
A Logic Programming Language based on
Binding Algebras

Makoto Hamana

Department of Computer Science, University of Gunma
hamana@cs.gunma-u.ac.jp

Abstract. We give a logic programming language based on Fiore,
Plotkin and Turi’s binding algebras. In this language, we can use not
only first-order terms but also terms involving variable binding. The aim
of this language is similar to Nadathur and Miller’s λProlog, which can
also deal with binding structure by introducing λ-terms in higher-order
logic. But the notion of binding used here is finer in a sense than the
usual λ-binding. We explicitly manage names used for binding and treat
α-conversion with respect to them. Also an important difference is the
form of application related to β-conversion, i.e. we only allow the form
(M x), where x is a (object) variable, instead of usual application (M N).

This notion of binding comes from the semantics of binding by the cat-
egory of presheaves. We firstly give a type theory which reflects this
categorical semantics. Then we proceed along the line of first-order logic
programming language, namely, we give a logic of this language, an oper-
ational semantics by SLD-resolution and unification algorithm for bind-
ing terms.

1 Introduction

The notion of variable binding appears often in many formal systems, program-
ming languages and logics. The three papers on abstract syntax with variable
binding by Gabbay-Pitts, Fiore-Plotkin-Turi and Hofmann in LICS’99 gave clear
mathematical semantics of binding [GP99,FPT99,Hof99]. In this paper we follow
the approach by Fiore-Plotkin-Turi and proceed to go further; we give a type
theory based on their semantics and apply it to a logic programming language
which can treat terms involving variable binding.

We will briefly illustrate our binding logic programming language. As an
example, consider symbolic differentiation defined by the predicate diff:

diff([b]var(a), [b]0)
diff([b]var(b), [b]1)

∀f, f ′. diff([b]sin(f), [b](cos(f)× f ′)) ⇐ diff([b]f, [b]f ′)

The predicate diff([b]f, [b]g) expresses that the differentiation of the function [b]f
is [b]g, where b is a parameter (bound variable). For this program, we can ask

N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 243–262, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

244 Makoto Hamana

queries involving (existentially quantified) variables to obtain values for them,
e.g.

?− diff([d]var(c), z)

which asks the differentiation of the function [d]var(c) (a constant function re-
turning the free variable c) for the result of an existentially quantified variable
z. Then, the system will return an answer substitution z 7→ [d]0.

This is just a result of an application of the first clause of the program, but
notice that α-renaming of bound variables to unify the query and program clause
is automatically done. Another example is

?− diff([b]sin(x), [b](cos(x)× z))
x 7→ var(b), z 7→ 1 ; x 7→ var(a), z 7→ 0

which has two different answers. Note also that by applying the first answer
substitution x 7→ var(b) to the query, the variable b becomes bound; the system
does not do implicit α-renaming for avoiding capture of bound variables by
substitution. More involved query is

?− diff([d]([b]sin(x))@ c, [b](cos(y)× z))

and then there are three answers: x 7→ var(d), y 7→ var(c), z 7→ 0 ; x 7→
var(c), y 7→ var(c), z 7→ 0 ; x 7→ var(b), y 7→ var(b), z 7→ 1. Here β-reduction
is automatically performed during unification, while it cannot be used in case
of first-order logic programming language. Although our binding logic program-
ming language is a typed language, we omitted the type information in this
example. A complete program will be given in Section 9.

This paper is organized into two parts. The first part Section 2-7 deals with
a type theory for terms involving variable binding. The second part Section 8
and 9 gives a logic programming language based on the type theory defined in
the first part. In Section 10, we give a comparison to related work.

2 Terms

We will give the definition of the language for our binding logic programs, which
includes terms, type system and operations on the language. First, we define
terms.

Variables and object variables. There are two kinds of variables in our lan-
guage; usual variables (x, y, . . .) (as in first-order language) and object variables
(a, b, . . .). Object variables are used for the names of bindings. The set of all
object variables is denoted by OV. A world C is a sequence of object variables
having no duplication of the same things.

Types. Types are defined by
τ ::= ι | δτ

A Logic Programming Language based on Binding Algebras 245

where ι is a base type and δτ is a higher type abstracted by an object variable
(semantically δτ ∼= (OV ⇒ τ) [FPT99]). The set of all types is denoted by Ty.

Signature. A signature Σ is a set of function symbols together with an arity
function assigning to each function symbol f , a finite sequence of types as the
source type and the type ι as the target type. This is denoted by f : τ1, . . . , τn →
ι. In case of n = 0, the function symbol f : ι is regarded as a constant. Note
that there are no higher type constants.

Terms. Terms are defined by

t ::= f(t1, . . . , tn) | t@a | [a]t | ξx | var(a)
ξ ::= [a1 := a′1, . . . , an := a′n]

where f ∈ Σ is a function symbol, a’s are object variables. A term t@a denotes
an application, [a]t an abstraction, var(a) an object variable, and ξx a variable
where ξ is called an (syntactic) object variable substitution. Intuitive meaning of
ξx is the following: a variable having suspended substitution for object variables
and if x is substituted by some term, its suspension is released and the object
variable substitution is applied. We may omit the identity assignment ai := ai in
this bracket, and the order of the assignment is not important. We often use the
shorthand notation [a := a′]. In case of ξ = [], we just write x. A type judgment
is of the form

Γ `C t : σ : A

where– a context Γ is a set of variable declarations {x1 : τ1 : A1, . . . , xn : τn : An},
– a world C is a sequence of object variables,
– a type σ,
– a stage A is a set of object variables.

Moreover, it must satisfy the condition
⋃

i Ai∪A∪FOV(t)∪GBOV(t) ⊆ C̃ where
FOV and GBOV are defined below, and C̃ is a set of object variables occurring
in C. Namely, the world C is considered as a pool of all possible object variables
used (in future) in the judgment. We will see that in the type system the order
of bound variables in t respects the order of object variables in C.

Some operations on terms. Let t be a term. Then FOV(t) denotes a set
of all free object variables, GBOV(t) denotes a set of all globally bound object
variables, i.e. object variables occurring in []-binders, and OBV(t) denotes a set
of all outermost bound variables. These are defined as follows:

GBOV([a := b]x) = {a}, GBOV(t@a) = GBOV(t), GBOV([a]t) = GBOV(t) ∪ {a},
GBOV(F (t1, . . . , tn)) = GBOV(t1) ∪ . . . ∪ GBOV(tn);

FOV([a := b]x) = {b}, FOV(t@a) = {a}, FOV([a]t) = FOV(t)− {a},
FOV(F (t1, . . . , tn)) = FOV(t1) ∪ . . . ∪ FOV(tn);

OBV([a := b]x) = ∅, OBV([a]t) = OBV(t) ∪ {a},
OBV(F (t1, . . . , tn)) = OBV(t1) ∪ . . . ∪ OBV(tn),

OBV(((. . . (([a1] . . . [an]t)@b1)@ . . .)@bn) = OBV(t).

