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Because of the “all-or-none” character of nervous activity, neural events and the relations among 
them can be treated by means of propositional logic. It is found that the behavior of every net can 
be described in these terms, with the addition of more complicated logical means for nets 
containing circles; and that for any logical expression satisfying certain conditions, one can find a 
net behaving in the fashion it describes. It is shown that many particular choices among possible 
neurophysiological assumptions are equivalent, in the sense that for every net behaving under 
one assumption, there exists another net which behaves under the other and gives the same 
results, although perhaps not in the same time. Various applications of the calculus are 
discussed. 

1. Introduction. Theoretical neurophysiology rests on certain cardinal 

assumptions. The nervous system is a net of neurons, each having a soma and 

an axon. Their adjunctions, or synapses, are always between the axon of one 

neuron and the soma of another. At any instant a neuron has some threshold, 

which excitation must exceed to initiate an impulse. This, except for the fact 

and the time of its occurence, is determined by the neuron, not by the 

excitation. From the point of excitation the impulse is propagated to all parts of 

the neuron. The velocity along the axon varies directly with its diameter, from 

< 1 ms-’ in thin axons, which are usually short, to > 150 ms- ’ in thick axons, 

which are usually long. The time for axonal conduction is consequently of little 

importance in determining the time of arrival of impulses at points unequally 

remote from the same source. Excitation across synapses occurs predominant- 

ly from axonal terminations to somata. It is still a moot point whether this 

depends upon irreciprocity of individual synapses or merely upon prevalent 

anatomical configurations. To suppose the latter requires no hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad hoc 

and explains known exceptions, but any assumption as to cause is compatible 

with the calculus to come. No case is known in which excitation through a 

single synapse has elicited a nervous impulse in any neuron, whereas any 

neuron may be excited by impulses arriving at a sufficient number of 

neighboring synapses within the period of latent addition, which lasts 

~0.25 ms. Observed temporal summation of impulses at greater intervals 

* Reprinted from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 (1943). 
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is impossible for single neurons and empirically depends upon structural 

properties of the net. Between the arrival of impulses upon a neuron and its 

own propagated impulse there is a synaptic delay of > 0.5 ms. During the first 

part of the nervous impulse the neuron is absolutely refractory to any 

stimulation. Thereafter its excitability returns rapidly, in some cases reaching a 

value above normal from which it sinks again to a subnormal value, whence it 

returns slowly to normal. Frequent activity augments this subnormality. Such 

specificity as is possessed by nervous impulses depends solely upon their time 

and place and not on any other specificity of nervous energies. Of late only 

inhibition has been seriously adduced to contravene this thesis. Inhibition is 

the termination or prevention of the activity of one group of neurons by 

concurrent or antecedent activity of a second group. Until recently this could 

be explained on the supposition that previous activity of neurons of the second 

group might so raise the thresholds of internuncial neurons that they could no 

longer be excited by neurons of the first group, whereas the impulses of the first 

group must sum with the impulses of these internuncials to excite the now 

inhibited neurons. Today, some inhibitions have been shown to consume 

< 1 ms. This excludes internuncials and requires synapses through which 

impulses inhibit that neuron which is being stimulated by impulses through 

other synapses. As yet experiment has not shown whether the refractoriness is 

relative or absolute. We will assume the latter and demonstrate that the 

difference is immaterial to our argument. Either variety of refractoriness can be 

accounted for in either of two ways. The “inhibitory synapse” may be of such a 

kind as to produce a substance which raises the threshold of the neuron, or it 

may be so placed that the local disturbance produced by its excitation opposes 

the alteration induced by the otherwise excitatory synapses. Inasmuch as 

position is already known to have such effects in the cases of electrical 

stimulation, the first hypothesis is to be excluded unless and until it be 

subtantiated, for the second involves no new hypothesis. We have, then, two 

explanations of inhibition based on the same general premises, differing only in 

the assumed nervous nets and, consequently, in the time required for 

inhibition. Hereafter we shall refer to such nervous nets as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAequivalent in the 
extended sense. Since we are concerned with properties of nets which are 

invarient under equivalence, we may make the physical assumptions which are 
most convenient for the calculus. 

Many years ago one of us, by considerations impertinent to this argument, 

was led to conceive of the response of any neuron as factually equivalnt to a 

proposition which proposed its adequate stimulus. He therefore attempted to 

record the behavior of complicated nets in the notation of the symbolic logic of 

propositions. The “all-or-none” law of nervous activity is sufficient to insure 

that the activity of any neuron may be represented as a proposition. 

