

Contemporary Management Research
Pages 29-52, Vol. 6, No. 1, March 2010

A Logical Approach for Implementing Dynamic Business Rules

Nasser Karami
Sharif University of Technology

E-Mail: nr.karami@sharif.ir

Junichi Iijima
Tokyo Institute of Technology

E-Mail: iijima.j.aa@m.titech.ac.jp

ABSTRACT

Business Rules are operational rules based on data that business organizations
follow to perform various activities. Regarding problem domains in the organization,
business rules (BR) are classified into two groups: Static and Dynamic. A static
business rule is a constraint (integrity) or derivation rule that applies to each
individual state of the business, taken one state at a time. Dynamic Business Rules
(DBR) are concerned with the invocation of actions in response to events.

Although a lot of modeling languages and approaches for business rules
modeling and different technologies and tools for business rules implementation have
been proposed by researchers and practitioners in the past ten years, there is no
consensus yet on technology standard and logical relationship between the modeling
and the implementation of the proposed methods.

The purpose of this paper is to implement DBR based on our proposed modeling
methodology. In this study, DBR System architecture is developed using Java and
Prolog+CG, a CG-based logic programming language which integrates Prolog, the
manipulation of conceptual graphs, Java and object-oriented constructs. The
advantages of our system are demonstrated with the case study of the Locomotive
Maintenance’s Business (Rules).

Keywords: Business Rules Approach, Dynamic Business Rules (DBR), Conceptual

Graphs (CG), Mineau’s Approach, Prolog+CG

Contemporary Management Research 30

INTRODUCTION
In the last decade, business rules have received a lot of attention in the

Information Systems community. The credit for this goes to many papers written by
researchers about business rules modeling and methodologies (Zaniolo et al., 1997;
Ross, 1997; Mens et al., 1998; Ross and Lam, 1998; Gottesdiener, 1999; Hay and
Healy, 2003) and by practitioners about rule-engine tools and application development
support environments (e.g. Blaze Advisor Builder, BRS RuleTrack, Business Rule
Studio, Haley Technologies, ILOG Rules, Platinum Aion).

There is a new approach that divides information systems in three components,
that is, data, processes and business rules (Ross, 1997). In this approach, business
rules can be managed independently from system requirements and they also need
special handling. Business rules create an unambiguous statement of what a business
does with information to make a decision. The formal specification becomes
information for processes and rules engines to run. Business rules are an important
asset of any organization: they represent decisions that are made to achieve enterprise
objectives and reflect the business policies of an enterprise. While a business policy is
a general statement or direction for an organization, business rules are statements that
are used by a body of an organization to run their activities (Hay and Healy, 2003).
They are the heart of an enterprise; they guide and affect the behaviors and ways of an
enterprise.

Thus, business rules are precise statements that describe, constrain, and control
the structure, operations and strategies of a business. Most of them take the normal
form of if [conditions] then [actions] that can be easily created and understood by
anybody (Faget el at., 2003). This form is definitely the simplest expression of
business rules.

According to the literatures and current researches, business rules can be
classified into four basic types: fact rules (also called terms), integrity constraint rules
(also 'constraint rules' or ' integrity rules'), derivation rules, and dynamic rules (also
called 'action rules', 'event-action rules' or 'automation rules') (Hay and Healy, 2003;
Bubenko et al., 1998; Martin and Odell, 1998; Herbst, 1996).

A “dynamic business rule” (“DBR” in abbreviation) is a transition constraint that
restricts how the business may change to new states (Taveter and Wanger, 2001). This
rule defines the conditions for the invocation of an operation.

DBRs have a three-part structure, consisting of a trigger, a condition, and an
action. The trigger and condition describe the conditions under which a rule becomes
active, whilst the action part of the rule generates messages to active operations (Terry,

 Contemporary Management Research 31

2005; Oelmann, 1991). In DBR’s, When indicates a Trigger, If a Precondition and
Then an Action. These business rules are expressed as “When-If-Then” statements.
For example, the Withdrawal_Money rule would be represented in the following way:

When Withdrawing
If Withdrawable amount >= $30
Then Receiving the money.

In the field-related literature, several research works have attempted to model
DBR. Terry (2005) reviewed the principal concepts behind fact-orientation and
focused more on static business rules. In his paper, there is no language to handle
dynamic rules. In addition, the transition from analysis to implementation has not been
addressed. Ross (1997) proposed one of the most comprehensive methodologies for
modeling business rules. The Ross Notation is, however, largely a database oriented
methodology, and does therefore not allow to model events and actions. Neither does
it support the modeling business processes.

There are a number of modeling and implementation languages and approaches
for business rules modeling and implementation. For example, Ross method offers
sufficient methodological guidance and specific constructs for each of the rules'
family together with a big number of accompanying constructs, such as special
symbols, invocation values, special interpreters, and special qualifiers. However, these
properties do not seem to be an advantage, as the complexity of the resulting diagrams
and the vast amount of graphical symbols make the language quite complicated. Thus,
there are two main shortcomings in those approaches. First, some methods, like Ross
method, are quite complicated for inexperienced users and some other methods, like
OCL statements, do not have any graphical notation and thus are not understandable
by business people (Ross, 1997; Demuth et al., 2001). Second, no language or
approach has yet been proposed for implementing business rules by researchers who
have developed the modeling method. Therefore a logical approach for handling DBR
is necessary, although it needs to be simple enough in both graphical and linear form
to model and implement such business rules.

