to have an incoherent picture of 
the world. 

of ad hoc restrictions to sets of sentences. Ideally, moreover, 
the granularity of the semantics should lie somewhere between The “trick”, then, that underlies the logic of belief to follow 

is to identify explicit belief with a Bet o{aituationa rather than 

21n Konolige’s #y&em, one disjunction may be deducible while the other possible worlds. Before examining the formal details, there is 
mav not. one point to make. Traditional lonics of knowledge and belief 
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have dealt not only with world knowledge but also with meta- 
knowledge, that is, knowledge about knowledge. To be able 
to deal with this in our case is somewhat of a problem since 
we would have to deal with a whole raft of questions about 
what is believed about what is explicitly or implicitly believed. 
For example, even without assuming that everything believed 
is true, it is not clear whether or not B(La > CX) should be 
valid. For reasons given in [3], L(La > CY) should be valid even 
if belief does not, in general, imply truth. Instead of trying to 
settle all of these questions here and now, we will ignore them 
completely. The language below will simply not contain any 
sentences where a B or a L appears within the scope of another. 
This will simplify the semantics immensely while still illustrating 
how the two concepts can co-exist naturally. 

4. A Formal Semantics 

The language we are considering (call it L) is formed in the 
obvious way from a set of atomic sentences P using the stan- 
dard connectives V, A, and 1 for disjunction, conjunction, and 
negation respectively, and two uuary connectives B and L. Only 
regular propositional sentences (without a B or a L) can occur 
within the scope of these last two connectives. We assume that 
other connectives such as > and E can be understood in t(erms 
of the original ones.s 

Sentences of L are interpreted semantically in terms of a model 
atructute (S,B,T,3) h w ere .S is a set, B is a subset of S, and 
both t and 3 are functions from P (the atomic sentences) to 
subsets of S. Intuitively, S is the set of all situations with B 
being those situations that could be the actual one according 
to what is believed. For any atomic sentence p, T(p) are the 
situations that support the truth of p and 3(p) are those that 
support the falsity of p. 

To deal with the possible worlds compatible with a situation 
in a model structure, we define W by the following: 

W(3) = { 3’ E S 1 for every p E P, 
a) a’ is a member of exactly one of 7(p) and 3(p), 
b) if 3 is a member of 7(p), then so is Q’, 

and c) if a is a member of 3(p), then so is s’.} 

The first condition aboves guarantees that s’ will be a possible 
world, while the last two guarantee compatibility. Also, for any 
subset S * of S, we will let W (S’) mean the union of all W (8) 
for every s in S’. ,* 

Given a semantic structure (S, 8, T,3 ), we can define the 
support relations /==T and +p holding between situations and sen- 
tences of L. Intuitively, 8 kTa when 8 supports the truth of CX, 
and .9 kp Q when s supports the falsity of Q. More formally, we 
have the following: 

kT and k=F E S x L and are defined by 

1. skTpiff8ET(p). 
u k=p p iff d E 3(p). 

aWe may eventually want a special implication operator, especially for sen- 
tences that are obiects of belief. 

5. J kT Ba iff for every 3’ in 8, 8’ bTa. 
a kFBcr iff 3 IfTBa. 

6. J /== La iff for every 3’ in W(B), 3’ k=a. 
3 +FLa iff 8 kTLa. 

If 9 is an element of W(S) ( i.e. 8 is a possible world), then if 
B +=a, we say that a is true at a and otherwise that a ia joke 

at 8. Thus, as to be expected, a sentence is true iff it is not false 
iff its negation is false. Finally, we say that a is valid and write 
/= a provided that for any model structure (S, B, T ,3 ) and any 
J in W(S), (Y is true at s. The satisfiablitity of a sentence (or of 
a set of sentences) can be defined analogously. This completes 
the semantics of L. 

While space precludes a lengthy examination of the properties 
of L, here are the major highlights. First of all, L handles its 
standard propositional subset correctly in that all instances of 
propositional tautologies are valid and, moreover, any sentence 
not containing a B or L is valid iff it is a standard tautology. 

As for implicit belief, it is easy to see that all tautologies are 
implicitly believed and that it is closed under implication. In 
other words, we have 

If + Q (where Q is propositional), then b La and 

k (La A L(cK 3 /4)) 3 L/9. 

Equally important, the sentence (Ba > La) is valid, meaning 
that everything that is explicitly believed is an implicit belief. 
In fact, if a sentence is a logical consequence’ of what is believed, 
then it is implicitly believed. Unfortunately, the converse does 
not hold since in some interpretations, there may be sentences 
that are true in the right set of possible worlds without be- 
ing implied by what is believed. For example, if a sentence is 
necessarily true then it will be an implicit belief-even if it is 
not logically valid-a generic problem with the possible-world 
semantics for knowledge and belief that seems to have gone un- 
noticed in the literature. We should not be too concerned about 
this, however, since it does not affect either the valid or the sat- 
isfiable sentences of L, but only whether or not certain infinite 
sets of sentences are satisfiable.5 

Of course, the major issue here is how the B operator behaves. 
Before examining the valid sentences containing B, it is worth 
copsidering some satisfiable sets of sentences that show that be- 
lief does not suffer from logical omniscience. The following sets 
are all satisfiable: . 