Physiological relations existing among nervous activities correspond, of 
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course, to relations among the propositions; and the utility of the represen- 

tation depends upon the identity of these relations with those of the logic of 

propositions. To each reaction of any neuron there is a corresponding assertion 

of a simple proposition. This, in turn, implies either some other simple 

proposition or the disjunction of the conjunction, with or without negation, of 

similar propositions, according to the configuration of the synapses upon and 

the threshold of the neuron in question. Two difficulties appeared. The first 

concerns facilitation and extinction, in which antecedent activity temporarily 

alters responsiveness to subsequent stimulation of one and the same part of the 

net. The second concerns learning, in which activities concurrent at some 

previous time have altered the net pe~anently, so that a stimulus which would 

previously have been inadequate is now adequate. But for nets undergoing 

both alterations, we can substitute equivalent fictitious nets composed of 

neurons whose connections and thresholds are unaltered. But one point must 

be made clear: neither of us conceives the formal equivalence to be a factual 

explanation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPer contra!-we regard facilitation and extinction as dependent 

upon continuous changes in threshold related to electrical and chemical 

variables, such as after-potentials and ionic concentrations; and learning as an 

enduring change which can survive sleep, anaesthesia, convulsions and coma. 

The impo~ance of the formal equivalence lies in this: that the alterations 

actually underlying facilitation, extinction and learning in no way affect the 

conclusions which follow from the formal treatment of the activity of nervous 

nets, and the relations of the corresponding propositions remain those of the 

logic of propositions. 

The nervous system contains many circular paths, whose activity so 

regenerates the excitation of any participant neuron that reference to time past 

becomes indefinite, although it still implies that afferent activity has realized 

one of a certain class of configurations over time. Precise specification of these 

implications by means of recursive functions, and determination of those that 

can be embodied in the activity of nervous nets, completes the theory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. The Theory: Nets Without Circles. We shall make the following physical 

assumptions for our calculus. 

(1) The activity of the neuron is an “all-or-none” process. 

(2) A certain fixed number of synapses must be excited within the period of 

latent addition in order to excite a neuron at any time, and this number is 

independent of previous activity and position on the neuron. 

(3) The only significant delay within the nervous sytem is synaptic delay. 

(4) The activity of any inhibitory synapse absolutely prevents excitation of 

the neuron at that time. 

(5) The structure of the net does not change with time. 
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To present the theory, the most appropriate symbolism is that of Language 

II of Carnap (1938), augmented with various notations drawn from Russell and 

Whitehead (1927), including the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPrincipia conventions for dots. Typographical 

necessity, however, will compel us to use the upright ‘E’ for the existential 

operator instead of the inverted, and an arrow (“-+“) for implication instead of 

the horseshoe. We shall also use the Carnap syntactical notations, but print 

them in boldface rather than German type; and we shall introduce a functor S, 

whose value for a property P is the property which holds of a number when P 

holds of its predecessor; it is defined by “S(P) (t) . s . P(Kx) . t =x’)“; the 

brackets around its argument will often be omitted, in which case this is 

understood to be the nearest predicate-expression [Pr] on the right. Moreover, 

we shall write S2Pr for S(S(Pr)), etc. 

The neurons of a given net JV may be assigned designations “ci”, “c2”, . . . , 

“c,“. This done, we shall denote the property of a number, that a neuron ci fires 

at a time which is that number of synaptic delays from the origin of time, by 

“N” with the numeral i as subscript, so that N,(t) asserts that ci fires at the time 

t. Ni is called the action of ci. We shall sometimes regard the subscripted 

numeral of “N” as if it belonged to the object-language, and were in a place for a 

functoral argument, so that it might be replaced by a number-variable [z] and 

quantified; this enables us to abbreviate long but finite disjunctions and 

conjunctions by the use of an operator. We shall employ this locution quite 

generally for sequences of Pr; it may be secured formally by an obvious 

disjunctive definition. The predicates “N,“, “N2”, . . . , comprise the syntactical 

class “N”. 

Let us define the peripheral uferents ofJf as the neurons of _,V with no axons 

synapsing upon them. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, , . . . , N, denote the actions of such neurons and 

N NP+z,..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp+1, N,, those of the rest. Then a solution of-W  will be a class of 

sentences of the form Si: N,, ,(z,) .=. Pri(N,, N,, . . . , N,, z,), where Pri 

contains no free variable save z1 and no descriptive symbols save the N in the 

argument [Arg], and possibly some constant sentences [sa]; and such that 

each Si is true of JV. Conversely, given a Pr,(‘p:, ‘pi, . . . , ‘pj, zl, s), 

containing no free variable save those in its Arg, we shall say that it is realizable 

in the narrow sense if there exists a net ,Y and a series of Ni in it such that 

N,(z,).=.PR,(N,,N,, . . . , zl, ml) is true of it, where sa, has the form N(0). 