In order to solve these issues, we proposed a logical approach for handling DBR
in our previous paper (Authors, 2007). In that approach, DBR is modeled using
Conceptual Graphs (CG) and Mineau's approach shown in Figure 1.

Contemporary Management Research 32

Figure 1 Framework of Research Plan

Basically, our research includes two parts (as shown in the figure). In the first
part, we introduced a logical approach to model DBR. We considered together CG
and Mineau’s approach as a business rules modeling language because of their simple
graphical and linear notations in that paper. The second part of our research focuses
on formalizing and implementing these business rules. As a result, the main purpose
of this paper is to present a logical approach for formalizing and implementing DBR
modeled in our previous work. So, the paper has two purposes. The first purpose of
our paper is to formalize DBR which were modeled by a logical approach. The second
purpose of this paper is to implement the formalized DBR. In order to implement
DBR, we introduce DBR System architecture which is developed using Java and
Prolog+CG language.

Informally, a CG is a graph or network of concepts and conceptual relations
where every arc links a concept node and a conceptual relation node. CG created by
Sowa is one of the suitable modeling languages. Conceptual graphs constitute an
expressive logical system designed for a direct mapping to and from natural language.
They allow the representation of various kinds of knowledge and offer a graphical and
linear notation for human readability and a graph mathematical structure for machine
computability (Sowa, 1984; Sowa, 2000). In formally, a CG is a structure of concepts
and conceptual relations where every arc are links a concept node and a conceptual
relation node. A simple example of CG statement is depicted in Figure 2 using linear
notation. This CG statement consists of three concepts (in brackets) and two relations
(in parentheses).

World of Business Rules

Implementation

Conceptual Graphs &
Mineau’s Approach

Modeling

Prolog+CG
Language

DBR System

DBR
Three-part

 Contemporary Management Research 33

Figure 2 A CG Graphical Form for "Kin is going to Tokyo"

In order to represent dynamic processes and knowledge, Mineau (1998) proposed
another approach. He proposed a representation approach for dynamic processes. This
approach is more oriented toward the automatic translation of algorithms into an
executable but declarative format. In his paper, Mineau uses the idea of processes to
represent dynamic knowledge. Basically, Mineau’s processes are one kind of
executable conceptual graph formalism. Generally, Mineau’s approach is an extension
of Conceptual Graph theory.

After modeling DBR, these business rules are implemented by Prolog+CG
language (see Figure 1). This language has been developed by A. Kabbaj in order to
extend the Prolog language in two main directions: a conceptual extension allowing
the representation of goals with conceptual graphs and the manipulation of simple and
compounded CG (Kabbaj et al., 2001; Kabbaj, 2005). The mentioned CG example has
been rewritten using the Prolog+CG language as follows:

[Person: Kin]<-AGNT-[Go]-DEST->[City: Tokyo]

The purpose of this research is to present a logical approach for formalizing and
implementing DBR modeled in our previous work. In this paper, we define the syntax
of these business rules and implement them in connection to the prior work.

Our work makes several contributions related to the definition and
implementation of business rules in the design of conceptual databases. The main
contribution for implementing and defining the syntax of DBR is to consider and
organize the relationships among rules in the business process so that people involved
in the Information System can easily study the relationships among business rules and
how business rules can be used in the business processes. They can use this study in
decision making as well as in efficient processing of rules. For example, the effects of
an action (Then part in DBR's structure) can be considered as a condition triggering
the next business rules in a business process. One of the contributions of this paper is

Person: Kin Go Agnt

City: Tokyo Dest

Contemporary Management Research 34

to propose a logical approach which covers both modeling and implementation of
DBR in the business processes area. In addition, the implementation of business rules
will be easier and faster in Business Processes Management Systems (BPMS) using
the DBR concept based on the main contribution and the DBR System which will be
proposed and introduced later.

First we define the syntax of DBR and propose a DBR System architecture that
clarifies our prior related works to consider the results of DBR’s action, and second
we implement these business rules using the proposed approach. In our research,
business rules are treated as a central element of the DBR System.

The practicality of our approach is demonstrated with the case study of the
Locomotive Maintenance’s Business rules. The case study of the locomotive repairs
factory at a large railway company demonstrates how the proposed approach can be
applied to formalize and implement DBRs within the existing conceptual database.

The rest of the paper is organized as follows. In section 2, we review the relevant
literature on business rules related to our research, and present the contributions of our
system from different research area. Section 3 formalizes the syntax of DBR in BNF
format. We also describe the structure of the proposed system in this section. The
advantages of our system are demonstrated with the case study of the Locomotive
Maintenance’s Business Rules in Section 4. Finally, Section 5 concludes the paper
with some observations and future issues related to the work presented here.