246 Makoto Hamana

In the definition of OBV(([a1] . . . [an]t)@b1@ . . . @bn), the term t may have more
binders on the top, and since we do not have constants of higher types in this
system, an application can always be expressed as this form. These functions are
obviously extended to a function on sets and sequences of terms.

3 Object Variable Substitutions

The important idea of our language involving binding is the distinction between
object variables and usual variables. This idea actually comes from Fiore-Plotkin-
Turi’s semantics of abstract syntax with binding in the category SetF, where F is
a category of (abstract) object variables and substitutions (the precise definition
below). So we need the notion of object variable substitutions in syntax and
semantic levels. In this section, we define these matters. We start with some
preliminary definition on categories required in semantics.

The category of presheaves [FPT99]. Let F be the category which has finite
cardinals n = {1, . . . , n} (n is possibly 0) as objects, and all functions between
them as arrows m → n. We may also call n ∈ F a stage. The category F is
also considered as the free cocartesian category on one object, generated from
an initial object 1 by an operation () + 1. From this viewpoint, we assume the
following chosen coproduct structure

n
oldn- n + 1 ¾newn 1

with oldn(i) = i (1 ≤ i ≤ n) and newn(∗) = n + 1.
Let F̂ be the functor category SetF. The category F̂ is complete, cocomplete

and cartesian closed. The functor (for stage extension) δ : F̂ → F̂ is defined as
follows: for L ∈ F̂, n ∈ F, ρ ∈ arr F,

(δL)(n) = L(n + 1); (δL)(ρ) = A(ρ + id1)

and, for f : L → M ∈ F̂, the map δf : δL → δM is given by

(δf)n = fn+1 : L(n + 1) → M(n + 1) (n ∈ F).

Operations on sequences. We fix the notations for sequences: the bracket 〈. . .〉
is used for a sequence, ++ is the concatenation, ε is the empty sequence. Let B be a
sequence of object variables. Then B̃ denotes the set of object variables occurring
in B. We write B E B′ when B is a subsequence of B′. More precisely, let (B̃,≤B)
and (B̃′,≤B′) be the posets whose orders respect the orders of elements in B

and B′. Then B E B′ if and only if ∀a1, a2 ∈ B̃ . a1 ≤B a2 ⇒ a1 ≤B′ a2. Let
A be a set of object variables. A sequentialization of A with respect to a world
C, denoted by AC , or simply A if C is clear from the context, is a sequence
such that A E C and Ã = A. The notation | | is used for the number of object
variables occurring in a set or sequence. Note that |A| = |A|.

A Logic Programming Language based on Binding Algebras 247

Object variable substitutions. Let A = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉
be sequences of object variables (which need not to be subsequences of a given
world). A (semantic) object variable substitution ρ : A → B is a triple (|ρ|, A, B)
where |ρ| : |A| → |B| is an arrow in F. Then we can define a function ρ̃ : Ã → B̃
such that

ρ̃(ai) , b|ρ|(i) for each i ∈ {1, . . . , m}.
By abuse of notation, we often write ρ(a) as the value of ρ̃(a). The ρ gives
rise the natural transformation ρ̂ : δ|A| ·→ δ|B| ∈ arr [F̂, F̂] whose component
ρ̂L : δ|A|L ·→ δ|B|L ∈ arr F̂ is defined by ρ̂L,k , L(idk + ρ) : L(k + |A|) →
L(k + |B|) ∈ arr Set where L ∈ F̂, k ∈ F. For arbitrary object variables a and b,
the unique object variable substitution from 〈a〉 to 〈b〉 is denoted by [a 7→ b].

For a variable ξx : B, where ξ = [a := b], {b} ⊆ B, A , {a}, a semantic
object variable substitution ξ¦ : A → B is defined to be (|ξ¦|, A,B), |ξ¦|(i) = j
if ((A)i := (B)j) is contained in ξ. Notice that the notation [a := b] is a part of
syntax which always occurs with a variable as [a := b]x in the language, while
[a 7→ b] is a meta-level operation for substituting object variables.

Sequences of object variables taken from OV and object variable substitutions
form a category OVS. A composition φ ◦ ρ : A → D of two object variable
substitutions ρ : A → B and φ : B → D is given by (|φ| ◦ |ρ|, A, D). It is
clear that the category F and OVS are equivalent where | | : OVS → F is the
equivalence, and OVS is considered as a named version of F.

4 Type System and its Interpretation

In this section, we give a type system of terms and its interpretation. A binding
algebra is used for a model of the type theory (see [FPT99] for more detailed
analysis on binding algebras).

Binding algebras. To a signature Σ, we associate the functor Σ : F̂ → F̂
given by Σ(X) ,

∐
f :n1,...,nk→ι∈Σ

∏
1≤i≤k δni(X). A binding algebra or simply

Σ-algebra is a pair (L,α) with L a presheaf and α : ΣL → L ∈ F̂. We define
the category of binding algebras associated to the signature Σ as the category
Σ-Alg, with objects given by maps f : (L,α) → (L′, α′) that are homomorphic
in the sense that f ◦ α = α′ ◦ Σ(f). The presheaf (of abstract object variables)
V ∈ F̂ is defined by

V (n) = n (n ∈ obj F); V (ρ) = ρ (ρ ∈ arr F).

A model for the language on the signature Σ is a (V+Σ)-algebra M =
(M, [γ, {τ (f)}f∈Σ]) where M is a presheaf, γ : V → M and τ (f) :

∏
1≤i≤k δniM →

M for f : n1, . . . , nk → ι. The interpretation functions (M[[−]]0 : Ty → obj F̂,

M[[−]]1 : Σ → arr F̂)) are defined by

M[[ι]]0 , M, M[[δσ]]0 , δ[[σ]], M[[f]]1 , τ (f).

248 Makoto Hamana

As usual, given a context Γ = 〈x1 : α1, . . . , xn : αn〉, we set M[[Γ]] , M[[α1]]0 ×
. . . ×M[[αn]]0. We omit the subscripts of M[[]]0 and M[[]]1 hereafter, and write
just [[]] in the case of M.