We shall call it realizable in the extended sense, or simply realizable, if for some 

n S”(Pr,)(P,, . . . , pp, zl, s) is realizable in the above sense. cpi is here the 

realizing neuron. We shall say of two laws of nervous excitation which are such 

that every S which is realizable in either sense upon one supposition is also 

realizable, perhaps by a different net, upon the other, that they are equivalent 

assumptions, in that sense. 

The following theorems about realizability all refer to the extended sense. In 

some cases, sharper theorems about narrow realizability can be obtained; but 
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in addition to greater complication in statement this were of little practical 

value, since our present neurophysiological knowledge determines the law of 

excitation only to extended equivalence, and the more precise theorems differ 

according to which possible assumption we make. Our less precise theorems, 

however, are invariant under equivalence, and are still sufficient for all 

purposes in which the exact time for impulses to pass through the whole net is 

not crucial. 

Our central problems may now be stated exactly: first, to find an effective 

method of obtaining a set of computable Sconstituting a solution of any given 

net; and second, to characterize the class of realizable Sin an effective fashion. 

Materially stated, the problems are to calculate the behavior of any net, and to 

find a net which will behave in a specified way, when such a net exists. 

A net will be called cyclic if it contains a circle, i.e. if there exists a chain ci, 

ci+19. . . of neurons on it, each member of the chain synapsing upon the next, 

with the same beginning and end. If a set of its neurons ci , c2, . . . , cp is such 

that its removal from JV leaves it without circles, and no smaller class of 

neurons has this property, the set is called a cyclic set, and its cardinality is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

order of JV”. In an important sense, as we shall see, the order of a net is an index 

of the complexity of its behaviour. In particular, nets of zero order have 

especially simple properties; we shall discuss them first. 

Let us define a temporal propositional expression (a TPE), designating a 

temporal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApropositional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction (TPF), by the following recursion. 

(1) 
(2) 

(3) 

A ‘p’[zJ is a TPE, where p1 is a predicate-variable. 

If S, and S, are TPE containing the same free individual variable, so are 

SS,, S,vS,, S, .S, and Si. - .S,. 

Nothing else is a TPE. 

THEOREM 1. Every net of order 0 can be solved in terms of temporal propositional 

expressions. 

Let ci be any neuron of J1’ with a threshold /Ii> 0, and let cil , ciz, . . . , cig 

have respectively ni, , n,, , . . . , nip excitatory synapses upon it. Let cjl, cj2, . . . , 

cjq have inhibitory synapses upon it. Let rci be the set of the subclasses of {nil, 

ni2,. . . , ni,} such that the sum of their members exceeds ei. We shall then be 

able to write, in accordance with the assumptions mentioned above: 

Ni(Zl)*s.S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?I f - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANjm(Zl) * C n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANi,(Zl) I 9 (1) 
m=l ClEKi sea 

where the “r and “II” are syntactical symbols for disjunctions and 

conjunctions which are finite in each case. Since an expression of this form can 

be written for each ci which is not a peripheral afferent, we can, by substituting 
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the corresponding expression in (1) for each Njn, or Ni, whose neuron is not a 

peripheral afferent, and repeating the process on the result, ultimately come to 

an expression for Ni in terms solely of peripherally afferent N, since _,V is 

without circles. Moreover, this expression will be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATPE, since obviously (1) is; 

and it follows immediately from the definition that the result of substituting a 

TPE for a constituent p(z) in a TPE is also one. 

THEOREM 2. Every TPE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis realizable by a net of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorder zero. 

The functor S obviously commutes with disjunction, conjunction, and 

negation. It is obvious that the result of substituting any Si, realizable in the 

narrow sense (i.n.s.), for thep(z) in a realizable expression S, is itself realizable 

i.n.s.; one constructs the realizing net by replacing the peripheral afferents in 

the net for S, by the realizing neurons in the nets for the Si. The one neuron net 

realizes pi(zi) i.n.s., and Fig. la shows a net that realizes S’,(z,) and hence 

SS,, i.n.s., if S, can be realized i.n.s. Now if S, and S, are realizable then SmSz 

and S”S, are realizable i.n.s., for suitable m and IZ. Hence so are Smf2S2 and 

Sm+“S3. Now the nets of Figs lb-d respectively realize S(p,(z,) v p2(z,)), 

S(p,(z,) .p2(z,)), and zs(pl(zl . -p,(z,))i.n.s. Hence Sm+n+l (S, v S,), Smfn+l 

(S, . S,), and Sm+n+l (S, .-S,) are realizable i.n.s. Therefore S, v 

s,s, .s,s, .- S, are realizable if S, and S, are. By complete induction, all 

TPE are realizable. In this way all nets may be regarded as built out of the 

fundamental elements of Figs la-d, precisely as the temporal propositional 

expressions are generated out of the operations of precession, disjunction, 

conjunction, and conjoined negation. In particular, corresponding to any 

description of state, or distribution of the values true and false for the actions of 

all the neurons of a net save that which makes them all false, a single neuron is 

constructible whose firing is a necessary and sufficient condition for the validity 

of that description. Moreover, there is always an indefinite number of 

topologically different nets realizing any TPE. 