RELATED WORKS

A business rule dictates how the organization executes business decisions,
processes and constraints essential to the company's strategy (Becerra, 2001; Vondrak,
2000). They are the specialized form of logic that expresses a constraint about the way
a system or the people using it behave.

The term ‘‘business rule’’ has been used by different approaches in different
ways. For example, business rules are "statements of goals, policies, or constrains on
an enterprise's way of doing business" (Rosca et al., 1997) or they are defined as
"statements about how the business is done, i.e. about guidelines and restrictions with
respect to states and processes in an organization" (Bell et al., 1990). For the purpose
of this work, we consider the definition of business rules as restrictions and conditions
regarding processes in an organization. Thus, the adopted definition in this paper is
Bell's definition.

There is a number of modeling languages and approaches for business rules
modeling. The most popular modeling language is UML which was created through

 Contemporary Management Research 35

jointing the efforts of researchers and commercial organizations. In this approach,
business rules' modeling is fulfilled by the UML Object Constraint Language (OCL).
Business rules are expressed in OCL statements (Eriksson and Penker, 2000). One of
the most famous approaches is the report offered by the Business Rules Group
(formerly the GUIDE Project on Business Rules). The GUIDE Project identifies terms
and facts in natural language rule statements, and consequently, the expressiveness it
allows is very high (Hay and Healy, 2003). Another method was created by Ross. The
Ross Method is one of the most complete methodologies which model business rules.
Ross has created the original graphical notations to represent business rules in a data
model (Ross, 1997).

One of the most important activities in business rule-based system is the business
rule implementation. There are a number of different technologies and tools available
to support business rule implementation and maintenance. In its simplest form,
business rule implementation may involve code written in a general-purpose language
such as Java. These implementations usually take the form of a series of if-then
statements. Evaluating the business rules then requires that all of these statements are
assessed and the associated action is implemented.

The most common way to implement business rules is to use a rules engine. A
business rule engine is a software system that helps manage and automate business
rules. A rule engine can significantly improve the process by separating the rule
evaluations from rule invocations. Furthermore, some engines allow a simpler way to
express rules, using either a GUI or an English-like language instead of expressing
them using a programming language. Table 1 lists several commercial products which
employ their own rule engine. Some of the products have their rule engines integrated
with the Java language. The rule languages implemented by the rule engines and their
mechanisms of integration differ slightly.

The table highlights the lack of uniform standards for business rules modeling
languages, repository formats, and architectures. In the tools listed in Table 1,
business rules engines mainly focus on outlining the use of If-Then type business rules
and applying Java language, but not on further consideration in how to construct,
model and implement DBR precisely based upon logic theories. In addition, the
implementation and modeling of business rules are still a challenge in the business
modeling area (Valatkaite and Vasilecas, 2004). There is a lack of DBR
implementation using a logic approach. In order to implement the modeled DBR using
CG and Mineau's approach, we introduce a logic approach which integrates Prolog,
the manipulation of conceptual graphs and Java. The model resulting from CG and

Contemporary Management Research 36

Mineau's approach is more useful than current tools because it permits the description
of all components of DBR, and supports the execution semantics. The significance of
these graphical languages is that it describes a state transition in terms of events,
conditions and actions in an explicit way thus facilitating the active behavior
specification. By using this approach, a uniform and complete representation of DBR
is obtained, which constitutes an important part of information systems.

Table 1 Representative Tools for Business Rules

Product Rule
Type

Modeling
Language

Implementation
Language

For more
information

Blaze
Advisor If-Then

English-like
Structured Rule
Language (SRL)

XML, LDAP,
JDBC

(Blaze Advisor,
2007)

JES If-Then Jess Language 100% Pure Java
Certified

(Friedman-Hill,
2000)

Infrex If-Then-Else/ Else
If ________ C/C++/Java/C# (Infrex, 2004)

ILOG If-Then-Else BAL & TRL C++ (ILog, 2006)

Our
System When-If-Then CG/Mineau's

Approach Prolog+CG/Java (Authors, 2007)

DBR SYSTEM
In this section, we first formally define the syntax of DBR in Backus-Naur Form

(BNF), and then describe the DBR System which makes use of the conceptual graphs
as a conceptual modeling language and employs Java/Prolog+CG language for rules
execution.

Formalization of DBR

Authors (2007) proposed to use Mineau's approach, an extension of Conceptual
Graph theory, to model DBR. In the previous study, we modeled these business rules
using a logical approach which is reasonably readable in linear or graphical form.
Since DBR can directly be mapped to first order predicate logic, they can easily be
implemented for business processes. As stated in introduction, these business rules

 Contemporary Management Research 37

should be implemented after modeling. In order to enforce the DBR modeled in CG
format, we implement these business rules using Prolog+CG program (see Figure 1).
This language is a Java implementation of Prolog with extensions implementing a
subset of the Conceptual Graph (CG) theory of John Sowa.