Type system and interpretation. We give the typing rules and simultane-
ously the interpretation of terms by an arbitrary model M in the category F̂ in
Fig. 1. This definition is read as if the upper terms of a typing rule are inter-
preted as the arrows in the right-hand side of the definition, the interpretation
of the lower term is given by the composition of these in M described in the
lower part of the right-hand side.

Let the set StC be ℘C̃, which is the set of stages under a given world C. We
use a Ty, StC-indexed set for variable and term sets. A Ty, StC-indexed set L is
a disjoint union of its components: L = Στ∈Ty,A∈StC Lτ,A. We write l : τ : A ∈ L
for l ∈ Lτ,A. We often use the letter X or Γ (typing context) for denoting
Ty,StC-indexed set of variables. A Ty, StC-indexed set T (C, Γ) denotes terms
under a signature Σ and a world C and a typing context Γ, which is defined as
T (C, Γ) = Στ∈Ty,A∈StC T (Γ)τ,A where T (Γ)τ,A = {t | Γ `C t : τ : A}.
Example 1.
We will show an example of typing derivation and interpretation. Assume a
signature Σ for untyped lambda terms: lam : δι → ι and app : ι, ι → ι. An
example of typing for a term lam([a]var(b)) (intended meaning is a λ-term λa.b)
is

`a,b var(b) : ι : a, b

`a,b [a]var(b) : δι : b

`a,b lam([a]var(b)) : ι : b.

Let us interpret this term in a syntactic algebra [FPT99]: let Λ be the presheaf
defined by Λ(n) = {t | n ` t} (n ∈ F) where

1 ≤ i ≤ n

n ` VAR(i)

n + 1 ` t

n ` LAM((n + 1).t)

n ` t1 n ` t2
n ` APP(t1, t2).

Define [[ι]] = Λ and (V + Σ)-algebra Λ with an algebra structure

[γ, [[lam]], [[app]]] : V + δΛ + Λ× Λ → Λ

defined as follows: for n ∈ F,
γn : n → Λ(n), γn(i) = VAR(i),

[[lam]]n : Λ(n + 1) → Λ(n), [[lam]]n(t) = LAM((n + 1).t),
[[app]]n : Λ(n)× Λ(n) → Λ(n), [[app]]n(t1, t2) = APP(t1, t2).

The interpretation of a term `a,b lam([a]var(b)) : ι : b is the arrow

1
γ∗ - δΛ

2̂Λ - δ2Λ
ρ̂Λ - δ2Λ

δ[[lam]]- δΛ ∈ F̂
whose component for n ∈ F is the function

1
γ∗n- Λ(n + 1)

b2Λ,n- Λ(n + 2)
bρΛ,n- Λ(n + 2)

[[lam]]n+1 - Λ(n + 1) ∈ Set

∗ - VAR(n + 1) - VAR(n + 2) - VAR(n + 1) - LAM((n + 2).VAR(n + 1))

A Logic Programming Language based on Binding Algebras 249

Variables

Γ1, x : σ : A, Γ2 `C [a := b]x : σ : B π; \[a := b]¦[[σ]]

where A = {a} and B = {b}, π : [[Γ1]] × δ|A|[[σ]] × [[Γ2]] → δ|A|[[σ]] is a projection in F̂
(the operation “¦” is defined in Section 3).

Object variables

Γ `C var(a) : ι : A
a ∈ A

![[Γ]]; γ∗;bk[[ι]] : [[Γ]] → δ|A|[[ι]]

where k is the position of the object a occurring in A, a map |k| : 1 → |A| ∈ F is
defined by |k|(1) = k, and γ∗ : 1 → δ[[ι]] is the adjoint mate of γ : V → [[ι]] by the
natural bijection F̂(1, δ[[ι]]) ∼= F̂(V, [[ι]]) [FPT99].

Constants

Γ `C F : σ : A ![[Γ]]; [[F]];b![[σ]] : [[Γ]] → δ|A|[[σ]]

where F : σ ∈ Σ, ![[Γ]] : [[Γ]] → 1 ∈ F̂ and ! : 0 → |A| ∈ F.

Function terms

Γ `C t1 : σ1 : A, . . . , Γ `C tn : σn : A

Γ `C F (t1, . . . , tn) : σ : A

f1 . . . fn : [[Γ]] → δ|A|[[σn]]

〈f1, . . . , fn〉;∼=; δ|A|[[F]]

where F : σ1, . . . , σn → σ ∈ Σ and ∼=: δ|A|[[σ1]]×. . .×δ|A|[[σn]] → δ|A|([[σ1]]×. . .×[[σn]]).

Abstractions

Γ `C t : σ : A

Γ `C [a]t : δσ : A− {a} a∈A and 〈a〉++OBV(t) E C
f : [[Γ]] → δ|A|[[σ]]

f ;bρ[[σ]] : [[Γ]] → δ|A|[[σ]]

where ρ : A → A− {a}++〈a〉 is a permutation map defined by |ρ|(i) = j where (A)i =
(A− {a}++〈a〉)j .

Applications

Γ `C t : δσ : A

Γ `C t@a : σ : A ∪ {a} a E C
g : [[Γ]] → δ|A|+1[[σ]]

g;bρ[[σ]] : [[Γ]] → δ|A∪{a}|[[σ]]

where ρ : A ++〈a〉 → A ∪ {a} is a map defined by |ρ|(i) = j where (A ++〈a〉)i =
(A ∪ {a})j . Notice that A may contain a, i.e. applying the same object variable more
than twice is possible.

Fig. 1. Type system and interpretation

250 Makoto Hamana

where |ρ| : 2 → 2 is a swapping map. The presheaf of untyped lambda terms Λ
can be shown to be an initial V+Σ-algebra [FPT99].

5 Free Object Variable Substitutions

In this section, we define how object variable substitutions defined in Section 3
are applied to terms. We need a notion of free object variable substitutions. The
reason we consider free one is motivated by the following examples: Consider an
object variable substitution ρ : 〈a, b〉 → 〈a〉 defined by ρ̃(a) = a and ρ̃(b) = a
and apply it to a term [a][b]F (var(a), var(b)), we have an ill-typed term

[a][a]F (var(a), var(a)).

This violates the condition on a world consisting of the sequence of object vari-
ables having no duplication because in this case the world must contain the se-
quence 〈a, a〉. The order of binding is reflected from the order of object variables
in a world (see the typing rule of abstractions). We must also avoid capturing of
bound object variables. So we need the following definition.

A free object variable substitution ρ : C → C ′ for a term t : ι : A is an object
variable substitution which satisfies

ρ̃�GBOV(t) is 1-1, and ρ(a) 6∈ GBOV(t) for a ∈ A.