THEOREM 3. Let there be a complex sentence S, built up in any manner out of 

elementary sentences of theform p(z, - zz) where zz is any numeral, by any of the 

propositional connections: negation, disjunction, conjunction, implication, and 

equivalence. Then S, is a TPE and only ifit isfalse when its constituent p(zl - zz) 

are all assumed false-i.e. replaced by false sentences-or that the last line in its 

truth-table contains an ‘F-or there is no term in its Hilbert disjunctive normal 

form composed exclusively of negated terms. 

These latter three conditions are of course equivalent (Hilbert and 

Ackermann, 1938). We see by induction that the first of them is necessary, since 

p(zl - zz) becomes false when it is replaced by a false sentence, and S, v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, , 
S’.S, aridS,.- S, are all false if both their constituents are. We see that the 

last condition is sufficient by remarking that a disjunction is a TPE when its 

constituents are, and that any term: 
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(e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(i 1 

Figure 1. The neuron ci is always marked with the numeral i upon the body of the 

cell, and the corresponding action is denoted by “N” with is subscript, as in the text: 

(a) N*(t) .=.N,(t- 1); 

(b) N,(t).s.N,(t-l)vN,(t-1); 

(c) N3(t).s.N1(t-1).N2(t-1); 

(d) N3(t).= N,(t-l).-N,(t-1); 

(e) N,(t):=:N,(t-l).v.N,(t-3).-N,(t-2); 

N&).=.N2(t-2).N2(t-1); 

(f) N4(t):3: --N,(t-l).N,(t-l)vN,(t-l).v.N,(t-1). 

N,(t-l).N,(t-1) 

NJt):=: -N,(t-2).N,(t-2)vN,(t-2).v.N,(t-2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N,(t-2).N,(t-2); 

(g) N,(t).=.NN,(t-2).-N,(t-3); 

(h) N,(t).=.N,(t-l).N,(t-2); 

(i) N,(t):=:Nz(t-l).v.N,(t-l).(Ex)t-1 .N,(x).N,(x). 
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s, .s, . . . Sm.4m+l .-. . .- s,, 

can be written as: 

(S, .s, . . .Sm).N(Sm+lVS,+ZV...VS,), 

which is clearly a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATPE. 

The method of the last theorems does in fact provide a very convenient and 

workable procedure for constructing nervous nets to order, for those cases 

where there is no reference to events indefinitely far in the past in the 

specification of the conditions. By way of example, we may consider the case of 

heat produced by a transient cooling. 

If a cold object is held to the skin for a moment and removed, a sensation of 

heat will be felt; if it is applied for a longer time, the sensation will be only of 

cold, with no preliminary warmth, however transient. It is known that one 

cutaneous receptor is affected by heat, and another by cold. If we let N, and N, 

be the actions of the respective receptors and N3 and N4 of neurons whose 

activity implies a sensation of heat and cold, our requirements may be written 

as: 

N,(t):=:N,(t-l).v.N,(t-3).-N&-2), 

N&) .E. N&-2). N,(t- l), 

where we suppose for simplicity that the required persistence in the sensation of 

cold is say two synaptic delays, compared with one for that of heat. These 

conditions clearly fall under Theorem 3. A net may consequently be 

constructed to realize them, by the method of Theorem 2. We begin by writing 

them in a fashion which exhibits them as built out of their constituents by the 

operations realized in Figs la-d, i.e. in the form: 

N&) - = . SW, WV XW,(t)). - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,(t)l) 

N&) .=. S{[SN#)] . N,(t)}. 

First we construct a net for the function enclosed in the greatest number of 

brackets and proceed outward; in this case we run a net of the form shown in 

Fig. la from c2 to some neuron c,, say, so that: 

N,(t). = . SN,(t). 

Next introduce two nets of the forms lc and Id, both running from c, and c2, 

and ending respectively at c1 and say cb. Then: 

N&J. =. WV,(t). N,(t)] .=. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS[SN&)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN&)1., 
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iv&t) .3 .S[N,(t).-N,(t)] .=.S[(Shqt)) .-N,(t)]. 