As mentioned in Section 1, a DBR has three parts including event, precondition,
and action. Hence, the DBR's form may be illustrated as a three-part format. In that
form, When indicates an event, If a precondition and Then an action. Each of those
parts is modeled by using CG in our approach. In order to represent these parts in the
Prolog+CG environment, we have modified the If/Then template which has been
defined in the Prolog+CG language for our purpose. The syntax of the mentioned
parts is defined and expressed in BNF as the following clauses:

<When-Clause>::= " [When=[Proposition=" <Concept-Clause> "]]"

<If-Clause>::= "[If=[Proposition=" <Concept-Clause> "]]"

<Then-Clause>::= "[Then=" <Concept-Clause> "]"

<Concept-Clause>::= <Concept> | <Concept> <Relation> <Concept-Clause>

<Concept>::= "[" <Concept Type> ":" <Instance Name> "]"

<Relation>::= "-" <Relation Type> "->".

In the above definition, it is noted that not all of a pair of <Concept Type> and
<Instant Name> is semantically allowed as a <Concept> even though it is correct in
syntax.

The Concept Type, Instance Name and Relation Type statements are defined and
specified based on real cases. In the above representation, the concept type When, If
and Then are made to be subtypes of Proposition type in Prolog+CG.

The basic structures of these presentations are concept graphs and concept
relations. These forms can be modeled by means of CG concepts and relation types.
As a result, a DBR can be formalized using the above clauses as the following clause:

<DBR-Clause>::= “[“ <When-Clause> "- COND ->" <If-Clause > "- PRE-
>" <Then-Clause>]”."

where COND and PRE are the reserved words.

Contemporary Management Research 38

DBR System Archite Cture

The DBR System consists of four components, a user interface with which the
user interacts, a DBR Engine that applies the rules using Prolog+CG language, a DBR
repository that saves the rule-related information and a DBR builder that provides
users with a graphic display environment in order to easily and conveniently write
rules (Figure 3).

Figure 3 Overview of Components of DBR System

The major components of the proposed system are the following:

1. User Interface (UI)
The interface connects users with the DBR engine. This component enables

the user to interact with the second component of the architecture. Using the UI
component, the user can enter and request information in graphical form. The user
interface handles only display and input issues. The user selects the necessary
information, and the system will run the user's query. This component is also used
to display the results of the query.

2. DBR Engine

The second component is the logical level or rule engine, which is
responsible for computation and evaluation of the business rules according to the
user's invocation and request. This component acts as a software system that helps
manage and automate business rules. The DBR engine is a central component, for

User Interface
(ECLiPSe Platform)

Data
Invocation

Data
Provision

Prolog+CG
Platform

Antecedent
Evaluation

Consequent
Implication

Business Rules
Evaluation

Business Rules
DBR

Builder
Target Business

(Domain)

DBR Engine

DBR Repository

 Contemporary Management Research 39

it determines the representational power of the rule set that can be used. It is a
system for executing a set of When-If-Then statements. In addition, Prolog+CG
language acts as the role of platform in the second component. The DBR Engine
has a two-layer structure including the Prolog+CG Platform and Business Rules
Evaluation.

The first layer is a link between the User Interface and the Business Rule
Evaluation layer. Here, Prolog+CG acts as the platform in our system. This
language is an extended version of Prolog that supports Conceptual Graphs (CG).
We also developed our system using the ECLiPSe platform in order to call the
Prolog+CG modules when it is appropriate. ECLiPSe is an effective Constraint
Logic Programming (CLP) System and is mainly backward compatible with
Prolog+CG.

The second layer acts as a rule engine. This layer is composed of logic
programs based on a business domain that aims at defining and specifying business
rules. The Business Rule Evaluation layer is performed by Prolog+CG. In fact, the
DBRs which have been modeled using Conceptual Graphs language are executed
in the Business Rules Evaluation.

3. DBR Repository

The DBR repository is a repository that stores the rule-related information
and supports the flexibility of rule expression. The DBR repository allows for the
maintenance and management of business rules throughout their life cycle. This
component represents only a part of the business rules repository used to store the
information of business rules represented in CG form. The stored business rules in
the repository component are determined based on the target system's
specifications. In this case, the repository acts as a specific-domain repository.

4. DBR Builder

The Business Rule Builder has a default template and allows a developer to
create business rules based on our definition. As displayed in Figure 4, the user or
business analyst can add, edit and delete DBR stored in the rule repository based
on the proposed format (When-If–Then construct) using this component .

Contemporary Management Research 40

Figure 4 The DBR Builder Panel

In our approach, the DBR System receives and accepts the specifications and

parameters from a target system and reads and processes the inputs which are stored in
the repository component through the business rules builder component. The system
creates and constructs a specific-domain DBR engine based on the target system's
parameters at the end. In our approach, the input specifications and parameters of the
system rely on the <Concept Type>, <Instance Name> and <Relation Type>
statements in the DBR's format and are semantically specified regarding the target
system.

