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Abstract. We define a new decidable logic for expressing and checking invari-
ants of programs that manipulate dynamically-allocated objects via pointers and
destructive pointer updates. The main feature of this logic is the ability to limit the
neighborhood of a node that is reachable via a regular expression from a designated
node. The logic is closed under boolean operations (entailment, negation) and has
a finite model property. The key technical result is the proof of decidability.

We show how to express precondition, postconditions, and loop invariants
for some interesting programs. It is also possible to express properties such as
disjointness of data-structures, and low-level heap mutations. Moreover, our logic
can express properties of arbitrary data-structures and of an arbitrary number
of pointer fields. The latter provides a way to naturally specify postconditions
that relate the fields on entry to a procedure to the fields on exit. Therefore, it is
possible to use the logic to automatically prove partial correctness of programs
performing low-level heap mutations.

1 Introduction

The automatic verification of programs with dynamic memory allocation and pointer
manipulation is a challenging problem. In fact, due to dynamic memory allocation and
destructive updates of pointer-valued fields, the program memory can be of arbitrary
size and structure. This requires the ability to reason about a potentially infinite number
of memory (graph) structures, even for programming languages that have good capabil-
ities for data abstraction. Usually abstract-datatype operations are implemented using
loops, procedure calls, and sequences of low-level pointer manipulations; consequently,
it is hard to prove that a data-structure invariant is reestablished once a sequence of op-
erations is finished [19].

To tackle the verification problem of such complex programs, several approaches
emerged in the last few years with different expressive powers and levels of automa-
tion, including works based on abstract interpretation [27, 34, 31], logic-based reasoning
[23, 32], and automata-based techniques [24, 28, 5]. An important issue is the definition
of a formalism that (1) allows us to express relevant properties (invariants) of various
kinds of linked data-structures, and (2) has the closure and decidability features needed

� This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 304/03).

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 94–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Logic of Reachable Patterns in Linked Data-Structures 95

for automated verification. The aim of this paper is to study such a formalism based
on logics over arbitrary graph structures, and to find a balance between expressiveness,
decidability and complexity.

Reachability is a crucial notion for reasoning about linked data-structures. For in-
stance, to establish that a memory configuration contains no garbage elements, we must
show that every element is reachable from some program variable. Other examples of
properties that involve reachability are (1) the acyclicity of data-structure fragments,
i.e., every element reachable from node u cannot reach u, (2) the property that a data-
structure traversal terminates, e.g., there is a path from a node to a sink-node of the
data-structure, (3) the property that, for programs with procedure calls when references
are passed as arguments, elements that are not reachable from a formal parameter are
not modified.

A natural formalism to specify properties involving reachability is the first-order
logic over graph structures with transitive closure. Unfortunately, even simple decid-
able fragments of first-order logic become undecidable when transitive closure is added
[13, 21].

In this paper, we propose a logic that can be seen as a fragment of the first-order
logic with transitive closure. Our logic is (1) simple and natural to use, (2) expressive
enough to cover important properties of a wide class of arbitrary linked data-structures,
and (3) allows for algorithmic modular verification using programmer’s specified loop-
invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositional logic with atomic proposition
modelling reachability between heap objects pointed-to by program variables and other
heap objects with certain properties. The properties are specified using patterns that
limit the neighborhood of an object. For example, in a doubly linked list, a pattern says
that if an object v has an an emanating forward pointer that leads to an object w, then
w has a backward pointer into v.

The contributions of this paper can be summarized as follows:

– We define the Logic of Reachable Patterns (LRP) where reachability constraints
such as those mentioned above can be used. Patterns in such constraints are defined
by quantifier-free first-order formulas over graph structures and sets of access paths
are defined by regular expressions.

– We show that LRP has a finite-model property, i.e., every satisfiable formula has a
finite model. Therefore, invalid formulas are always falsified by a finite store.

– We prove that the logic LRP is, unfortunately, undecidable.
– We define a suitable restriction on the patterns leading to a fragment of LRP called

LRP2.
– We prove that the satisfiability (and validity) problem is decidable. The fragment

LRP2 is the main technical result of the paper and the decidability proof is non-
trivial. The main idea is to show that every satisfiable LRP2 formula is also satisfied
by a tree-like graph. Thus, even though LRP2 expresses properties of arbitrary data-
structures, because the logic is limited enough, a formula that is satisfied on an
arbitrary graph is also satisfied on a tree-like graph. Therefore, it is possible to
answer satisfiability (and validity) queries for LRP2 using a decision procedure for
monadic second-order logic (MSO) on trees.
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– We show that despite the restriction on patterns we introduce, the logic LRP2 is
still expressive enough for use in program verification: various important data-
structures, and loop invariants concerning their manipulation, are in fact definable
in LRP2.

