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Abstract. We present a logical framework that is able to deal with
variability in product family descriptions. The temporal logic MHML is
based on the classical Hennessy—Milner logic with Until and we interpret
it over Modal Transition Systems (MTSs). MTSs extend the classical
notion of Labelled Transition Systems by distinguishing possible (may)
and required (must) transitions: these two types of transitions are useful
to describe variability in behavioural descriptions of product families.
This leads to a novel deontic interpretation of the classical modal and
temporal operators, which allows the expression of both constraints over
the products of a family and constraints over their behaviour in a single
logical framework. Finally, we sketch model-checking algorithms to verify
MHML formulae as well as a way to derive correct products from a
product family description.

1 Introduction

Product Line Engineering (PLE) is a paradigm to develop a family of prod-
ucts using a common platform and mass customisation [30/32]. This engineering
approach aims to lower production costs of the individual products by letting
them share an overall reference model of the product family, while at the same
time allowing them to differ with respect to particular characteristics in order
to serve, e.g., different markets. As a result, the production process in PLE is
organised so as to maximise commonalities of the products and at the same time
minimise the cost of variations.

Managing planned variability in product families has been the subject of ex-
tensive study in the literature on PLE, especially that concerning feature mod-
elling [5II3I22], which provides compact representations of all the products of a
PL in terms of their features. Variability modelling addresses how to explicitly
define the features or components of a product family that are optional, alterna-
tive, or mandatory. Formal methods are then developed to show that a certain
product belongs to a family, or to derive instead a product from a family, by
means of a proper selection of the features or components.
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Many years after their introduction in [26], Modal Transition Systems (MTSs)
and several variants have been proposed as a formal model for defining product
families [TITOIT7TI25I33]. An MTS is a Labelled Transition System (LTS) with
a distinction among so-called may and must transitions, which can be seen as
optional or mandatory for the products of the family. Hence, given a family of
products, an MTS allows one to model in a single framework:

1. the underlying architecture, by means of states and transitions, modelling
the product platform shared by all products, and

2. the variation points, by means of possible and required transitions, modelling
the variability among different products.

Deontic logic [2129] has recently become popular in computer science for mod-
elling descriptional and behavioural aspects of systems, mainly because of the
natural way of formalising concepts like violation, obligation, permission, and
prohibition. This makes deontic logic an obvious candidate for expressing the
conformance of products of a family with respect to variation points. Such a
conformance concerns both static requirements, which identify the features that
constitute the different products, and behavioural requirements, which describe
how products differ in their ability to deal with events in time.

Taking into account the Propositional Deontic Logic (PDL) that was pro-
posed in [89] and which combines the expression of permission and obligation
with concepts from temporal logics, in [3J4] we laid the basis for the application of
deontic logic to model variability in product families. We showed how to charac-
terise certain MTSs in terms of deontic logic formulae in [3]. In [4], we presented
a first attempt at a logical framework capable of addressing both static and be-
havioural conformance of products of a family, by defining a deontic extension
of an action- and state-based branching-time temporal logic interpreted over so-
called doubly-labelled MTSs. Model checking with this logic was left as future
work. Modelling and verifying static constraints over the products of a fam-
ily usually requires separate expressions in a first-order logic [5II827], whereas
modelling and verifying dynamic behavioural constraints over the products of a
family is typically not addressed in feature modelling.

The first contribution of this paper is the introduction of the action-based
branching-time temporal logic MHML, which allows expressing both constraints
over the products of a family and constraints over their behaviour in a single
logical framework. MHML is based on the “Hennessy—Milner logic with Until”
defined in [I424], but it is interpreted over MTSs rather than LTSs. This leads
to a novel deontic interpretation of the classical modal and temporal operators.

The second contribution is a first step towards a modelling and verification
framework based on model-checking techniques for MHML. We do so by provid-
ing a global model-checking algorithm to verify MHML formulae over MTSs.

Related Work

In [TTETTITIN25/33], (variants of) MTSs have been proposed for modelling and
verifying the behaviour of product families. We have extended MTSs in [I7] to
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allow modelling different notions of behavioural variability. A different, algebraic
approach to behavioural modelling and verification of product lines instead has
been developed in [20§21]. In this paper, we continue research we started in [3/4].
In [3], we showed how to finitely characterise certain MTSs by means of deontic
logic formulae. In [4], we presented a first attempt at a logical framework capable
of addressing both static and behavioural conformance of products of a family,
by defining a deontic extension of an action- and state-based branching-time
temporal logic interpreted over so-called doubly-labelled MTSs.