The substitution ρ is also obviously extended to functions on sequences, sets of
object variables (written as ρA), and on typing contexts:

ρ(x1 : σ1 : A1, . . . , xn : σn : An) = x1 : σ1 : ρA1, . . . , xn : σn : ρAn.

Also this ρ is extended to functions on terms in two ways ρ] and ρ\ from T (C, Γ)
to T (C ′, Γ) defined as follows:

ρ]([a := b]x) = [a := ρ(b)]x, ρ](F (t1, . . . , tn)) = F (ρ](t1), . . . , ρ](tn)),

ρ]([a]t) = [a]ρ]
a(t), ρ](t@a) = ρ](t)@ρ(a), ρ](var(a)) = var(ρ(a));

ρ\([a := b]x) = [ρ(a) := ρ(b)]x, ρ\([a]t) = [ρ(a)]ρ\(t),

and other cases for ρ\ are the same as ρ]. Here ρa is the map defined by ρa(a) =
a, ρa(b) = ρ(b) if b 6= a.

Lemma 1.
Let ρ : C → C ′ be a free object variable substitution for a term t. Then the term
t substituted by ρ is well-typed:

x : σ : A `C t : σ : A

x : σ : A `C′ ρ]t : σ : ρA

x : σ : A `C t : σ : A

x : σ : ρA `C′ ρ\t : σ : ρA
.

A Logic Programming Language based on Binding Algebras 251

and the following diagrams commute in F̂:

Πiδ
|Ai|[[σi]]

[[t]]−−−−→ δ|A|[[σ]]

Πiid

y
yρ̂0 [[σ]]

Πiδ
|Ai|[[σi]]

[[ρ]t]]−−−−→ δ|ρA|[[σ]]

Πiδ
|Ai|[[σi]]

[[t]]−−−−→ δ|A|[[σ]]
yΠiρ̂i [[σi]]

yρ̂0 [[σ]]

Πiδ
|ρAi|[[σi]]

[[ρ\t]]−−−−→ δ|ρA|[[σ]]

where ρi : Ai → ρAi and ρ0 : A → ρA are defined by the restricted functions
(ρ̃)�Ai

: Ai → ρAi and (ρ̃)�A : A → ρA respectively.

Proof. By induction on the derivation of the judgment Γ `C t : σ : A. ut
Note that this lemma also gives well-typedness of terms by weakening and

strengthening of a world using suitable ρ. From these typing, the mnemonic for
these two ways of extension is that ρ\ is “naturally applied” because the stages
in typing context and term equally are applied, and ρ] is “half applied” because
only the term part is applied.

6 Substitutions on Terms

In this section, we define substitution on terms. A substitution (not an object
variable substitution) θ is a Ty, StC-indexed function from Γ to T (C, Γ′), which
gives mappings:

x : τ : A 7→ Γ′ `C t : τ : A

for each x ∈ Γ, and we use the shorthand notation [x 7→ t] for this. The identity
substitution [x 7→ x] is also written as ε. The substitution θ is extended to a
Ty,StC-indexed function θ∗ from T (C, Γ) to T (C, Γ′) defined by

θ∗(ξx) = ξ¦] ◦ θ(x) (x:τ :A ∈ Γ), θ∗(F (t1, . . . , tn)) = F (θ∗(t1), . . . , θ∗(tn))
θ∗([a]t) = [a]θ∗a(t), θ∗(t@a) = θ∗(t)@a, θ∗(var(a)) = var(a)

where for x : σ : A ∈ Γ

θa(x) = θ(x) if a ∈ A, θa(x) = undefined if a 6∈ A.

A composition θ2 ◦ θ1 of two substitutions θ2 and θ1 is given by θ∗2 ◦ θ1. We omit
the superscript ∗ from substitutions hereafter.

We say a term t1 is an instance of t2, written as t1 < t2, if there exist a 1-1
free object variable substitution ρ and a substitution θ such that t1 = θρ]t2. We
say a substitution θ2 : X → T(C, Y) is more general than θ1 : X → T (C, Y),
written as θ1 < θ2, if for all x ∈ X, θ1(x) < θ2(x). The relation 4 is the inverse of
<. Namely the notion of generality of substitution is defined modulo renaming of
object variables, which is the different point from the usual notion of generality
in first-order languages.

Also substitution can be given by a derived rule “cut”.

252 Makoto Hamana

Lemma 2.
Let θ : Γ → T (C, Γ′) be a substitution and x ∈ Γ. Define the restricted substitu-
tion θ′ : {x : σ : A} → T (C, Γ′) defined by θ′(x) = θ(x). Then the “cut” rule is
derivable.

Γ′ `C t : σ : A x : σ : A, Γ′′ `C s : τ : B

Γ′, Γ′′ `C θ
′
(s) : τ : B

Example 2.
The substitution defined here also allows captured substitution which does not
occur in case of ordinary systems having binding, e.g.

`a var(a) : ι : a x : ι : a `a [a]x : ι : ∅
`a [a]var(a) : ι : ∅

where the object variable a is captured by the binder [a]. So, this []-binder can
be considered as a hole of context appeared in several context calculi [Oho96],
[SSK01] rather than an ordinary binder. However this is because the stages of
var(a) and x match in the substitution process and if these does not match,
“capture avoiding” like substitution can also be simulated, e.g.

`a var(a) : ι : a x : ι : ∅ `a [a]x : ι : ∅
not substituted

.

Generally, when all variables occurring in a binding term [a]t have a stage not
containing the bound variable a in the typing context, the binder [a] can be
considered as a usual (λ-like) binder.

7 Equational Logic

The final section of the type theory of our language is on equational logic. In a
binding logic programming language, terms equated by the equational logic are
implicitly identified. So, later we consider unification of terms, which is necessary
in operational semantics, modulo this equality . This is similar in case of λProlog,
where higher-order unification that is a unification modulo βη-equality is used.

The equational logic given in Fig. 2 is basically similar to the equational logic
for the λ-calculus, but an important difference is the β-axiom which is restricted
only for application of an object variable, not an arbitrary term.

Note that in these axioms, both sides of equations must be well-typed terms.
So they satisfy some conditions to be well-typed, e.g. a′ ∈ A and a′ ∈ OBV(t) in
the axiom (α).

The reason why we use] for the extension of object variable substitution
here is the both sides of terms of equations are in the same context. We call a
term which matches the left-hand side of β0(η)-axiom a β0(η)-redex.