The new logic LRP2 forms a basis of the verification framework for programs with
pointer manipulation [37], which has important advantages w.r.t. existing ones. For
instance, in contrast to decidable logics that restrict the graphs of interest (such as
monadic second-order logic on trees), our logic allows arbitrary graphs with an arbi-
trary number of fields. We show that this is very useful even for verifying programs
that manipulate singly-linked lists in order to express postcondition and loop invariants
that relate the input and the output state. Moreover, our logic strictly generalizes the
decidable logic in [3], which inspired our work. Therefore, it can be shown that certain
heap abstractions including [16, 33] can be expressed using LRP2 formulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the
semantics of LRP, and shows that it has a finite model property, and that LRP is unde-
cidable; Section 3 defines the fragment LRP2, and demonstrates the expressiveness of
LRP2 on several examples; Section 4 describes the main ideas of the decidability proof
for LRP2; Section 5 discusses the limitations and the extensions of the new logics; fi-
nally, Section 6 discusses the related work. The full version of the paper [36] contains
the formal definition of the semantics of LRP and proofs.

2 The LRP Logic

In this section, we define the syntax and the semantics of our logic. For simplicity,
we explain the material in terms of expressing properties of heaps. However, our logic
can actually model properties of arbitrary directed graphs. Still, the logic is powerful
enough to express the property that a graph denotes a heap.

2.1 Syntax of LRP

LRP is a propositional logic over reachability constraints. That is, an LRP formula is a
boolean combination of closed formulas in first-order logic with transitive closure that
satisfy certain syntactic restrictions.

Let τ = 〈C, U, F 〉 denote a vocabulary, where (i) C is a finite set of constant symbols
usually denoting designated objects in the heap, pointed to by program variables; (ii) U
is a set of unary relation symbols denoting properties, e.g., color of a node in a Red-
Black tree; (ii) F is a finite set of binary relation symbols (edges) usually denoting
pointer fields.1

A term t is either a variable or a constant c ∈ C. An atomic formula is an equality

t = t′, a unary relation u(t), or an edge formula t
f→ t′, where f ∈ F , and t, t′ are

terms. A quantifier-free formula ψ(v0, . . . , vn) over τ and variables v0, . . . , vn is an
arbitrary boolean combination of atomic formulas. Let FV (ψ) denote the free variables
of the formula ψ.

1 We can also allow auxiliary constants and fields including abstract fields [8].
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Definition 1. Let ψ be a conjunction of edge formulas of the form vi
f→ vj , where

f ∈ F and 0 ≤ i, j ≤ n. The Gaifman graph of ψ, denoted by Bψ, is an undirected
graph with a vertex for each free variable of ψ. There is an arc between the vertices

corresponding to vi and vj in Bψ if and only if (vi
f→ vj) appears in ψ, for some f ∈ F .

The distance between logical variables vi and vj in the formula ψ is the minimal edge
distance between the corresponding vertices vi and vj in Bψ .

For example, for the formula ψ = (v0
f→ v1) ∧ (v0

f→ v2) the distance between v1 and
v2 in ψ is 2, and its underlying graph Bψ looks like this: v1 — v0 — v2.

Definition 2. (Syntax of LRP) A neighborhood formula: N(v0, . . . , vn) is a conjunc-

tion of edge formulas of the form vi
f→ vj , where f ∈ F and 0 ≤ i, j ≤ n.

A routing expression is an extended regular expression, defined as follows:

R ::= ∅ empty set
| ε empty path

| f→ f ∈ F forward along edge

| f← f ∈ F backward along edge
| u u ∈ U test if u holds
| ¬u u ∈ U test if u does not hold
| c c ∈ C test if c holds
| ¬c c ∈ C test if c does not hold
| R1.R2 concatenation
| R1|R2 union
| R∗ Kleene star

A routing expression can require that a path traverse some edges backwards. A routing
expression has the ability to test presence and absence of certain unary relations and
constants along the path.

A reachability constraint is a closed formula of the form:

∀v0, . . . , vn.R(c, v0) ⇒ (N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn))

where c ∈ C is a constant, R is a routing expression, N is a neighborhood formula,
and ψ is an arbitrary quantifier-free formula, such that FV (N) ⊆ {v0, . . . , vn} and
FV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the neighborhood formula N is true (the
empty conjunction), then ψ is a formula with a single free variable v0.

An LRP formula is a boolean combination of reachability constraints.

The subformula N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) defines a pattern, denoted by p(v0).
Here, the designated variable v0 denotes a “central” node of the “neighborhood” reach-
able from c by following an R-path. Intuitively, neighborhood formula N binds the
variables v0, . . . , vn to nodes that form a subgraph, and ψ defines more constraints on
those nodes. 2

2 In all our examples, a neighborhood formula N used in a pattern is such that BN (the Gaifman
graph of N ) is connected.
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We use let expressions to specify the scope in which the pattern is declared:

let p1(v0)
def= N1(v0, v1, . . . , vn) ⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via sharing of patterns.