Finally, run a net of the form lb from c1 and cb to c3, and derive: 

N3(t). = . S[N,(t) v N*(t)] 

.5qv,(t) v S[SN,(t)] .-N,(t)). 

These expressions for N3(t) and N4(t) are the ones desired; and the realizing net 

in toto is shown in Fig. le. 

This illusion makes very clear the dependence of the correspondence 

between perception and the “external world” upon the specific structural 

properties of the intervening nervous net. The same illusion, of course, could 

also have been produced under various other assumptions about the behavior 

of the cutaneous receptors, with corresponding different nets. 

We shall now consider some theorems of equivalence, i.e. theorems which 

demonstrate the essential identity, save for time, of various alternative laws of 

nervous excitation. Let us first discuss the case of relative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinhibition. By this we 

mean the supposition that the firing of an inhibitory synapse does not 

absolutely prevent the firing of the neuron, but merely raises its threshold, so 

that a greater number of excitatory synapses must fire concurrently to fire it 

than would otherwise be needed. We may suppose, losing no generality, that 

the increase in threshold is unity for the firing of each such synapse; we then 

have Theorem 4. 

THEOREM 4. Relative and absolute inhibition are equivalent in the extended sense. 
We may write out a law of nervous excitation after the fashion of (I), but 

employing the assumption of relative inhibition instead; inspection then shows 

that this expression is a TPE. An example of the replacement of relative 

inhibition by absolute is given by Fig. If. The reverse replacement is even 

easier; we give the inhibitory axons afferent to ci any sufficiently large number 

of inhibitory synapses apiece. 

Second, we consider the case of extinction. We may write this in the form of a 

variation in the threshold Oi; after the neuron ci has fired; to the nearest 

integer-and only to this approximation is the variation in threshold 

significant in natural forms of excitation-this may be written as a sequence 

Bi + b, forj synaptic delays after firing, where bj= 0 forj large enough, say j = M 

or greater. We may then state Theorem 5. 

THEOREM 5. Extinction is equivalent to absolute inhibition. 
For, assuming relative inhibition to hold for the moment, we need merely 

run M circuits Y1, Yz, . . . FM containing respectively 1,2, . . . , A4 neurons, 

such that the firing of each link in any is sufficient to fire the next, from the 

neuron ci back to it, where the end of the circuit Yj has just bj inhibitory 

synapses upon ci. It is evident that this will produce the desired results. The 
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reverse substitution may be accomplished by the diagram of Fig. lg. From the 

transitivity of replacement, we infer the theorem. To this group of theorems 

also belongs the following well-known theorem. 

THEOREM 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFacilitation and temporal summation may be replaced by spatial 

summation. 

This is obvious: one need merely introduce a suitable sequence of delaying 

chains, of increasing numbers of synapses, between the exciting cell and the 

neuron whereon temporal summation is desired to hold. The assumption of 

spatial summation will then give the required results (see e.g. Fig. lh). This 

procedure had application in showing that the observed temporal summation 

in gross nets does not imply such a mechanism in the interaction of individual 

neurons. 

The phenomena of learning, which are of a character persisting over most 

physiological changes in nervous activity, seem to require the possibility of 

permanent alterations in the structure of nets. The simplest such alteration is 

the formation of new synapses or equivalent local depressions of threshold. We 

suppose that some axonal terminations cannot at first excite the succeeding 

neuron; dut if at any time the neuron fires, and the axonal terminations are 

simultaneously excited, they become synapses of the ordinary kind, henceforth 

capable of exciting the neuron. The loss of an inhibitory synapse gives an 

entirely equivalent result. We shall then have 

THEOREM 7. Alterable synapses can be replaced by circles. 

This is accomplished by the method of Fig. li. It is also to be remarked that a 

neuron which becomes and remains spontaneously active can likewise be 

replaced by a circle, which is set into activity by a peripheral afferent when the 

activity commences, and inhibited by one when it ceases. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Theory: Nets with Circles. The treatment of nets which do not satisfy 

our previous assumption of freedom from circles is very much more difficult 

than that case. This is largely a consequence of the possibility that activity may 

be set up in a circuit and continue reverberating around it for an indefinite 

period of time, so that the realizable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr may involve reference to past events of 

an indefinite degree of remoteness. Consider such a net Jlr, say of order p, and 

letc,,c,, . . . , cp be a cyclic set of neurons of Jlr. It is first of all clear from the 

definition that every N3 of JV can be expressed as a TPE, of N1, N2, . . . , N, 

and the absolute afferents; the solution of X involves then only the 

determination of expressions for the cyclic set. This done, we shall derive a set 

of expressions [A]: 