Example 3.
An example of an equation is

x : ι : a `a,b ([a]x)@b = [a := b]x : ι : b

A Logic Programming Language based on Binding Algebras 253

Axioms
(α) Γ `C [a]t = [a′][a 7→ a′]]t : δσ : A

(β0) Γ `C ([a]t)@b = [a 7→ b]]t : σ : A

(η) Γ `C [a](t@a) = t : δσ : A

Inference rules

(Congr-F)
Γ `C s1 = t1 : σ1 : A, . . . , Γ `C sn = tn : σn : A

Γ `C F (s1, . . . , sn) = F (t1, . . . , tn) : σ : A
F : σ1, . . . , σn → σ

(Congr-[])
Γ `C s = t : σ : A

Γ `C [a]s = [a]t : δσ : A− {a} a ∈ A, 〈a〉++OBV(s) E C, 〈a〉++OBV(t) E C

(Congr-@)
Γ `C s = t : δσ : A

Γ `C s@a = t@a : σ : A ∪ {a} a E C (Ref)
Γ `C t : σ : A

Γ `C t = t : σ : A

(Subst)
Γ, x : σ : A `C t = t′ : σ : A

Γ `C [x 7→ s]t = [x 7→ s]t′ : σ : A
(Sym)

Γ `C s = t : σ : A

Γ `C t = s : σ : A

(Tr)
Γ `C s = t : σ : A Γ `C t = u : σ : A

Γ `C s = u : σ : A

Fig. 2. Equational logic

where the first x in the equation is regarded as [a := a]x. This example shows why
the syntactic object variable substitution part in variables is necessary, namely,
it is needed to state (α) and (β0)-axioms for terms involving usual variables.
Application of a semantic object variable substitution (e.g. [a 7→ b]) to a term
is stopped at a (usual) variable, and a corresponding syntactic object variable
substitution (e.g. [a := b]) is remained there.

Theorem 1.
The equational logic is sound and complete for the categorical semantics described
in Section 4, i.e.

Γ `C s = t : σ : A ⇔ ∀M .M[[Γ `C s : σ : A]] = M[[Γ `C t : σ : A]].

Proof. Soundness is proved by checking each rules are sound and completeness
is by ordinary way of constructing a term model. ut

8 Unification

Unification is a fundamental operation in the operational semantics of bind-
ing logic programming language by SLD-resolution. In this section, we give an
unification algorithm for binding terms.

A unification problem is a pair (Γ `C t : τ : A, Γ′ `C′ t′ : τ : A′) of terms. A
unifier to the unification problem is a pair (θ, ρ) satisfying

Γ′′ `C′ θρ\t = θt′ : A′

where

254 Makoto Hamana

– θ : ρΓ ∪ Γ′ → T (C ′,Γ′′) is a substitution,
– ρ : C → C ′ is an object variable substitution such that ρ̃�A : A → A′ is a

1-1 free object variable substitution (so |A| ≤ |A′|. If not, swap the order of
the pair).

This means that ρ is a renaming to standardize the world C of the left-hand
side of the unification problem to C ′, and then θ is a unifier (in usual first-order
sense) of two terms.

A standardized unification problem is a unification problem satisfying the
following properties:

(i) C and C ′ are mutually disjoint.
(ii) Γ and Γ′ are mutually disjoint.
(iii) |A| = |A′|.
(iv) t and t′ has no β0, η-redexes.
(v) The bound variables in t and t′ are numbered by the method of de Bruijn

level. So C and C ′ contain some segments of natural numbers N.
(vi) The types of all variables are ι.

Proposition 1.
If a unification problem (Γ `C t : τ : A, Γ′ `C′ t′ : τ : A′) has a unifier
(θ, ρ:C → C ′), then it can be translated to the standardized unification problem

(Γ0 `C0 φt : τ : A0, Γ′0 `C′0 φ′t′ : τ : A′0)

having the “essentially same” unifier (θ′, ρ′:C0 → C ′0) by the pair (φ:C →
C0, φ′:C ′ → C ′0) of 1-1 object variable substitutions such that φ′ ◦ ρ = ρ0 ◦ φ.
This “essentially same” means that each assignment

x : δnι 7→ [k] . . . [k + n]s ∈ θ

1-1 corresponds to an assignment

x0 : ι 7→ s0 ∈ θ′

and φ′s ≡ s0.

Proof. (sketch) The conditions for standardized unification problem can be sat-
isfied by the following way:

(i) By suitably renaming object variables.
(ii) By suitably renaming variables.
(iii) By suitably weakening and strengthing of stages by using derived rules.
(iv) By β0, η0-rewriting using the equational axioms from left to right.
(v) By standard way.
(vi) For each variable ξf : δnι : A occurring in t and t′, replace it with

[k] . . . [k + n]ξf0 where f0 : ι : A ∪ {k, . . . , k + n}
where k is determined from the context which fits with the method of de
Bruijn level [dB72,FPT99]. Since we do not have constants of higher-order
types (δmι) all variables are represented by this form.

A Logic Programming Language based on Binding Algebras 255

Also the object variables in the stages of the judgment were accordingly replaced
by the above replacement including numbering by de Bruijn level. ut

From this proposition, we see that it is sufficient to consider a unification
algorithm for standardized unification problem, and any unification problem
can be standardized. We can easily recover a unifier of original problem from
the unifier of standardized one.

The unification problem is extended to a pair of sequences of terms and a
unifier is similarly defined. For a unification problem, a system is of the form

t1:A1 =? t′1:A
′
1, . . . , tn:An =? t′n:A′n.

The substitution θ and object variable substitution ρ are extended to functions
on systems defined by θ(ti:Ai =? t′i:A

′
i)i=1,...,n

def
= (θti:Ai =? θt′i:A

′
i)i=1,...,n

and ρ(ti:Ai =? t′i:A
′
i)i=1,...,n

def
= (ρ]ti:Ai =? ρ]t′i:A

′
i)i=1,...,n.

Unification algorithm BUA. The unification algorithm BUA for binding terms
is given by the set of transformation rules on systems given in Fig. 3. This is
based on Martelli and Montanari’s unification algorithm for first-order terms by
the set of transformations [MM82].

(F -elim)
G1, F (s1, . . . , sn) : A =? F (t1, . . . , tn) : B, G2

G1, s1 : A =? t1 : B, . . . , sn : A =? tn : B, G2

(triv)
G1, ξx : A =? ξx : A, G2

G1, G2
([]-elim)

G1, [k]s : A =? [k]t : B, G2

G1, s : A ∪ {k} =? t : B ∪ {k}, G2

(ov-elim)
G1, var(a) : A =? var(b) : B, G2

ρ(G1, s : A =? t : B, G2)
(@-elim)

G1, s@a : A =? t@b : B, G2

ρ(G1, s : A =? t : B, G2)

(v-elim1)
G1, ξx : B =? t : A, G2

θρ(G1, G2)
(v-elim2)

G1, t : A =? ξx : B, G2

θρ(G1, G2)

In (v-elim1) and (v-elim2), x 6∈ VAR(t).