Shorthands. We use c[R]p to denote a reachability constraint. Intuitively, the reachabil-
ity constraint requires that every node that is reachable from c by following an R-path
satisfy the pattern p.

We use c1[R]¬c2 to denote let p(v0)
def= (true ⇒ ¬(v0 = c2)) in c1[R]p. In this

simple case, the neighborhood is only the node assigned to v0. Intuitively, c1[R]¬c2
means that the node labelled by constant c2 is not reachable along an R-path from
the node labelled by c1. We use c1〈R〉c2 as a shorthand for ¬(c1[R]¬c2). Intuitively,
c1〈R〉c2 means that there exists an R-path from c1 to c2. We use c1 = c2 to denote
c1〈ε〉c2, and c1 = c2 to denote ¬(c1 = c2). We use c[R](p1 ∧ p2) to denote (c[R]p1) ∧
(c[R]p2), when p1 and p2 agree on the central node variable. When two patterns are
often used together, we introduce a name for their conjunction (instead of naming each
one separately): let p(v0)

def= (N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.

In routing expressions, we use Σ to denote (
f1→ | f2→ | . . . | fm→), the union of all the

fields in F . For example, c1[Σ∗]¬c2 means that c2 is not reachable from c1 by any path.
Finally, we sometimes omit the concatenation operator “.” in routing expressions.

Semantics. An interpretation for an LRP formula over τ = 〈C, U, F 〉 is a labelled
directed graph G = 〈V G, EG, CG, UG〉 where: (i) V G is a set of nodes modelling the
heap objects, (ii) EG : F → P(V G × V G) are labelled edges, (iii) CG : C → V G

provides interpretation of constants as unique labels on the nodes of the graph, and
(iv) UG : U → P(V G) maps unary relation symbols to the set of nodes in which they
hold.

We say that node v ∈ G is labelled with σ if σ ∈ C and v = CG(σ) or σ ∈ U and
v ∈ UG(σ). In the rest of the paper, graph denotes a directed labelled graph, in which
nodes are labelled by constant and unary relation symbols, and edges are labelled by
binary relation symbols, as defined above.

We define a satisfaction relation |= between a graph G and LRP formula (G |= ϕ)
similarly to the usual semantics the first-order logic with transitive closure over graphs
(see [36]).

2.2 Properties of LRP

LRP with arbitrary patterns has a finite model property. If formula ϕ ∈ LRP has an
infinite model, each reachability constraint in ϕ that is satisfied by this model has a
finite witness.

Theorem 1. (Finite Model Property): Every satisfiable LRP formula is satisfiable by
a finite graph.

Sketch of Proof: We show that LRP can be translated into a fragment of an infinitary
logic that has a finite model property. Observe that c[R]p is equivalent to an infinite
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conjunction of universal first-order sentences. Therefore, if G is a model of c[R]p then
every substructure of G is also its model. Dually, ¬c[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Therefore, if G is a model of ¬c[R]p,
then G has a finite substructure G′ such that every substructure of G that contains G′ is
a model of ¬c[R]p. It follows that every satisfiable boolean combination of formulas of
the form c[R]p has a finite model. Thus, LRP has a finite model property.

The logic LRP is undecidable. The proof uses a reduction from the halting problem of
a Turing machine.

Theorem 2. (Undecidability): The satisfiability problem of LRP formulas is
undecidable.

Sketch of Proof: Given a Turing machine M , we construct a formula ϕM such that ϕM

is satisfiable if and only if the execution of M eventually halts.
The idea is that each node in the graph that satisfies ϕM describes a cell of a tape

in some configuration, with unary relation symbols encoding the symbol in each cell,
the location of the head and the current state. The n-edges describe the sequence of
cells in a configuration and a sequence of configurations. The b-edges describe how the
cell is changed from one configuration to the next. The constant c1 marks the node that
describes the first cell of the tape in the first configuration, the constant c2 marks the
node that describes the first cell in the second configuration, and the constant c3 marks
the node that describes the last cell in the last configuration (see sketch in Fig. 1).

Fig. 1. Sketch of a model

The most interesting part of the formula ϕM ensures that all graphs that satisfy ϕM

have a grid-like form. It states that for every node v that is n-reachable from c1, if
there is a b-edge from v to u, then there is a b-edge from the n-successor of v to the
n-successor of u:

let p(v) def= (v b→ u) ∧ (v n→ v1) ∧ (u n→ u1) ⇒ (v1
b→ u1) in c1[(

n→)∗]p (1)

Remark. The reduction uses only two binary relation symbols and a fixed number of
unary relation symbols. It can be modified to show that the logic with three binary
relation symbols (and no unary relations) is undecidable.