CASE STUDY: LOCOMOTIVE MAINTENANCE AND REPAIRS

In order to illustrate our approach, we have applied the DBR System to the
Maintenance & Repair organization of the Iranian Railway Company, the only railway
system in Iran. The Iran Railway Company has a huge responsibility for transporting
large number of goods and passengers. We have built a restricted scope (a small
module) version of the running application where all the business rules are stated in
the DBR System described in Section 3. We introduce a subset of business rules
which may be relevant to the Locomotive Maintenance & Repair's Business Rules in
the Iranian Railway Company.

The repair activities deal with overhauls and repairs, scheduled and unscheduled
maintenance of General Electrics (GE), General Motors (GM), Alstom, and Hitachi
locomotives. In this case, we try to incorporate our proposed approach into existing

 Contemporary Management Research 41

business solutions. We are able to separate business rules as DBRs and place them
into the DBR System. We consider the example of Locomotive repairs, where the
locomotives can be fixed based on different kinds of repairs. The case study
demonstrates how the proposed approach can be used to apply the DBR System
within the existing conceptual database.

A locomotive is a diesel traction vehicle that pulls a train. It is repaired after the
occurrence of a defect. Locomotive repairs are generally of four kinds in our case:
"slight", "minor", "casual", or "overhaul" repairs. For example, overhaul repairs
involve all parts of the locomotive being brought up to near new standards, while
casual repairs only require, normally, the repair of one major component on the
locomotive or defective part so it can be returned back to service. Such repairs are
executed according to the locomotive manufacturer's recommendations and their
related technical instructions. A diesel locomotive has five main parts including
engine, main and assistant generator, compressor, bogy and engine (Traction
Department of Iranian railway, 2006).

Figure 5 shows how the information is processed between the two repair shops.
As shown in the figure, the repairs of locomotives are performed in two repair shops
called the running and the overhauling shop. The running shop is the first place for
locomotive repairs and services. The overhauling shop is in charge of overhaul and
casual repairs. Locomotive repairs begin after the locomotive has arrived at the first
repair shop. If the initial inspection of the locomotive deems it irreparable by the
mentioned workshop, the locomotive is sent to the second repair shop for overhaul or
casual repair ("cold" situation). The cold situation means that the locomotive is
stopped for repairs and maintenances. After all necessary repairs have been completed,
the locomotive is operational and ready to work ("warm" situation) for pulling the
trains which carry goods and passengers.

Running Shop
(Slight & Minor Repairs)

Overhauling Shop
(Casual & Overhaul Repairs)

Locomotive
(Cold Situation)

Arriving &
Departing

Locomotive

Ending the
Repair of

Locomotive
Locomotive

(Warm Situation)

Figure 5 The Information Processing of Locomotives

Contemporary Management Research 42

Using the advantages of the proposed approach, we can track locomotive
situations at the workshops and make better decisions to manage and control
locomotive repairs based on the locations and repairs. In addition, the DBRs related to
the new locomotives and unexpected defects can be updated and changed by using
DBR builder

.
Instantiating Parameters

In our case study, we have extracted business rules from the existing system.
Based on the Locomotive Repairs' Business Rules, there are four main DBRs that can
be transformed into DBR form, including rule 1, 2, 3 and 4. These business rules
specify the location, the situation of the locomotive based on the defect types and the
waiting list for repairs. The structure of these rules related to the repairs shop is
illustrated in Table 2.

Table 2 The Structure of Locomotive Repairs' DBR
 DBR-Type

DBR Parts

Rule 1 Rule 2 Rule 3 Rule 4

When Arriving
locomotive

Departure of the
locomotive to
the related
workshop.

Determine the
repair type based
on the defect.

The locomotive
situation is cold.

If The defects are
related to a
workshop

The defect type
is related to a
repair type.

The defect type
is related to a
workshop

The specified
repair is
performed at the
workshop.

Then Departure of the
locomotive to
the related
workshop.

Determine the
repairs type
based on the
defect.

Determine the
repair type based
on the defect.

The locomotive
situation is
warm.

The main DBRs are developed into sub-rules based on location, defect types
(engine system, main generator, wiring system …), repair types (minor, slight, casual,
and overhaul), situation (warm and cold) and locomotive number.

Based on the above explanation and the DBR System in Section 3, the
parameters of the DBR System which are the Concept Type, Instance Name and
Relation Type statements can semantically be instantiated as below:

 Contemporary Management Research 43

Concept Type:

Act | Locomotive | Situation | Location | Repairs | LocaSitu |
DefectType

Instance Name:

Act= {Arrive, Perform, Need, Depart, Select}

Locomotive= {GT26_900, GT26_901 … GE_900 … GE_910 …
ALSTOM_900 …}

Situation= {Warm, Cold}

Location= {Running_Shop, Overhauling_Shop}

Repairs= {Overhaul, Casual, Minor, Slight}

LocaSitu= {Arrived, Depart, RepairWait}

DefectType= {OilServices, WaterServices, LightsInspection,
BuggyServices, Bogy, WaterRadiator, OilCooler, WiringSystem,
DriverCabin, TractionMotorSystem, TractionMotor,
AuxiliaryGenerator, TurbochargedTurbine, EngineSystem,
MainGenerator}

Relation Type:

 LOC | IS | ON | AGNT | RSLT

where

LOC = Location; relation type related to the place,

IS =Is; relation type "is",

AGNT= Agent; relation type related to an active animate entity which voluntarily
initiates an act,

THME = Theme; relation type to a participant that may be moved, said, or
experience, but is not structurally changed,

RSLT=Result; relation type related to an animate goal of an act, and

ON= On; relation type "on".