N&z,). =. Pri[SnilN1(zl), SnizNz(zl), . . . , LW Np(q)], 

where Pri also involves peripheral afferents. Now if n is the least common 
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multiple of the ylij, we shall, by substituting their equivalents according to (2) in 

(3) for the Nj, and repeating this process often enough on the result, obtain Sof 

the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ni(Zl) *= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*Prl[S”Nl(Zl)y SnNz(Zl)y * + * 9 S"Np(Zl)]* (3) 

These expressions may be written in the Hilbert disjunctive normal form as: 

Ni(zl)*z. C S, fl S”Nj(Zl) JJ N S”Nj(z1), for suitable K, 
BEK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjw .k& 
B&K 

(4) 

where S, is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATPE of the absolute afferents of N. There exist some 2p different 

sentences formed out of the @Vi by conjoining to the conjunction of some set of 

them the conjunction of the negations of the rest. Denumerating these by 

Xr(z,), X&,)9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * f 7 X&z,), we may, by use of the expressions (4), arrive at an 

equipollent set of equations of the form: 

Xi(z,) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-. $J I+&,). S”Xj(zl ). 
j=t 

(5) 

Now we import the subscripted numerals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, j into the object-language, i.e. 

define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr, and Pr, such that PrI(zzl, z,) .= .&(z,) and Pr2(zz1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzz2, 

Z,) . E. PrijfZl) are provable whenever zzr and zzZ denote i and j respectively. 

Then we may rewrite (5) as: 

(zl)zzp:Prltzl~ z,) 

. - .tEz,)zz, - Pr,(zl , z2, z3 - zz,) . Pr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z, , z3 - zz,), (6) 

where zz, denotes y1 and zz, denotes 2p. By repeated substitution we arrive at an 

expression: 

(zl)zzp:Pr,(zl, zz,zz2) .=. (Ez2)zzp(Ez,)~~, . . . (Ez,)zz,. 

Pr2(z1 , z2, zz,(zz, - 1)) * Pr,(z,, 23) ZZ”(ZZ3 - 1)) * . . (7) 

Pr,(z, _ 1 , z,, O), for any numeral zz2 which denotes s. This is easily shown by 
induction to be equipollent to: 

(z, )zz,: * Pr,(z1, zz,zz,): = : (Ef) (z2)zzz - lJ(Z,ZZ”) 

S zz, .f(zz,zz,) = z1 . Pr2(~(zz~(z~ + l)), 

f(zz,zd) . Pr, (f(o), Oh (8) 
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and since this is the case for all zz2, it is also true that: 

w tz,&J: WZl, z,) - = * (Ef) (z,) (z.$-- 1) .f(z,) 

~zz,.f(24)=Zlf(Z4)=Zl JWY(z~+ l),f(Zz), z,]. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACf(res(z,, zz,)), res(z,, zz,)], (9) 

where tz, denotes n, resfr, s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the residue of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr mod s and zz, denotes 2p. This 

may be written in a less exact way as: 

N,(t). 3. (Ed) (x)t- 1 . am 2’ I ~(t)=i. 

me+ 117 444 * F#&vl~ 

where x and t are also assumed divisible by n, and Pr, denotes P. From the 

preceding remarks we shall have Theorem 8 

THEOREM 8. The expression (9)for neurons ofthe cyclic set ofa net J1’ together 

with certain TPE expressing the actions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof other neurons in terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof them, 

constitute a solution of Jlr. 

Consider now the question of the realizability of a set of Si. A first necessary 

condition, demonstrable by an easy induction, is that: 

should be true, with similar statements for the other freep in Si, i.e. no nervous 

net can take account of future peripheral afferents. Any Si satisfying this 

requirement can be replaced by an equipollent S of the form: 

(Ef) (z~)z~(z~)zz~:~~r~~ 

:f(z,, z2, z3)= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=.pza(z2), (11) 

where zz, denotes p, by defining: 

Pr,i=.&) (z,)z1(z3)zz~: .ftz,, z2, z~)=O.~YZ~~ z2,z3) 

=I:.&, zz, z3)=1 .~.p,,(z$-KS,]. 

Consider now these series of classes aj, for which: 

N,(t):=: (II@ ) (X)t(m)q:#&ai:N,(X) .G. #(t, X, m)= 1. 

fi=q+ 1, , . . , M”j (121 

holds for some net. These will be called prehensible classes. Let us define the 

Boolean ring generated by a class of classes K as the aggregate of the classes 
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which can be formed from members of IC by repeated app~cation of the logical 

operations, i.e. we put: 

9?(K) = &(a, p): a&K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+a.ka, /M .-+. -a, a .j?, av/M]. 