3 The LRP2 Fragment and Its Usefulness

In this section we define the LRP2 fragment of LRP, by syntactically restricting the
patterns. The main idea is to limit the distance between the nodes in the pattern in
certain situations.
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Definition 3. A formula is in LRP2 if in every reachability constraint c[R]p, with
a pattern p(v0)

def= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn), ψ has one of the following
forms:

– (equality pattern) ψ is a an equality between variables vi = vj , where 0 ≤ i, j ≤
n, and the distance between vi and vj in N is at most 2 (distance is defined in
Def. 1),

– (edge pattern) ψ is of the form vi
f→ vj where f ∈ F and 0 ≤ i, j ≤ n, and the

distance between vi and vj in N is at most 1.
– (negative pattern) atomic formulas appear only negatively in ψ.

Remark. Note that formula (1), which is used in the proof of undecidability in
Theorem 2, is not in LRP2, because p is an edge pattern with distance 3 between v1
and u1, while LRP2 allows edge patterns with distance at most 1.

3.1 Describing Linked Data-Structures

In this section, we show that LRP2 can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For example, the first pattern detf means
that there is at most one outgoing f -edge from a node. Another important pattern unsf

means that a node has at most one incoming f -edge. We use the subscript f to empha-
size that this definition is parametric in f .

Well-formed Heaps. We assume that C (the set of constant symbols) contains a constant
for each pointer variable in the program (denoted by x, y in our examples). Also, C
contains a designated constant null that represents NULL values. Throughout the rest
of the paper we assume that all the graphs denote well-formed heaps, i.e., the fields of
all objects reachable from constants are deterministic, and dereferencing NULL yields
null. In LRP2 this is expressed by the formula:

(
∧

c∈C

∧

f∈F

c[Σ∗]detf ) ∧ (
∧

f∈F

null〈 f→〉null) (2)

Table 1. Useful pattern definitions (f, b, g ∈ F are edge labels)

Pattern Name Pattern Definition Meaning

detf (v0) (v0
f
→ v1) ∧ (v0

f
→ v2) ⇒ (v1 = v2) f -edge from v0 is deterministic

unsf (v0) (v1
f
→ v0) ∧ (v2

f
→ v0) ⇒ (v1 = v2) v0 is not heap-shared by f -edges

unsf,g(v0) (v1
f
→ v0) ∧ (v2

g
→ v0) ⇒ false v0 is not heap-shared by f -edge and g-edge

invf,b(v0)
(v0

f
→ v1 ⇒ v1

b
→ v0)

∧ (v0
b
→ v1 ⇒ v1

f
→ v0)

edges f and b form a doubly-linked
list between v0 and v1

samef,g(v0)
(v0

f
→ v1 ⇒ v0

g
→ v1)

∧ (v0
g
→ v1 ⇒ v0

f
→ v1)

edges f and g emanating from v0 are
parallel
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Using the patterns in Table 1, Table 2 defines some interesting properties of data-
structures using LRP2. The formula reachx,f,y means that the object pointed-to by
the program variable y is reachable from the object pointed-to by the program vari-
able x by following an access path of f field pointers. We can also use it with null
in the place of y. For example, the formula reachx,f,null describes a (possibly empty)
linked-list pointed-to by x. Note that it implies that the list is acyclic, because null is
always a “sink” node in a well-formed heap. We can also express that there are no in-
coming f -edges into the list pointed to by x, by conjoining the previous formula with
unsharedx,f . Alternatively, we can specify that x is located on a cycle of f -edges:
cyclicx,f . Disjointness can be expressed by the formula disjointx,f,y,g that uses both
forward and backward traversal of edges in the routing expression. For example, we
can express that the linked list pointed to by x is disjoint from the linked-list pointed to
by y, using the formula disjointx,f,y,f . Disjointness of data-structures is important for
parallelization (e.g., see [17]).

Table 2. Properties of data-structures expressed in LRP2

Name Formula

reachx,f,y x〈(
f
→)∗〉y

the heap object pointed-to by y is reachable from the heap object pointed-to by x.

cyclicx,f x〈(
f
→)+〉x

cyclicity: the heap object pointed-to by x is located on a cycle.

unsharedx,f x[(
f
→)∗]unsf

every heap object reachable from x by an f -path has at most one incoming f -edge.

disjointx,f,y,g x[(
f
→)∗(

g
←)∗]¬y

disjointness: there is no heap object that is reachable from x by an f -path
and also reachable from y by a g-path.

samex,f,g x[(
f
→ |

g
→)∗]samef,g

the f -path and the g-path from x are parallel, and traverse same objects.

inversex,f,b,y reachx,f,y ∧ x[(
f
→ .¬y)∗]invf,b

doubly-linked lists between two variables x and y

with f and b as forward and backward edges.

treeroot,r,l root[( l
→ |

r
→)∗](unsl,r ∧ unsl ∧ unsr) ∧ ¬(root〈( l

→ |
r
→)∗〉root)

tree rooted at root.