Contemporary Management Research 44

Locomotive Repairs’ DBR System

The architecture of Locomotive repairs' DBR System incorporating the proposed
system for implementing DBR is presented in Figure 6. The target business (Domain)
contains two repair shops. The system includes the DBRs which exist in the two repair
shops, which have their own business rules specific to repair types. These business
rules are then modeled using a logic language, conceptual graphs and Mineau's
approach. As we mentioned in Section 3, the modeled business rules are executed by
the DBR System, which consists of two major components: Antecedent Evaluation
and Consequent Implication. Users can select some options and submit their data
invocation to the system via their interfaces. The system sends output information to
the user's interface after analyzing information using the DBR System.

Figure 6 Locomotive Repairs' DBR System Architecture

DBR
Repository

DBR
Engine

DBR Builder

U
I

DBR System

Overhaul
Repairs

DBR

Casual
Repairs

DBR

Slight
Repairs

DBR

Minor
Repairs

DBR

Locomotive's
Overhauling Shop

Locomotive's
Running Shop

Target Business
(Domain)

 Contemporary Management Research 45

After instantiating the parameters, the DBR’s parts are defined based on the

proposed format. For instance, assume locomotive ALSTOM_900 has arrived and the
defect type is the engine motor. The defect type is related to overhaul repairs. Thus,
the locomotive should be sent to the overhauling shop, where its situation is labeled as
cold. The When-Clause, If-Clause and Then-Clause would be represented as the
following clause:

When-Clause:

 [When = [Proposition = [Locomotive: ALSTOM_900]-

 -IS-> [LocoSitu: Arrived]]]

If-Clause:

 [If = [Proposition = [Locomotive: ALSTOM_900]-

 -IS-> [DefectType: EngineSystem]]]

Then-Clause:

 [Then = [Locomotive: ALSTOM_900]-

 -LOC->[Location: Overhauling_Shop],

 <-AGNT- [Act: Depart]]

 Consequently, the DBR which clarifies the situation of locomotive ALSTOM_900
in the Prolog+CG environment may be formalized in the following form:

DBR-Clause:

 [[When= [Proposition= [Locomotive: ALSTOM_900]-

-IS->[LocoSitu: Arrived]]]

-COND-> [If = [Proposition= [Locomotive: ALSTOM_900]-

-IS-> [DefectType: EngineSystem]]]

-PRE-> [Then= [Locomotive: ALSTOM_900]-

-LOC->[Location: Overhauling_Shop],

<-AGNT- [Act: Depart]].

The underlined terms in the above statements indicate instance names.
As stated in Section 4.1, there are four main DBRs in the case study based on the

location, the situation, the repair types and the defect types, and 150 sub-rules are

Contemporary Management Research 46

specified and defined. In the end, 450 sub-rules are extracted with regard to the
locomotive number in the Prolog+CG program. For instance, the following DBRs are
related to Locomotive GT26_901 with an Engine System defect type:

[[When = [Proposition = [Locomotive: GT26_901]-IS->[LocaSitu: Arrived]]

-COND->[If = [Proposition = [Locomotive: GT26_901]-IS->[DefectType:
EngineSystem]

]-PRE->[Then= [Act: Depart]-AGNT->[Locomotive: GT26_901]-LOC->[Location:
Overhauling_Shop]]].

[[When = [Proposition = [Locomotive: GT26_901]-ON->[Situation: Cold]]

-COND->[If = [Proposition = [Locomotive: GT26_901]-IS->[DefectType :
EngineSystem]]-PRE->[Then = [Act: Need]-AGNT->[Locomotive: GT26_901]-
RSLT->[Repairs: Overhaul]]].

[[When = [Proposition = [Locomotive: GT26_901] -

 -ON->[LocaSitu: RepairWait],

 -IN->[Location: Overhauling_Shop]]

-COND->[If = [Proposition = [Act: Select]-AGNT->[Locomotive: GT26_901]-
THME->[Repairs: Overhaul]]

-PRE->[Then= [Act: Perform]-AGNT->[Locomotive: GT26_901]-RSLT-
>[DefectType: EngineSystem]]].

The purpose of the case study is to illustrate how existing DBRs are to be
handled by the DBR System in a real scenario. In order to demonstrate our proposed
approach, these business rules can easily be modeled and formalized using the
mentioned format in Section 3. Therefore, the locomotive repairs' DBR System
improves the existing system and works through the system’s physical process. It
allows the system user to recognize the physical system shortcomings with a reliable
approach and make proper decisions in solving problems in order to increase the
benefits of the existing system.