In [12], the authors present a model-checking technique over so-called Featured
Transition Systems (FTSs), which are able to describe the combined behaviour
of an entire product family. Their main purpose is to provide a means to check
that whenever a behavioural property is satisfied by an FTS, then it is also
satisfied by every product of the PL, and whenever a property is violated, then
not only a counterexample is provided but also the products of the PL that
violate the property. The main difference between their approach and ours is
our use of a branching-time temporal logic with a deontic flavour that allows us
to express and verify in a single framework both behavioural properties and the
satisfiability of constraints imposed by features.

Outline

Section Pl contains a simple running example used throughout the paper. After
a brief description of feature models in Section [2] we discuss how to use deontic
logic to characterise them in Section @l We introduce the behavioural modelling
of product families by means of MTSs in Section Bl In Section [6] we define
the temporal logic MHML and show that it can be used to express both static
and behavioural requirements of product families. We provide a model-checking
algorithm for MHML in Section [7] and we sketch how to use it to derive correct
products from a family in Section 8 Section [0 concludes the paper.

2 Running Example: Coffee Machine Product Family

To illustrate the contribution of this paper we consider a family of (simplified)
coffee machines as running example, with the following list of requirements:

1. The only accepted coins are the one euro coin (1€), exclusively for European
products and the one dollar coin (1$), exclusively for Canadian products;

2. After inserting a coin, the user has to choose whether (s)he wants sugar, by
pressing one of two buttons, after which (s)he may select a beverage;

3. The choice of beverage (coffee, tea, cappuccino) varies for the products. How-
ever, delivering coffee is a must for all the family’s products, while cappuccino
is only offered by European products;

4. After delivering the appropriate beverage, optionally, a ringtone is rung.
However, a ringtone must be rung whenever a cappuccino is delivered;

5. The machine returns to its idle state when the cup is taken by the user.
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This list contains both static requirements, which identify the features that con-
stitute the different products (see requirements 1, 3 and, partially, 4) and be-
havioural requirements, which describe the admitted sequences of operations
(requirements 2, 5 and, partially, 4).

In the sequel, we will first distill the feature model of this family and provide
a formal representation of it in terms of deontic logic formulae. We will then
show how the behavioural requirements of this family can be described using an
MTS. Finally, we will show how to combine the two approaches by defining a
deontic logic framework to check the satisfiability of both static and behavioural
requirements over products that should belong to this family.

3 Product Families: Feature Diagrams and Feature Models

Feature diagrams were introduced in [22] as a graphical and/or hierarchy of

features; the features are represented as the nodes of a tree, with the product

family as its root. Features come in several flavours. In this paper, we consider:

optional features may be present in a product only if their parent is present;

mandatory features are present in a product if and only if their parent is
present;

alternative features are a set of features among which one and only one is
present in a product if their parent is present.

When additional constraints are added to a feature diagram, one obtains a feature
model. Also these constraints come in several flavours. In this paper we consider:

requires is a unidirectional relation between two features indicating that the
presence of one feature requires the presence of the other;

excludes is a bidirectional relation between two features indicating that the
presence of either feature is incompatible with the presence of the other.

An example feature model for the Coffee Machine family of Section [2]is given in
Fig.[I} the requires constraint obligates feature Ringtone to be present whenever

O

optional mandatory alternative excludes requires

Coffee Machine

@)
Beverage Ringtone

Fig. 1. Feature model of the Coffee Machine family



A Logical Framework to Deal with Variability 47

Cappuccino is and the excludes constraint prohibits features 1$ and Cappuccino
to both be present in any product of this family. Obviously, this feature model
satisfies the static requirements (i.e. 1, 3 and, part of, 4) of our running example.

4 Deontic Logic Applied to Feature Models

Deontic logic has been an active field of research in computer science for many
years now [2/29]. Most deontic logics contain the standard operators of classical
propositional logic, i.e. negation (=), conjunction (A), disjunction (V) and im-
plication (=), augmented with deontic operators. In this paper, we consider
only two of the most common deontic operators, namely it is obligatory that (O)
and it is permitted that (P), which in the most classical versions of deontic logic
enjoy the duality property
P(a) = =0(-a),

i.e. something is permitted if and only if its negation is not obligatory.