The last two examples in Table 2 specify data-structures with multiple fields. The
formula inversex,f,b,y describes a doubly-linked with variables x and y pointing to the
head and the tail of the list, respectively. First, it guarantees the existence of an f -path.
Next, it uses the pattern invf,b to express that if there is an f -edge from one node to
another, then there is a b-edge in the opposite direction. This pattern is applied to all
nodes on the f -path that starts from x and that does not visit y, expressed using the test
“¬y” in the routing expression. The formula treeroot,r,l describes a binary tree. The
first part requires that the nodes reachable from the root (by following any path of l and
r fields) be not heap-shared. The second part prevents edges from pointing back to the
root of the tree by forbidding the root to participate in a cycle.
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3.2 Expressing Verification Conditions

The reverse procedure shown in Fig. 2 performs in-place reversal of a singly-linked
list. This procedure is interesting because it destructively updates the list and requires
two fields to express partial correctness. Moreover, it manipulates linked lists in which
each list node can be pointed-to from the outside. In this section, we show that
the verification conditions for the procedure reverse can be expressed in LRP2. If
the verification conditions are valid, then the program is partially correct with respect
to the specification. The validity of the verification conditions can be checked automati-
cally because the logic LRP2 is decidable, as shown in the next section. In [37], we show
how to automatically generate verification conditions in LRP2 for arbitrary procedures
that are annotated with preconditions, postconditions, and loop invariants in LRP2.

Node reverse(Node x){
L0: Node y = NULL;
L1: while (x != NULL){
L2: Node t = x->n;
L3: x->n = y;
L4: y = x;
L5: x = t;
L6: }
L7: return y;

}

Fig. 2. Reverse

Notice that in this section we assume that all graphs denote valid stores, i.e., sat-
isfy (2). The precondition requires that x point to an acyclic list, on entry to the pro-
cedure. We use the symbols x0 and n0 to record the values of the variable x and the
n-field on entry to the procedure.

pre
def= x0〈(n0

→)∗〉null0

The postcondition ensures that the result is an acyclic list pointed-to by y. Most
importantly, it ensures that each edge of the original list is reversed in the returned list,
which is expressed in a similar way to a doubly-linked list, using inverse formula. We
use the relation symbols y7 and n7 to refer to the values on exit.

post
def= y7〈(n7

→)∗〉null7 ∧ inversex0,n0,n7,y7

The loop invariant ϕ shown below relates the heap on entry to the procedure to the
heap at the beginning of each loop iteration (label L1). First, we require that the part
of the list reachable from x be the same as it was on entry to reverse. Second, the
list reachable from y is reversed from its initial state. Finally, the only original edge
outgoing of y is to x.

ϕ
def= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ x0〈n0

→〉y1
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Note that the postcondition uses two binary relations, n0 and n7, and also the loop
invariant uses two binary relations, n0 and n1. This illustrates that reasoning about
singly-linked lists requires more than one binary relation.

The verification condition of reverse consists of two parts, V Cloop and V C,
explained below.

The formula V Cloop expresses the fact that ϕ is indeed a loop invariant. To express
it in our logic, we use several copies of the vocabulary, one for each program point.
Different copies of the relation symbol n in the graph model values of the field n at
different program points. Similarly, for constants. For example, Fig. 3 shows a graph
that satisfies the formula V Cloop below. It models the heap at the end of some loop
iteration of reverse. The superscripts of the symbol names denote the corresponding
program points.

x0 y1 x1, y6 x6

◦ n0
�� ◦ n0

��
n1��

n6

�� ◦ n0
��

n1��

n6

�� ◦ n0
��

n1 ��

n6

�� ◦ n0
��

n1 ��

n6

��◦

Fig. 3. An example graph that satisfies the V Cloop formula for reverse

To show that the loop invariant ϕ is maintained after executing the loop body, we
assume that the loop condition and the loop invariant hold at the beginning of the itera-
tion, and show that the loop body was executed without performing a null-dereference,
and the loop invariant holds at the end of the loop body:

V Cloop
def= (x �= null) loop is entered
∧ϕ loop invariant holds on loop head
∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body
∧samey1,n1,n6 ∧ samex1,n1,n6 rest of the heap remains unchanged

⇒ (x1 �= null) no null-derefernce in the body
∧ϕ6 loop invariant after executing loop body

Here, ϕ6 denotes the loop-invariant formula ϕ after executing the loop body (label L6),
i.e., replacing all occurrences of x1, y1 and n1 in ϕ by x6, y6 and n6, respectively. The
formula V Cloop defines a relation between three states: on entry to the procedure, at the
beginning of a loop iteration and at the end of a loop iteration.

The formula V C expresses the fact that if the precondition holds and the execution
reaches procedure’s exit (i.e., the loop is not entered because the loop condition does
not hold), the postcondition holds on exit: V C

def= pre ∧ (x1 = null) ⇒ post.

4 Decidability of LRP2

In this section, we show that LRP2 is decidable for validity and satisfiability. Since LRP2
is closed under negation, it is sufficient to show that it is decidable for satisfiability.
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The satisfiability problem for LRP2 is decidable. The proof proceeds as follows:

1. Every formula ϕ ∈ LRP2 can be translated into an equi-satisfiable normal-form
formula that is a disjunction of formulas in CLRP2 (Def. 4 and Theorem 3). It is
sufficient to show that the satisfiability of CLRP2 is decidable.