1. {Bp,B(p~q),-Bq} Th is s ows that beliefs are not closed h 
’ under implication. 

‘A sentence Q is a logical consequence of a set L’ of sentences iff L’ U {TX} 
is unsatisfiable. 

6There is, moreover, a fairly simple way to eliminate the problem of non- 
logical necessary truths always being implicitly believed. Call a model 
structure ezpunriue if for any set of atomic sentences, there is a possible 
world in the structure such that the atomic sentences it supports is precisely 
that set. Now while there are certainly model st.ructures that are not 
expansive, it can be shown that the validity or satisfiability of a sentence 
would not change if these were defined in terms of expansive structures 
only. With this definition, moreover, a sentence would indeed be implicitly 
believed if and only ilit was lonicallv implied bv what was believed. 
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2. (1B(pv -p)} A Id va i sentence need not be believed. 

3. { Bp, -B(p A (q V -q))} A logical equivalent to a belief 
need not be believed. 

4. {Bp, B-p, -Bq} B 1 f e ie s can be inconsistent without every 
sentence being believed. 

The above sets show what freedom the logic allows in terms 
of beliel; to demonstrate that the logic does impose reasonable 
constraints on belief, we must look at the valid sentences of L. 
We will present these in terms of a proof theory for L that is both 
sound and complete with respect to the above semantics. The 
important point, however, is that unlike the syntactic approach, 
these constraints follow from the semantics. The only reason to 
consider a proof theory here is that it does provide an elegant 
and vivid way to examine the valid sentences of L (especially 
those using B).’ 

5. A Proof Theory 

The proof theory of L must begin with a propositional basis 
of some sort to guarantee that all tautologies are present. The 
simplest way to do this is to have a single rule of inference, 
Modus Ponens, and the usual three axioms that can be found 
in any elementary logic textbook. To this basic system we will 
adjoin a collection of new axioms for implicit and explicit belief 
but no new rules of inference. 

The appropriate axioms for implicit belief should make sure 
that it contains all tautologies and all beliefs and is closed under 
implication. This can be achieved with three axiom schemata: 

1. Lo, where a is a tautology. 

2. (Ba 3 La). 

3. kr A .+ 3 a) 3 Lg. 

For explicit belief, on the other hand, we have to dream up a 
set of axioms stating what has to be believed when something 
else is. In other words, we need a set of axioms of the form 
(Ba > BB), for various 0 and /?. Remarkably enough, this work 
has already been done for us in what is called relevance logic [9]. 
This logic deals with a relationship between pairs of sentences 
called entailment that is a proper subset of logical implication. 
Entailment is based on the intuition that the antecedent of an 
implication should be relevant to the consequent. As it turns 
out, entailment and belief are very closely related, as the follow- 
ing key result attains: 

Theorem 1: /= (Ba > B/?) if7 a entails /?. 

The proof of this theorem’ is based on a correspondence between 
our semantics of situations and a semantics of four truth-values 
described in 1111. What this tells us is that L contains relevance 
logic as a subpart: questions of entailment can be reduced t.o 
questions of belief in L. Moreover, we get this relevance logic 
without having to give up classical logic and the normal inter- 
pretation of > and the other connectives. 

‘We could imagine constructing a decision procedure for L directly from the 
above without even passing through a proof theory at all. Such A decision 
procedure, after all, is what counts when building a system that reasons 
with L. 

‘Proofs of this and the two other quoted theorems can be found in [lo], a 
slinhtlv revised version of this Daoer. 

So all that is needed to characterize the constraints satisfied 
by belief is to apply a set of axioms for entailment in relevance 
logic 

4. 

5. 

6. 

7. 

8. 

9. 

to belief. One such set given in [9] is the following: 

B(o A B) E B(/‘? A a). 
B(a v a) E B(/!3 V a). 

B(a A (B A 7)) = B((a A 8) A r)- 
B(a v (B v 7)) = B(b V b’j V -Y). 

B(a A (B V +I)) = B((o A B) V (a A r))- 
B(a v (B A 7)) - B((a V 8 A b V -/j)- 

B-+rVj3) GE B(yaA+). 
B+A\) E B(lcrV 18). 

B-VTK G Ba. 

This 

Ba A B/3 z B(a A a). 
Bav B/9 > B(LIVB). 

particular axiomatization states that belief must respect 
properties of the logical operators such as commutativity, asso- 
ciativity, distibutivity, De Morgan’s laws and double negation. 
Nothing in these axioms forces all the logical consequences of 
what is believed to be believed (as in axioms 1 and 3, above, for 
implicit belief), although each one forces Some consequences to 
be believed (e.g., by axiom 8, a double negation of a sentence 
must be believed if the sentence itself is). 

Another way to understand these axioms (except for the very 
last one) is as constraints on the individuation of beliefs. For 
example, (cr V 8) is believed iff (/l V a) is because these are two 
lexical notations for the same belief. In this sense, it is not that 
there is an automatic inference from one belief to another, but 
rather two ways of describing a single belief. 