Fig. 3. Unification algorithm BUA

Side conditions in BUA: in (ov-elim) and (@-elim), a, b 6∈ N, ρ = [a 7→
b], |ρA| = |ρB| (a is possibly b). In (v-elim1) (and (v-elim2)), the following data
is used:

– x : τ : D ∈ Γ (∈ Γ′ in (v-elim2)),
– an isomorphic object variable substitution ρ : B → A, where A = 〈a1, . . . , an〉,

B = 〈b1, . . . , bn〉, is defined by ρ(i) , i.
– an object variable substitution ξ¦ : D → B,
– a substitution θ is arbitrarily taken from the set Θ = {[x:τ :D 7→ s:τ :D] |
〈s,E〉 ∈ S, E ⊆ D} (i.e. there are #Θ-different θ’s) where

256 Makoto Hamana

S , {〈t[p1 := ξ′1 ◦ ρ−1(t�p1), . . . , pn := ξ′n ◦ ρ−1(t�pn)],
⋃

i

ξ′iB〉

| {p1, . . . , pn} = OVPOS(t) and p1 6= . . . 6= pn,

ξ′1, . . . , ξ
′
n ∈ {ξ′ : B → D | ξ¦ ◦ ξ′ = idB} ∪ {ε}}.

Note that OVPOS(t) denotes the set of all positions of free object variables
occurring in t, t[p := s] is a replacement of a term t at the position p with the
term s, and t�p denotes a subterm of t at the position p. Also (v-elim1) and
(v-elim2) produce #Θ-different branches of derivation.

Let G and G′ be systems. We write G
BUAÃθ,ρ G′ for a one-step transformation

with a computed substitution θ and ρ (in (@-elim), (v-elim1) and (v-elim2),

these are obtained, otherwise they are ε). We write G
BUA

Ã∗
θ,ρ G′ if there exists a

sequence of transformation

G ≡ G1
BUAÃθ1,ρ1

G2
BUAÃθ2,ρ2

· · · BUAÃθn,ρn
Gn ≡ G′

such that θ = θn−1 ◦ · · · ◦ θ2 ◦ θ1 and ρ = ρn−1 ◦ · · · ◦ ρ2 ◦ ρ1, where we suitably
extend codomains and domains of object variable and usual substitutions to
make them composable by adding identity assignments. If n = 1 then θ = ε and

ρ = ε. We use ¤ for the empty system. When G
BUA

Ã∗
θ,ρ ¤, we say that θ is a

computed unifier .

Properties of BUA. As in the case of higher-order unification, a unification for
binding terms also may not have most general unifiers. For example, a unification
problem

(x:ι:a, b `a,b ([a]x)@b , `a,b F (var(b), var(b)))

has the four unifiers

x 7→ F (var(a), var(a)), x 7→ F (var(a), var(b))
x 7→ F (var(b), var(a)), x 7→ F (var(b), var(b)).

The last two unifiers can be obtained from the first two. And there is no unifier
more general than these first two unifiers (see the definition of generality in
Section 6, where only a 1-1 free object variables substitution is allowed to get an
instance). So instead of most general unifier, we will just compute unifiers that
are more general than unifiers of a given unification problem (completeness).

The computed unifiers has the following desired properties: let (Γ `C t:τ :A,
Γ′ `C′ t′:τ :A′) be a standardized unification problem.

– Soundness: if t:A =? t′:A′ BUAÃθ,ρ ¤, then (θ, ρ) is a unifier of the unification
problem.

– Completeness: if (θ, ρ) is a unifier of the unification problem, then ∃θ′ 4 θ .

t:A =? t′:A′ BUAÃθ′,ρ ¤.
– Decidability: there are no infinite transformation sequence by BUA.

A Logic Programming Language based on Binding Algebras 257

– Normalizedness: computed answer unifiers are β0, η-normalized.
– An answer object variables substitution ρ : A1 → A′1 in a computed unifier

is free and 1-1 where A1 E A and A′1 E A′. This can be extended to a 1-1
object variable substitution ρ1 : C → C ′ required in the definition of unifier.

These can be shown by a similar way to the first-order case. Note that in higher-
order unification, a set of sound and complete idempotent unifiers is called a
complete set of unifiers and is not decidable in general, but our BUA is decidable.

Example 4.
We will give an example of unification by BUA. Consider a unification problem

(`a,b,c [a][b]F (c, a, b) : c, x:ι:a, b, c `a,b,c [b][c]x : a).

This problem is translated to a standardized unification problem

(`1,2,c [1][2]F (c, 1, 2) : c, x:ι:a, 1, 2 `a,1,2 [1][2]x : a).

The computed unifiers is (x 7→ F (a, 1, 2), c 7→ a) and the corresponding unifier
to the original problem is (x 7→ F (a′, a, b), c 7→ a′) which is obtained by re-
covering names from de Bruijn numbers and putting dash to object variables in
the right-hand side to make the worlds in both sides of the original unification
problem disjoint.

Predicate terms:
Γ `C t1 : σ1 : A . . . Γ `C tn : σn : A

Γ `C p(t1, . . . , tn) : A
p : σ1, . . . σn

Note that no types are given in predicate terms.

Definite Horn clauses:

Γ `C p(t) : A Γ `C p1(t1) : A1 . . . Γ `C pn(tn) : An

`C ∀Γ . p(t) : A ⇐ p1(t1) : A1, . . . , pn(tn) : An

If n is 0, the symbol “⇐” is omitted.

Queries:

Γ `C p(t) : A Γ `C p1(t1) : A1 . . . Γ `C pn(tn) : An

`C ∃Γ . p1(t1) : A1, . . . , pn(tn) : An

Fig. 4. Typing rules for formulas

9 Binding Logic Programming

In this section, we describe a binding logic programming language.