The Usage of Locomotive Repairs’ DBR System

As described in subsection 4.1, repairs begin when the locomotive arrives for
repairs. The user selects and enters the information upon the arrival of locomotives
using the input information panel based on the locomotive specifications including

 Contemporary Management Research 47

locomotive type (GT26, ALSTOM…), locomotive number (900, 901…) and
locomotive defects (see Figure 7). The input screen offers lists and slider bars and it
actually enables the writing in the Prolog+CG program of new assertions related to the
arrival of locomotives. Therefore, this information is added as part of the system's
knowledge base into the Prolog+CG file.

After the arrival, the wait for repairs, and the end of the repairs, some new facts
are added in the program based on the DBR's Locomotive Repairs business rules. For
example, the Prolog+CG program contains the following facts when Locomotive
GT26_901 has arrived at the workshop:

[Locomotive: GT26_901]-ON->[Situation: Cold]

[Locomotive:GT26_901]-ON->[LocaSitu:RepairWait]

[Locomotive: GT26_901] -IN->[Location : Overhauling_Shop]

Figure 7 User Interface of the Locomotive Repairs System

The new locomotives are added to the waiting repairs' list after completing and
asserting the entire locomotive information. In fact, this list is the first output of the
system and is created using DBR related to the new locomotives. If a locomotive is
selected from the list and then repaired, the business rules that specify the repairs of
the locomotive are removed and then the locomotive becomes ready to work (Warm

Contemporary Management Research 48

situation). The new facts and DBR which are related to a warm locomotive are created
in the Prolog+CG program.

After running the logical program and the analysis process in the output phase,
correlative analyzed results can be displayed based on the user request. The user can
select and request the information which has been explained in the output interface. A
results-screen then presents the output list which can be created for any user's request.
The results depend on the type of workshop and repairs. The screen also displays
information related to locomotives situation and location.

For example, if the user selects the lists of arrived locomotives and overhaul
repairs, the request lists would be as displayed in Figure 8. As shown in the figure, the
stopped locomotives for the overhaul repairs are GT26_907, GT26_900,
HITACHI_900, GL22_916, and GT26_919. Furthermore, the existing information of
locomotive ALSTOM_908 is shown in this figure.

 Figure 8 Result-Screen for the Locomotive Repairs System

CONCONCLUSION AND FUTURE WORKS
In order to reflect activities or dynamic behaviors of business processes, this

paper has introduced a logical approach for formalizing and implementing Dynamic
Business Rules (DBR). We formalized DBRs in BNF format and proposed a DBR
System which supports our approach for implementing such business rules. The
proposed system has a four-part structure, consisting of a user interface, a DBR engine,
a DBR repository, and a DBR builder. In this system, DBR included in a business

 Contemporary Management Research 49

domain are represented in CG format, and then are embedded together with data in
Prolog+CG program. As a result, the system requires only Prolog+CG language as an
inference engine to enforce business rules. As the business rules are represented
declaratively in Prolog+CG, the rules can be immediately executed without any
complex system implementation.

To illustrate the DBR System, the case study of the Iranian Railway locomotive
Maintenance & Repairs organization has been presented. All modeling constructs
referenced in the business rules (e.g. entity types and instance types) and the responses
linked to user queries were created using the capability of Prolog+CG language. The
results of this research show the considerable potential of the proposed logical
approach as one possible alternative for the implementation of business rules in
business processes.

The proposed approach has a number of limitations which also point out
directions for future research. One for instance is the limited scope of the case study.
Given the complexity of the issue, we can speculate that some practical upper limit
exists in terms of systems size above which the proposed approach becomes
inapplicable. Future work is required to explore this question. Another limitation of
this research lies in the fact that not all types of business rules could be captured.

In our future work, we will extend and improve our approach in order to model
and implement all types of business rules including static, fact and derivation rules.
Since we focused on DBR in this paper, other classifications of business rules will be
considered and modeled using existing logical approaches. In particular, we will focus
on the ambiguous and vague terms and facts used in business rules that may be
represented in CG format associated with a logic approach such as fuzzy logic.

REFERENCES

Authors (2007) Modeling Dynamic Business Rules using A Dynamic Knowledge
Approach. Industrial Engineering & Management System Journal (IEMS), 6 (1),
72-82.

Becerra, P. (2001). The living transaction. In Intelligent Enterprise Magazine, 4(8),
299-311.

Bell, J., Brooks, D., Goldbloom, E., Sarro, R., & Wood, J. (1990). Re-engineering
case study analysis of business rules and recommendations for treatment of rules
in a relational database environment. US West Information Technologies Group:
Bellevue Golden.

Contemporary Management Research 50

Blaze Advisor. (2007). The Blaze Advisor Business Rules Management System: How it

Works. Retrieved April, 2007, from http://www.fairisaac.com/NR/rdonlyres/
C3817720-3C36-4B43-9F65-3300B0B9AA29/0/advisorhow.pdf.

Bubenko, J. A., Brash, D., & Stirna, J. (1998). EKD user guide. Technical report, Kista,
Dept. of Computer and Systems Science. Royal Institute of Technology (KTH)
and Stockholm University, Stockholm, Sweden, Retrieved February 11, 1998,
from ftp://ftp.dsv.su.se/users/js/ekd_user_guide.pdf.