We shall also define: 

and: 

B(K). = .92(K) - z‘p‘ - <‘K, 

%‘,(rcb, = p‘X[(a, fi): a.m-+a& .--) . -a, a. p, m-p, S‘ael] 

L!&,(K) = Be(K) - t&f- “K, 

The class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,(K) is formed from k: in analogy with L%(X), but by repeated 

application not only of the logical operations but also of that which replaces a 

class of properties P&a by S(P)~S”a. We shall then have the following lemma. 

LEMMA. Pr,(p,, p2, . . . , p,, zl) is a TPE if and only $ 

(zl)(pl,. . .T ~m)(E~m+1):~rn+1~~)e((~Ir ~23.. .y pm>) 
(13) 

P~+~(z~)~~~(P~, P21 + f * 7 Pm, z,), 

is true; and it is a TPE not involving “S” if and only if this holds when “3?‘, and we 

then obtain Theorem 9. 

THEOREM 9. A series ofclasses a,, a2, . . . aY is a series of prehensible classes ifand 

only if: 

(Em) (En) (p)n(i~ (t,&): . (x)m~(~)=Ov~~x)= l:+: (Efl) 

(Ey)m.$(y)=O.&S?[~((Ei).y=ai)).v. (x)m. 

1(/(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0 . fisB[f((Ei) . y = ai)]: (t) (4): @ ai. 

~(4, nt + p) .--+. (Ef) .fs/?h (w)m(x)t- 1. 

Ql(n(t+l)+p, nx+p, w)=f(nt+p, nx+p, w). 

(14) 

Proof: The proof here follows directly from the lemma. The condition is 

necessary, since every net for which an expression of the form (4) can be written 

obviously verifies it, the I/S being the characteristic functions of the S, and the b 

for each $ being the class whose designation has the form niea Pri nj&fla Prj, 

where Pv, denotes ak for all k. Conversely, we may write an expression of the 

form (4) for a net N fulfilling prehensible classes satisfying (14) by putting for 
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the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr, Pr denoting the Il/‘s, and a Pr, written in the analogue for classes of the 

disjunctive normal form, and denoting the c( corresponding to that $, 

conjoined to it. Since every S of the form (4) is clearly realizable, we have the 

theorem. 

It is of some interest to consider the extent to which we can by knowledge of 

the present determine the whole past of various special nets, i.e. when we may 

construct a net the firing of the cyclic of whose neurons requires the peripheral 

afferents to have had a set of past values specified by given functions +i. In this 

case the classes ai of the last theorem reduced to unit classes; and the condition 

may be transformed into: 

(Em, n) (p)n(i, $) (I$): . (x)m: $(x) = O.v.tj(x) = 1: 

~i&a(ll/, nt+p):~: (W)m(X)t-l .~i(n(t+ 1) 

+p, nX+p, W)=cbj(nt+P, nx+p, w)” 

(u9 v, (w)ma$i(n(u+ ‘)+p, n”+PY w, 

=~i(n(v+l)+p, n”+p, w)’ 

On account of limitations of space, we have presented the above argument 

very sketchily; we propose to expand it and certain of its implications in a 

further publication. 

The condition of the last theorem is fairly simply in principle, though not in 

detail; its application to practical cases would, however, require the 

exploration of some 22” classes of functions, namely the members of 

=Q%&,.**, a,>). Since each of these is a possible p of Theorem 9, this result 

cannot be sharpened. But we may obtain a sufficient condition for the 

realizability of an S which is very easily applicable and probably covers most 

practical purposes. This is given by Theorem 10. 

THEOREM 10. Let us dejne a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK off3 by thefollowing recursion: (1) any TPE 

and any TPE whose arguments have been replaced by members of K belong to K; 

(2) if Pr,(z,) is a member of K, then (zq)zl .Pr,(z,), (Ez,)z,. Pr,(z,), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C,,(z,) . s belong to it, where C,, denotes the property of being congruent to m 

modulo n, m < n; (3) The set K has no further members. 

Then every member of K is realizable. For, if Pr, (z,) is realizable, nervous 

nets for which: 

Ni(Zl).~.Pr,(Z,).SN,(Z,), 

Ni(Z,) - =. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr,(z,) V SNi(Z,)y 

are the expressions of equation (4), realize (z,)z, . Prl(z2) and (Ez,)z, . Pr,(z,) 
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respectively; and a simple circuit, cr , c2, . . . , c,, of y1 links, each sufficient to 

excite the next, gives an expression: 

for the last form. By induction we derive the theorem. 