2. Define a class of simple graphs Ak, for which the Gaifman graph is a tree with at
most k additional edges (Def. 5).

3. Show that if formula ϕ ∈ CLRP2 has a model, ϕ has a model in Ak, where k is
linear in the size of the formula ϕ (Theorem 4). This is the main part of the proof.

4. Translate formula ϕ ∈ CLRP2 into an equivalent MSO formula.
5. Show that the satisfiability of MSO logic over Ak is decidable, by reduction to

MSO on trees [30]. We could have also shown decidability using the fact that the
tree width of all graphs in Ak is bounded by k, and that MSO over graphs with
bounded tree width is decidable [11, 1, 35].

Definition 4. (Normal-Form Formulas): A formula in CLRP2 is a conjunction of
reachability constraints of the form c1〈R〉c2 and c[R]p, where p is one of the patterns
allowed in LRP2 (Def. 3). A normal-form formula is a disjunction of CLRP2 formulas.

Theorem 3. There is a computable translation from LRP2 to a disjunction of formulas
in CLRP2 that preserves satisfiability.

Ayah Graphs. We define a notion of a simple tree-like directed graph, called Ayah
graph.

Let G(S) denote the Gaifman graph of the graph S, i.e., an undirected graph obtained
from S by removing node labels, edge labels, and edge directions (and parallel edges).
The distance between nodes v1 and v2 in S is the number of edges on the shortest path
between v1 and v2 in G(S). An undirected graph B is in T k if removing self loops and
at most k additional edges from B results in an acyclic graph.

Definition 5. For k ≥ 0, an Ayah graph of k is a graph S for which the Gaifman graph
is in T k: Ak = {S|G(S) ∈ T k}.

Let ϕ ∈ CLRP2 be of the form ϕ� ∧ ϕ� ∧ ϕ= ∧ ϕ→, where ϕ� is a conjunction of
constraints of the form c1〈R〉c2, ϕ� is a conjunction of reachability constraints with
negative patterns, ϕ= is a conjunction of reachability constraints with equality patterns,
and ϕ→ is a conjunction of reachability constraints with edge patterns.

Theorem 4. If ϕ ∈ CLRP2 is satisfiable, then ϕ is satisfiable by a graph in Ak, where
k = 2 × n × |C| × m, m is the number of constraints in ϕ�, |C| is the number of
constants in the vocabulary, and for every regular expression that appears in ϕ� there
is an equivalent automaton with at most n states.

Sketch of Proof: Let S be a model of ϕ : S |= ϕ. We construct a graph S′ from S and
show that S′ |= ϕ and S′ ∈ Ak. The construction uses the following operations on
graphs.
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Witness Splitting. A witness W for a formula c1〈R〉c2 in CLRP2 in a graph S is a
path in S, labelled with a word w ∈ L(R), from the node labelled with c1 to the node
labelled with c2. Note that the nodes and edges on a witness path for R need not be
distinct. Using W , we construct a graph W ′ that consists of a path, labelled with w,
that starts at the node labelled by c1 and ends at the node labelled by c2. Intuitively, we
duplicate a node of W each time the witness path for R traverses it, unless the node is
marked with a constant. As a result, all shared nodes in W ′ are labelled with constants.
Also, every cycle contains a node labelled with a constant. By construction, we get that
W ′ |= c1〈R〉c2. We say that W ′ is the result of splitting the witness W .

Finally, we say that W is the shortest witness for c1〈R〉c2 if any other witness path
for c1〈R〉c2 is at least as long as W . The result of splitting the shortest witness is a
graph in Ak, where k = 2 × n × |C|: to break all cycles it is sufficient to remove all
the edges adjacent to nodes labelled with constants, and a node labelled with a constant
is visited at most n times. (If a node is visited more than once in the same state of the
automaton, the path can be shortened.)

Merge Operation. Merging two nodes in a graph is defined in the usual way by gluing
these nodes. Let p(v0)

def= N(v0, v1, v2) ⇒ (v1 = v2) be an equality pattern. If a graph
violates a reachability constraint c[R]p, we can assign nodes n0, n1, and n2 to v0, v1,
and v2, respectively, such that there is a R-path from c to v0, N(n0, n1, n2) holds, and
n1 and n2 are distinct nodes. In this case, we say that merge operation of n1 and n2
is enabled (by c[R]p). The nodes n1 and n2 can be merge to discharge this assignment
(other merge operations might still be enabled after merging n1 and n2).

Edge-Addition Operation. Let p(v0)
def= N(v0, v1, v2) ⇒ v1

f→ v2 be an edge pattern.
If a graph violates a reachability constraint c[R]p, we can assign nodes n0, n1, and n2
to v0, v1, and v2, respectively, such that there is a R-path from c to v0, N(n0, n1, n2)
holds, and there is no f -edge from n1 to n2. In this case, we say that edge-operation
operation is enabled (by c[R]p). We can add an f -edge from n1 and n2 to discharge
this assignment.