258 Makoto Hamana

(Axiom)
P .C ∀Γ′ . θ(p1(t1)) : A1 . . . P .C ∀Γ′ . θ(pn(tn)) : An

P .C ∀Γ′ . θ(p(t)) : A

where
– `C ∀Γ . p(t) : A ⇐ p1(t1) : A1, . . . , pn(tn) : An ∈ P
– a substitution θ : Γ → T (C, Γ′)

(∃−intro)
P .C ∀Γ′ . p1(θt1) : A1 . . . P .C ∀Γ′ . pn(θtn) : An

P .C ∃Γ . p1(t1) : A1, . . . , pn(tn) : An
θ : Γ → T (C, Γ′)

(Inst)
P .C ∀Γ . p(t) : A

P .C ∀Γ′ . θ(p(t)) : A
θ : Γ → T (C, Γ′) (Wld-St)

P .C ∀Γ . p(t) : A

P .C′ ∀Γ . p(t) : A

(Repl)
P .C ∀Γ . p(t) : A Γ `C t1 = t′1 : A . . . Γ `C tn = t′n : A

P .C ∀Γ . p(t0) : A

(St-w)
P .C ∀Γ . p(t) : A

P .C ∀Γ . p(t) : A ∪ {a} a 6∈ OBV(t) (St-s)
P .C ∀Γ . p(t) : A ∪ {a}

P .C ∀Γ . p(t) : A
a 6∈ FOV(t)

(Rename)
P .C ∀Γ . p(t) : A

P .C′ ∀ρΓ . p(ρ\t) : A
(Open α)

P .C ∀Γ . p(t) : A

P .C ∀Γ . p(ρ]t) : A

In (Rename), ρ : C → C′ is 1-1. In (Open α), ρ : C → C is 1-1. In (World-st), C′ is
obtained from C by deleting object variables not occurring in ∀Γ . p(t) : A.

Fig. 5. Inference rules of the logic

9.1 Logic

We need formulas for logic programming. We assume the signature Σ is the
disjoint union of ΣF for function symbols and ΣP = {p : σ1, . . . σn, . . .} for
predicate symbols. The typing rules of formulas are given in Fig. 4.

Next we describe the logic of our logic programming language. A program P
is a set of definite Horn clauses. Note that here a definite Horn clause includes
the part `C on the top, so in a program, each clause may have different world
C. A sequent within this logic is of the form

P .C Q

where Q is a well-typed formula by `C Q. Note that we use the symbol ` for
the well-typed terms and formulas, and . for the sequent.

The inference rules of this logic is given in Fig. 5. The substitution θ in (∃-
intro) is called witness of this existentially quantified formula. Weakening of a
world can be performed by (Rename) rule using suitable ρ.

The reason why we only let ρ be 1-1 for substituting object variables in the
above rules comes from Hofmann’s observation on the denotation on decidable
equality in the presheaf category F̂ [Hof99]. Let us rephrase his observation in
our system: consider a program for inequality of object variables by the predicate
ineq and the following sequent:

{`a,b ineq(var(a), var(b)) : a, b} .a,b ineq(var(a), var(b)) : a, b.

A Logic Programming Language based on Binding Algebras 259

Then, if we apply a surjective object variable substitution ρ : 〈a, b〉 → 〈a〉, we
can derive the following

{`a,b ineq(var(a), var(b)) : a, b} .a ineq(var(a), var(a)) : a.

This says var(a) and var(a) are inequal, but clearly this cannot be considered
as correct use of the predicate ineq. Same things will happen in any predicate
having more than two object variables, so we restrict ρ to 1-1.

Example 5.
We describe a program for syntactic differentiation given in introduction more
precisely in our typed language:

P =

`a,b diff([b]var(a), [b]0) : a,
`a,b diff([b]var(b), [b]1) : ∅,
`a,b ∀f :ι:b, f ′:ι:b . diff([b]sin(f), [b](cos(f)× f ′)) : ∅⇐ diff([b]f, [b]f ′) : ∅.

A query under P is stated as the sequent

P .d,c ∃z:δι:∅ . diff([d]var(c), z) : c,

and an answer substitution for this is θ : {z:δι:∅} → T (〈d〉,∅) given by z 7→ [d]0.

Example 6.
We also give a program for capture-avoiding substitution of λ-terms defined in
Example 1. The predicate sub([a]s, t, u) means that u is a term obtained from
the term s by replacing all a with t.

P =

`a ∀y:∅ . sub([a]var(a), y, y) : ∅
`a,b ∀y:∅ . sub([a]var(b), y, var(b)) : b
`a ∀e1, e2:a, z1, z2:∅, y:∅ . sub([a]app(e1, e2), y, app(z1, z2)) : ∅

⇐ sub([a]e1, y, z1) : ∅, sub([a]e2, y, z2) : ∅
`a,b ∀x:a, b, y:∅, z:b . sub([a]lam([b]x), y, lam([b]z)):∅

⇐ sub([a]x, y, z) : b

9.2 Operational Semantics

As in ordinary logic programming language, we consider an existentially quan-
tified formula as a query and witnesses as answer substitutions for the query.
We will give a version of SLD-resolution which treats binding terms for a proof
method of existentially quantified formulas with witnesses. Let us prove the fol-
lowing sequent

P .D ∃∆ . p1(s1) : A1, . . . , pn(sn) : An

by getting witnesses. For this sequent, a goal is of the form

D, ∆; p1(s1):A1, . . . , pn(sn):An.

We define SLD-resolution as a transformation rule on goals. Let G1, G2, G3 be
sequences of predicate terms.

260 Makoto Hamana

SLD-resolution. Define a one-step SLD-resolution

D, ∆; G1, p(s):B, G2 Ãθ,ρ C0, ∆′; θ0(ρG1, φ
′G3, ρG2)

where `C ∀Γ . p(t) : A ⇐ G3 ∈ P,

θ = θ0 ◦ φ1 : ∆ → T (C0, ∆′), ρ = ρ0 ◦ φ : D → C0,

and φ1 : ∆ → ρ0∆0 ∪ Γ0 is defined by x : σ : A 7→ x : σ : ρ0φA. Here let (θ, ρ)
be a computed unifier by BUA for the unification problem

(∆ `D p(s) : B, Γ `C p(t) : A),

between the goal and the head of the Horn clause and (θ0, ρ0) a “essentially
same” unifier for the standardized problem. Then θ0 is obtained by recovering
original variables from the substitution θ0.

We write H Ã∗
θ,ρ H ′ if there exits a sequence of transformation

H ≡ H1 Ãθ1,ρ1
H2 Ãθ2,ρ2

· · · Ãθn,ρn
Hn ≡ H ′

such that θ = θn−1 ◦ · · · ◦ θ2 ◦ θ1 and ρ = ρn−1 ◦ · · · ◦ ρ2 ◦ ρ1. If n = 1 then θ = ε
and ρ = ε. We use ¤ for the empty goal. When H Ã∗

θ,ρ ¤, this is a successful
SLD-resolution, otherwise, it is fail.