This, in itself, does not juSti&/ the axioms, however. It is 
easy to imagine logics of belief that are different from this one, 
omitting certain of the above constraints or perhaps adding ad- 
ditional ones. Indeed, there is not much to designing a proof 
theory with any collection of constraints on belief. The interest- 
ing fact about this particular set of a,xioms, however, is that it 
corresponds so nicely to an independently motivated semantic 
theory. Specifically, we have the following result: 

Theorem 2: (Soundness and Completeness) 
A sentence of L is a theorem of the above logic iff it is valid. 

Furthermore, and perhaps most importantly, the logic of L has 
very attractive computational properties as well, which we now 
turn to. 

0. The Payoff 

What does this new logic of belief buy us? One thing is a lan- 
guage that can be used to formally reason about the beliefs of 
other agents without assuming logical omniscience, If we imag- 
ine a system planning speech acts as in [12], we can represent 
what it knows about the beliefs of another as a theory in L. It 
could then plan to remind someone of something he only believes 
implicitly. Similarly, it could take someone through certain steps 
of an argument or proof, at each stage pointing out implications 
of the other agent’s beliefs. 

There are any number of ways to mechanize the necessary rea- 
soning in L. One currently fashionable method involves trans- 
lating evervthine: into first-order Ionic and running a resolution 

201 



theorem-prover over the results. This would involve the usual 
encoding of sentences of L as terms and characterizing either its 
validity or provability (or both) using a first-order theory. Just 
doing this, however, would miss a very important feature of L, 
namely that calculating propositional beliefs is much easier than 
doing general propositional reasoning. 

Consider, in particular, the role of a logical Knowledge Rep- 
resentation system (such as KRYPTON [13]) that is given as a 

knowledge base (or KB) a finite set of sentences in some lan- 
guage. What a knowledge-based system using this KB (such as 
a robot) will be interested in is whether or not some proposition 
is true of the application domain (e.g. “Is it raining outside?“). 
The ideal way of answering this kind of questions is yes if the 
question follows from what is in the KB, no if its negation does 
and unknown otherwise. The sad fact of the matter, however, 
is that for all but extremely simple languages (including some 
without quantifiers) this question-answering is computationally 
intractable. This might be tolerable if the kind of question you 
ask is an open problem in mathematics where you are willing 
to stop arid redirect the theorem-prover with problem-specific 
heuristics if it seems to be thrashing. If, on the other hand, a 
robot is trying to decide whether or not to use an umbrella, and 
calls a Knowledge Representation system utility as a subroutine, 
this kind of behaviour is unacceptable. 

A possible solution to the problem is for the Knowledge Rep- 
resentation system to manage what is explicitly believed rather 
than its implications. In those cases where a question cannot 
be answered directly on the basis of what is believed, the robot 
can decide to try to figure out the answer by determining the 
implications of what it believes. Moreover, new facts can be 
sought and the question can even be abandoned it it becomes 
too expensive to pursue (e.g. the robot can decide to bring its 
umbrella just to be safe). The point is that this more general 
form of reasoning can be controlled very carefully depending on 
the situation since it is no longer just a subroutine call to a 
Knowledge Representation system. The robot can, in fact, plan 
to figure something out just as it would plan any other activity. 

This is all very speculative, of course. How do we know, 
for example, that it is any easier to calculate what is believed 
rather than its implications? There is, fortunately, fairly strong 
evidence for this, at least in the propositional cme: 

Theorem 3: Suppose KB and Q are propositional sentences in 
conjunctive norm al form. Determining if KB fogically implies 
a is co-J/P-complete but determining if KB entails a has an 
O(mn) ajgorjthm, where m = ]KBl and n = lal. 

Corollary 4: Assume KB and Q are as above. Then, in the 
worst case, deciding if 

a) /= (BKB 3 La) is very dJ%cult. 

b) + ( BKES > Ba) is relatively easy. 

What this amounts to is that if we consider answering questions 
of a given fixed size, the time it takes to calculate what the KB 
believes will grow linearly at worst with the size of the KB, but 
the time it takes to calculate the implications of what the KB 
believes will grow ezponenfiallys at worst with the size of the 
KB. 

sMore precisely, it will grow faster than any polynomial function, unless P 
eauals NP. 

Returning now to the formal modelling of the beliefs of other 
agents, the reason we would not want to simply run an untuned 
resolution theorem-prover over encodings of sentences of L is 
that we would lose the opportunity to exploit the computational 
tractability of belief. 

Again, it is not so much that our logic is the only one to 
capture a semantically and computationally respectable notion 
of belief. What it demonstrates, however, is first, that it is 
possible to move away from closure under classical implication 
without espousing the syntactic approach and giving up semau- 
tics altogether, and second, that there is hope for a non-trivial 
domain-independent Knowledge Representation deductive ser- 
vice. Of course, it remains to be seen whether these advantages 
can be preserved for a language that includes meta-knowledge 
and quantifiers. Discovering appropriate semantics and decision 
procedures in these cases remains a difficult open problem. 
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