The following lemma is the key observation of this proof.

Lemma 1. The class of Ak graphs is closed under merge operations of nodes in dis-
tance at most two and edge-addition operations at distance one.

Sketch of Proof: If an edge is added in parallel to an existing one (distance one), it does
not affect the Gaifman graph, thus Ak is closed under edge-addition. The proof that Ak

is closed under merge operations is more subtle [36].

In particular, the class Ak is closed under the merge and edge-addition operations forced
by LRP2 formulas. This is the only place in our proof where we use the distance restric-
tion of LRP2 patterns.

Given a graph S that satisfies ϕ, we construct the graph S′ as follows:

1. For each constraint i in ϕ�, identify the shortest witness Wi in S. Let W ′
i be the

result of splitting the witness Wi.
2. The graph S0 is a union of all W ′

i ’s, in which the nodes labelled with the (syntacti-
cally) same constants are merged.
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3. Apply all enabled merge operations and all enabled edge-addition operations in
any order, producing a sequence of distinct graphs S0, S1, . . . , Sr, until Sm has no
enabled operations.

4. The result S′ = Sr.

The process described above terminates after a finite number of steps, because in each
step either the number of nodes in the graph is decreased (by merge operations) or the
number of edges is increased (by edge-addition operations).

The proof proceeds by induction on the process described above. Initially, S0 is in
Ak. By Lemma 1, all Si created in the third step of the construction above are in Ak;
in particular, S′ ∈ Ak.

By construction of S0, it contains a witness for each constraint in ϕ�, and merge
and edge-addition operations preserve the witnesses, thus S′ satisfies ϕ�. Moreover,
S0 satisfies all constraints in ϕ�. We show that merge and edge-addition operations
applied in the construction preserve ϕ� constraints, thus S′ satisfies ϕ�. The process
above terminates when no merge and edge-addition operations are enabled, that is, S′

satisfies ϕ= ∧ ϕ→. Thus, S′ satisfies ϕ.
The full proof is available at [36].

4.1 Complexity

We proved decidability by reduction to MSO on trees, which allows us to decide LRP2
formulas using MONA decision procedure [18]. Alternatively, a decision procedure for
LRP2 can directly construct a tree automaton from a normal-form formula, and can
then check emptiness of the automaton. The worst case complexity of the satisfiability
problem of LRP2 formulas is at least doubly-exponential, but it remains elementary (in
contrast to MSO on trees, which is non-elementary); we are investigating tighter upper
and lower bounds. The complexity depends on the bound k of Ak models, according
to Theorem 4. If the routing expressions do not contain constant symbols, then the
bound k does not depend on the routing expressions: it depends only on the number
of reachability constraints of the form c1〈R〉c2. The LRP2 formulas that come up in
practice are well-structured, and we hope to achieve a reasonable performance.

5 Limitations and Further Extensions

Despite the fact that LRP2 is useful, there are interesting program properties that cannot
be expressed. For example, transitivity of a binary relation, that can be used, e.g., to ex-
press partial orders, is naturally expressible in LRP, but not in LRP2. Also, the property
that a general graph is a tree in which each node has a pointer back to the root is ex-
pressible in LRP, but not in LRP2. Notice that the property is non-trivial because we are
operating on general graphs, and not just trees. Operating on general graphs allows us
to verify that the data-structure invariant is reestablished after a sequence of low-level
mutations that temporarily violate the invariant data-structure.

There are of course interesting properties that are beyond LRP, such as the property
that a general graph is a tree in which every leaf has a pointer to the root of a tree.
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In the future, we plan to generalize LRP2 while maintaining decidability, perhaps
beyond LRP. We are encouraged by the fact that the proof of decidability in Section 4
holds “as is” for many useful extensions. For example, we can generalize the patterns
to allow neighborhood formulas with disjunctions and negations of unary relations. In
fact, more complex patterns can be used, as long as they do not violate the Ak prop-
erty. For example, we can define trees rooted at x with parent pointer b from every tree

node to its parent by treex,r,l,b ∧ let p(v0)
def= ((v1

l→ v0) ∨ (v1
r→ v0)) ⇒ (v0

b→
v1)in x[( l→ | r→)∗](detb ∧ p). The extended logic remains decidable, because the pat-
tern p adds edges only in parallel to the existing ones.

Currently, reachability constraints describe paths that start from nodes labelled by
constants. We can show that the logic remains decidable when reachability constraints
are generalized to describe paths that start from any node that satisfies a quantifier-
free positive formula θ: ∀v, w0, . . . , wm, v0, . . . , vn.R(v, v0) ∧ θ(v, w0, . . . , wm) ⇒
(N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn)).