One more thing is to be remarked in conclusion. It is easily shown: first, that 

every net, if furnished with a tape, scanners connected to afferents, and suitable 

efferents to perform the necessary motor-operations, can compute only such 

numbers as can a Turing machine; second, that each of the latter numbers can 

be computed by such a net; and that nets with circles can be computed by such a 

net; and that nets with circles can compute, without scanners and a tape, some 

of the numbers the machine can, but no others, and not all of them. This is of 

interest as affording a psychological justification of the Turing definition of 

computability and its equivalents, Church’s A-definability and Kleene’s 

primitive recursiveness: if any number can be computed by an organism, it is 

computable by these definitions, and conversely. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConsequences. Causality, which requires description of states and a law of 

necessary connection relating them, has appeared in several forms in several 

sciences, but never, except in statistics, has it been as irreciprocal as in this 

theory. Specification for any one time of afferent stimulation and of the 

activity of all constituent neurons, each an “all-or-none” affair, determines 

the state. Specification of the nervous net provides the law of necessary 

connection whereby one can compute from the description of any state that of 

the succeeding state, but the inclusion of disjunctive relations prevents 

complete determination of the one before. Moreover, the regenerative activity 

of constituent circles renders reference indefinite as to time past. Thus our 

knowledge of the world, including ourselves, is incomplete as to space and 

indefinite as to time. This ignorance, implicit in all our brains, is the 

counterpart of the abstraction which renders our knowledge useful. The role of 

brains in determining the epistemic relations of our theories to our 

observations and of these to the facts is all too clear, for it is apparent that every 

idea and every sensation is realized by activity within that net, and by no such 

activity are the actual afferents fully determined. 

There is no theory we may hold and no observation we can make that will 

retain so much as its old defective reference to the facts if the net be altered. 

Tinitus, paraesthesias, hallucinations, delusions, confusions and disorientation 

intervene. Thus empiry confirms that if our nets are undefined, our facts are 

undefined, and to the “real” we can attribute not so much as one quality or 

“form.” With determination of the net, the unkowable object of knowledge, the 

“thing in itself,” ceases to be unknowable. 

To psychology, however defined, specification of the net would contribute all 
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that could be achieved in that field-even if the analysis were pushed to 

ultimate psychic units or “psychons,” for a psychon can be no less than the 

activity of a single neuron. Since that activity is inherently propositional, all 

psychic events have an intentional, or “semiotic,” character. The “all-or-none” 

law of these activities, and the conformity of their relations to those of the logic 

of propositions, insure that the relations of psychons are those of the two- 

valued logic of propositions. Thus in psychology, introspective, behavioristic 

or physiological, the fundamental relations are those of two-valued logic. 

Hence arise constructional solutions of holistic problems involving the 

differentiated continuum of sense awareness and the normative, perfective and 

resolvent properties of perception and execution. From the irreciprocity of 

causality it follows that even if the net be known, though we may predict future 

from present activities, we can deduce neither afferent from central, nor central 

from efferent, nor past from present activities--conclusions which are 

reinforced by the contradictory testimony of eye-witnesses, by the difficulty of 

diagnosing differentially the organically diseased, the hysteric and the 

malingerer, and by comparing one’s own memories or recollections with his 

contemporaneous records. Moreover, systems which so respond to the 

difl’erence between afferents to a regenerative net and certain activity within 

that net, as to reduce the difference, exhibit purposive behavior; and 

organisms are known to possess many such systems, subserving homeosta- 

sis, appetition and attention. Thus both the formal and the final aspects of 

that activity which we are wont to call mental are rigorously deduceable from 

present neurophysiology. The psychiatrist may take comfort from the 

obvious conclusion concerning causality-that, for prognosis, history is 

never necessary. He can take little from the equally valid conclusion that his 

observables are explicable only in terms of nervous activities which, until 

recently, have been beyond his ken. The crux of this ignorance is that 

inference from any sample of overt behavior to nervous nets is not unique, 

whereas, of imaginable nets, only one in fact exists, and may, at any moment, 

exhibit some unpredictable activity. Certainly for the psychiatrist it is more 

to the point that in such systems “Mind” no longer “goes more ghostly than a 

ghost.” Instead, diseased mentality can be understood without loss of scope 

or rigor, in the scientific terms of neurophysiology. For neurology, the 

theory sharpens the distinction between nets necessary or merely sufficient 

for given activities, and so clarifies the relations of disturbed structure to 

disturbed function. In its own domain the difference between equivalent nets 

and nets equivalent in the narrow sense indicates the appropriate use and 

importance of temporal studies of nervous activity: and to mathematical 

biophysics the theory contributes a tool for rigorous symbolic treatment of 

known nets and an easy method of constructing hypothetical nets of required 

properties. 
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