Theorem 2.
The SLD-resolution is sound for the logic given in Section 9.1, i.e.

D, ∆; G Ãθ,ρ ¤ ⇒ P .C0 ∀∆1.θG

where θ : ∆ → T (C0, ∆1) and ρ : D → C0.
Also, the SLD-resolution is complete, i.e. if P .D ∃∆.G is provable and its

previous sequent in the proof is P .D ∀∆1.θG, then

D, ∆; G Ãθ′,ρ ¤

such that θ′ 4 ρ1 ◦ θ, where θ : ∆ → T (D, ∆1), θ′ : ∆ → T (C0, ∆2), ρ : D → C0,
and ρ1 : ∆1 → ∆2 is defined by x : σ : A 7→ x : σ : ρA.

10 Related Work

Nadathur and Miller’s λProlog [NM88] is one of the most famous language treat-
ing variable binding in logic programming. This language deals with higher-order
hereditary Harrop formulas instead of first-order Horn clauses in case of Prolog.
The unification is extended to that for simply typed λ-terms modulo α,β,η-
conversion, called higher-order unification. A problem is that higher-order unifi-
cation is undecidable in general and quite complex. This point is different from
ours, our binding logic programming language uses simple decidable unification.

A Logic Programming Language based on Binding Algebras 261

But the class of formulas of λProlog is wider than ours, higher-order hereditary
Harrop formulas can contain ∀,⇒ in the body of clauses.

Later, Miller proposed succeeding language Lλ [Mil91], which is a subset of
λProlog where β-equality is restricted to β0-equality defined by (λx.M)x = M .
Miller observed that “when examining typical λProlog programs, it is clear that
most instances of β-conversion performed by the interpreter are, in fact, instances
of β0-conversion” [Mil00]. As a result, the unification modulo α,β0,η becomes
very simple and decidable, and also resemble first-order unification.

Our β0-axiom is (essentially) same as Miller’s β0-axiom, but the motivation of
this axiom comes from a different reason, i.e. initial algebra semantics of binding
by presheaves [FPT99]. The recent consideration of semantics of abstract syntax
with variable binding including Fiore-Plotkin-Turi’s has a common principle,
where they prohibit general function types in signature, such as lam : (term ⇒
term) → term, and instead, use restricted function types only from (object)
variables, such as lam : (var ⇒ term) → term. The reason for this restriction
is to get structural recursion (or induction) on data defined by this kind of
signature [FPT99,Hof99,GP99,DFH95]. So, now Miller’s practical observation
on the restriction of β-equality in λProlog and the restriction of function types in
semantical studies on variable binding coincide. Hence our type theory involving
the β0-axiom can be considered as reasonable.

So Lλ is similar to our language but again the class of formulas in Lλ (heredi-
tary Harrop formulas) is wider than ours (Horn clauses). It is not currently clear
whether all Lλ programs can be (easily) translated to our binding logic programs.
Due to β0’s restriction, unification in Lλ becomes pattern unification, which is a
higher-order unification only for particular class of λ-terms called higher-order
patterns. A λ-term is a higher-order pattern if every free variable occurrence is
applied to at most distinct bound variables. So, for example, λx.Fxx =? λy.gy
(F is a free variable) is not a pattern unification problem, hence Lλ cannot solve
it. But our BUA algorithm can solve it, this point is an advantage of our language
on Lλ.

Pitts and Gabbay’s FreshML [PG00] is a functional programming language
based on their semantics of binding – FM-set theory [GP99]. FreshML is quite
similar to ours, they use the notion of stage too (called support), but they
attached object variables not contained by its stage as a type information of
terms. They in particular payed attention to freshness of object variables in
terms, which is not considered in this paper. In FM-set theory, a permutation
group is used to formalize renaming and binding of object variables, where only
injective variable substitutions are used. This affects to syntax, for example,
an application of the same object variables twice, such as a term t@a@a, is
impossible in their type system. But in our case, since the category F has all
functions between (abstract) object variables, our type system allow such terms.
Another difference is that FreshML does not use η-axiom.

Acknowledgments. I am grateful to Gordon Plotkin for motivating this work
and designing the basis of the type theory in this paper. I also thank Daniele
Turi for discussions on this work, Martin Hofmann, Hirofumi Yokouchi and the

262 Makoto Hamana

anonymous referees for helpful comments. This work was done while I was vis-
iting LFCS, University of Edinburgh where I have been supported by JSPS
Research Fellowships for Young Scientists.

References

[dB72] N. de Bruijn. Lambda clculus notation with nameless dummies, a tool for
automatic formula manipulation, whith application to the church-rosser the-
orem. Indagationes Mathematicae, 34:381–391, 1972.

[DFH95] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax
in Coq. In M. Dezani and G. Plotkin, editors, Typed Lambda Clculi and
Apllications, LNCS 902, pages 124–138, 1995.

[FPT99] M. Fiore, G. Plotkin, and D. Turi. Abstrat syntax and variable binding.
In 14th Annual Symposium on Logic in Computer Science, pages 193–202,
Washington, 1999. IEEE Computer Society Press.

[GP99] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax involving
binders. In 14th Annual Symposium on Logic in Computer Science, pages
214–224, Washington, 1999. IEEE Computer Society Press.

[Hof99] M. Hofmann. Semantical analysis of higher-order abstract syntax. In 14th An-
nual Symposium on Logic in Computer Science, pages 204–213, Washington,
1999. IEEE Computer Society Press.

[Mil91] D. Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification,. Journal of Logic and Computation,
1(4):497–536, 1991.

[Mil00] D. Miller. Abstract syntax for variable binders: An overview. In John Lloyd,
et. al., editor, Proceedings of Computation Logic 2000, LNAI 1861, 2000.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions of Programming Languages, 4(2):258–282, 1982.

[NM88] G. Nadathur and D. Miller. An overview of λProlog. In Fifth International
Logic Programming Conference, pages 810–827. MIT Press, 1988.

[Oho96] A. Ohori. A typed context calculus. In Preprint RIMS-1098. Research Insti-
tute for Mathematical Sciences, Kyoto University, 1996.

[PG00] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound
names modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Math-
ematics of Program Construction, MPC2000, Proceedings, Ponte de Lima,
Portugal, July 2000, volume 1837 of Lecture Notes in Computer Science, pages
230–255. Springer-Verlag, Heidelberg, 2000.

[SSK01] M. Sato, T. Sakurai, and Y. Kameyama. A simply typed context calculu with
first-class environments. In 5th International Symposium on Functional and
Logic Programming, volume LNCS 2024, pages 359–374, 2001.