6 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap
structures. We mention here the ones which are, as far as we know, the closest to ours.

The logic LRP can be seen as a fragment of the first-order logic over graph structures
with transitive closure (TC logic [20]). It is well known that TC is undecidable, and that
this fact holds even when transitive closure is added to simple fragments of FO such as
the decidable fragment L2 of formulas with two variables [29, 15, 13].

It can be seen that our logics LRP and LRP2 are both uncomparable with L2 + TC.
Indeed, in LRP no alternation between universal and existential quantification is al-
lowed. On the other hand, LRP2 allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 3).

In [3], decidable logic Lr (which can also be seen as a fragment of TC) is introduced.
The logics LRP and LRP2 generalize Lr, which is in fact the fragment of these logics
where only two fixed patterns are allowed: equality to a program variable and heap
sharing.

In [21, 2, 26, 4] other decidable logics are defined, but their expressive power is rather
limited w.r.t. LRP2 since they allow at most one binary relation symbol (modelling
linked data-structures with 1-selector). For instance, the logic of [21] does not allow us
to express the reversal of a list. Concerning the class of 1-selector linked data-structures,
[6] provides a decision procedure for a logic with reachability constraints and arithmeti-
cal constraints on lengths of segments in the structure. It is not clear how the proposed
techniques can be generalized to larger classes of graphs. Other decidable logics [7, 25]
are restricted in the sharing patterns and the reachability they can describe.

Other works in the literature consider extensions of the first-order logic with fixpoint
operators. Such an extension is again undecidable in general but the introduction of
the notion of (loosely) guarded quantification allows one to obtain decidable fragments
such as µGF (or µLGF ) (Guarded Fragment with least and greater fixpoint opera-
tors) [14, 12]. Similarly to our logics, the logic µGF (and also µLGF ) has the tree
model property: every satisfiable formula has a model of bounded tree width. However,
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guarded fixpoint logics are incomparable with LRP and LRP2. For instance, the LRP2
pattern detf that requires determinism of f -field, is not a (loosely) guarded formula.

The PALE system [28] uses an extension of the monadic second order logic on trees
as a specification language. The considered linked data structures are those that can
be defined as graph types [24]. Basically, they are graphs that can be defined as trees
augmented by a set of edges defined using routing expressions (regular expressions)
defining paths in the (undirected structure of the) tree. LRP2 allows us to reason natu-
rally about arbitrary graphs without limitation to tree-like structures. Moreover, as we
show in Section 3, our logical framework allows us to express postconditions and loop
invariants that relate the input and the output state. For instance, even in the case of
singly-linked lists, our framework allows us to express properties that cannot be ex-
pressed in the PALE framework: in the list reversal example of Section 3, we show that
the output list is precisely the reversed input list, whereas in the PALE approach, one
can only establish that the output is a list that is the permutation of the input list.

In [22], we tried to employ a decision procedure for MSO on trees to reason about
reachability. However, this places a heavy burden on the specifier to prove that the data-
structures in the program can be simulated using trees. The current paper eliminated
this burden by defining syntactic restrictions on the formulas and showing a general
reduction theorem.

Other approaches in the literature use undecidable formalisms such as [17], which
provides a natural and expressive language, but does not allow for automatic property
checking.

Separation logic has been introduced recently as a formalism for reasoning about
heap structures [32]. The general logic is undecidable [10] but there are few works
showing decidable fragments [10, 4]. One of the fragments is propositional separation
logic where quantification is forbidden [10, 9] and therefore seems to be incomparable
with our logic. The fragment defined in [4] allows one to reason only about singly-
linked lists with explicit sharing. In fact, the fragment considered in [4] can be translated
to LRP2, and therefore, entailment problems as stated in [4] can be solved as implication
problems in LRP2.

7 Conclusions

Defining decidable fragments of first order logic with transitive closure that are useful
for program verification is a difficult task (e.g., [21]). In this paper, we demonstrated
that this is possible by combining three principles: (i) allowing arbitrary boolean com-
binations of the reachability constraints, which are closed formulas without quantifier
alternations, (ii) defining reachability using regular expressions denoting pointer access
paths (not) reaching a certain pattern, and (iii) syntactically limiting the way patterns
are formed. Extensions of the patterns that allow larger distances between nodes in the
pattern either break our proof of decidability or are directly undecidable.

The decidability result presented in this paper improves the state-of-the-art signifi-
cantly. In contrast to [21, 2, 26, 4], LRP allows several binary relations. This provides a
natural way to (i) specify invariants for data-structures with multiple fields (e.g., trees,
doubly-linked lists), (ii) specify post-condition for procedures that mutate pointer fields
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of data-structures, by expressing the relationships between fields before and after the
procedure (e.g., list reversal, which is beyond the scope of PALE), (iii) express verifi-
cation conditions using a copy of the vocabulary for each program location.

We are encouraged by the expressiveness of this simple logic and plan to explore its
usage for program verification and abstract interpretation.
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