Demuth, B., Hussmann, H., & Loecher, S. (2001). OCL as a specification language for
business rules in database applications. Proceedings of the 4th International
Conference on the Unified Modeling Language, Modeling Languages, Concepts,
and Tools, Toronto, Canada, 2185, 104-117.

Eriksson, H-E & Penker, M. (2000). Business modeling with UML: Business patterns
at work. New York: OMG Group, Wiley Computer Publishing.

Faget, J., Marin, M., Megard, P., Owens, V., & Train, L. (2003). Business processes
and business rules: Business agility becoming real. Workflow Handbook,
Lighthouse point, Florida: Future Strategies Inc.

Friedman-Hill, E. (2000). Jess, the Java expert system shell. SAND98-8206, Version
5.1 Distributed Computing Systems, Sandia National Laboratories, Livermore,
CA.. Retrieved April 24, 2000, from http://web.njit.edu/all_topics/Prog_Lang_
Docs/html/jess/

Gottesdiener, E. (1999). Discovering an organization's knowledge: Facilitating
business rules workshops. Williamsburg, Virginia, USA：Annual Meeting of the
International Association of Facilitators.

Hay, D. & Healy, K.A. (2003). Defining Business Rules, What are they really?.
Business Rules Group. Retrieved March 23, 2003, from
http://www.businessrulesgroup.org/firstpaper/br01c01.htm.

Business Rules Group Hay, D. & Healy, K.A. (2003). Defining Business Rules, What
are they really? Retrieved March 23, 2003, from
http://www.businessrulesgroup.org/firstpaper/br01c01.htm

Herbst, H. (1996). Business rules in systems analysis: A meta-model and repository
system. Information Systems, 21(2), 147-166.

ILog, ILOG RULES. (2006). Retrieved October, 2006, from
http://www.ilog.com/products/rules/

Infrex. (2004). The business rules engine. Technical overview, Retrieved 2004, from
http://www.tcs.com/0_products/infrex/downloads/ Infrex_Brochure.pdf

 Contemporary Management Research 51

Kabbaj A., Moulin B., Gancet J., Nadeau D., & Rouleau O. (2001). Uses,

improvements and extensions of Prolog+CG: Case studies. Proceedings of
ICCS'01, 346-359.

Kabbaj, A. (2005). Prolog+CG: User's manual, Version 2. Retrieved December 21,
2005, from http://www.insea.ac.ma/CGTools/PROLOG+CG.htm.

Martin, J. & Odell, J. (1998). Object-oriented methods: A foundation (UML edition).
Upper Saddle River, NJ: Prentice-Hall.

Mens, K., Wuyts, R., Bontridder, D., & Grijseels, A. (1998). Tools and environments
for business rules. Brussels： ECOOP98.

Mineau, G. (1998). From actors to processes: The representation of dynamic
knowledge using conceptual graphs. Proceedings of the 6th International
Conference on Conceptual Structures, Montpellier, France, LNAI 1453, 65–79.

Oelmann, A. (1991). Representing a system specification with a temporal dimension
in an object-oriented language. Proceedings of the 3rd International Conference
on Conceptual Structures, Montpellier, France, 498, 540-560.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild, C. (1997). A decision support
methodology in support of the business rules lifecycle. Annapolis, MD, USA：

Proceeding of the International Symposium on Requirements Engineering
(ISRE_97).

Ross, R.G. (1997). The business rules book: Classifying, defining, and modeling rules.
Boston, MA ：Database Research Group.

Ross, R.G. & Lam, G. (1998). Putting business rules to work: A tutorial and workshop
on business rules, business tactics and policies. Chicago：Business Rule Forum,
Technology Transfer Institute.

Sowa, J.F. (1984). Conceptual structures: Information processing in mind and
machine. Boston, MA ：Addison-Wesley Longman Publishing Co..

Sowa, J.F. (2000). Knowledge representation: Logical, philosophical, and
computational foundations. California ：Books Cole Publishing Co..

Taveter., K. & Wagner, G. (2001). Agent-oriented enterprise modeling based on
business rules. Proceeding of 20th International Conference on Conceptual
Modeling (ER2001), 2224, 527-540.

Terry, H. (2005). Fact-orientation meets agent-orientation. Proceeding of 6th
International Bi-Conference Workshop (AOIS 2004), New York, USA, 97-109.

Traction Department of Iranian railway. (2006). GM locomotive manual. Retrieved
April, 2006, from http://keshesh.rai.ir/eng/Site.aspx.

Contemporary Management Research 52

Valatkaite, I. & Vasilecas, O. (2004). Automatic enforcement of business rules as

ADBMS triggers from Conceptual Graphs model. Information Technology and
Control, Kaunas, Technologija, 2(31), 36 – 42.

Vondrak, I. (2000). Business process modeling and simulation for quality management.
Proceeding of 14th European Simulation Multi-conference (ESM 2000), 375-379.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R., Subrahmanian, V.S., & Zicari, R.
(1997). Advanced database systems. San Francisco, CA: Morgan Kaufmann.