The way deontic logics formalise concepts such as violation, obligation, per-
mission and prohibition is very useful for system specification, where these
concepts arise naturally. In particular, deontic logics seem to be very useful
to formalise product family specifications, since they allow one to capture the
notions of optional and mandatory features.

4.1 A Deontic Characterisation of Feature Models

In [], we have presented a deontic characterisation of feature models. Such a
characterisation consists of a set of deontic formulae which, taken as a conjunc-
tion, precisely characterise the feature model of a product family. If we assume
that a name of a feature A is used as the atomic proposition indicating that A
is present, then the deontic characterisation is constructed as follows:

— If A is a feature, and A; and Ay are two subfeatures (marked alternative,
optional or mandatory), then add the formula A = &(A;, A2), where
@(Aq, Az) is defined as

Qs(Al,AQ) = (O(A1) V O(AQ)) AN —|(P(A1) A P(Ag))

if A; and Ay are marked alternative, whereas ®( A1, As) is otherwise defined
as
P(A1, Az) = ¢(A1) A p(Az),

in which ¢(A;), for i € {1,2}, is defined as:

H(A;) = P(A;) if A; is optional and

71 O(4;) if A; is mandatory.

Moreover, since the presence of the root feature is taken for granted, the
premise of the implication related to that feature can be removed

! Hence, we tacitly do not deal with trivially inconsistent graphs whose root is involved
in an excludes relation with a feature.
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— If A requires B, then add the formula A = O(B).
— If A excludes B (and hence B excludes A), then add the formula (A —
- P(B))A (B = = P(A)).

This deontic characterisation is a way to provide semantics to feature models.
The resulting conjunction of deontic formulae, expressing features and the con-
straints between them, is called a characteristic formula and it can be used to
verify whether or not a certain product belongs to a specific family.

5 Behavioural Models for Product Families

In this section we present a behavioural modelling framework able to deal with
the variability notions characterising product families at different levels of detail.
The underlying model of this framework is a Labelled Transition System (LTS).

Definition 1. A Labelled Transition System (LTS) is a quadruple (Q, A, q, —),
where @ is a set of states, A is a set of actions, q € @Q is the initial state, and
—C @Q X A X Q is the transition relation.

If (q,a,q') €—, then we also write ¢ = ¢'.

Since we are interested in characterising the dynamic behaviour of product fam-
ilies, we need a notion for the evolution of time in an LTS.

Definition 2. Let (Q, A, q,—) be an LTS and let ¢ € Q. Then o is a path from
q if o = q (empty path) or o is a (possibly infinite) sequence qrai1qaasqs - -+ such
that ¢ = q and ¢; ~ qi1, for all i > 0.

A full path is a path that cannot be extended any further, i.e. which is infinite
or ends in a state without outgoing transitions. The set of all full paths from q
is denoted by path(q).

If 0 = qra1q2a2qs - - -, then its i-th state q; is denoted by o(i) and its i-th
action a; is denoted by o{i}.

When modelling a product family as an LTS, the products of a family are con-
sidered to differ with respect to the actions that they are able to perform in any
given state. This means that the definition of a family has to accommodate all
the possibilities desired for each derivable product, predicating on the choices
that make a product belong to the family.

An LTS representing all the possible behaviours conceived for the family of
coffee machines described in Section [2] is presented in Fig. Note that this
LTS cannot distinguish optional transitions from mandatory ones, since vari-
ation points in the family definition are modelled as nondeterministic choices
(i.e. alternative paths), independent from the type of variability.

5.1 Modal Transition Systems

To overcome the limitation pointed out earlier of using LTSs as modelling frame-
work for product families, Modal Transition Systems (MTSs) [26] and several
variants have been proposed to capture variability in product family specifica-
tions [TIT6TUTI25133).
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"\Icuppuccilw
% cappuccing;

pour_coffee

cup_taken’ cup_taken’

11 e
ring_a_tone ring_a_tone

(a) LTS of the family. (b) MTS of the family.

Fig. 2. (a)-(b) Modelling the family of coffee machines

Definition 3. A Modal Transition System (MTS) is a quintuple (Q, A, q, —0,
—o) such that (Q, A, q,—o U —) is an LTS, called its underlying LTS.

An MTS has two distinct transition relations: —¢ C Q X A X @ is the may
transition relation, which expresses possible transitions, while -0 C Q X A X Q
s the must transition relation, which expresses required transitions.

By definition, any required transition is also possible, i.e. -=gC—y.

In an MTS, transitions are either possible (may) or required (must), correspond-
ing to the notion of optional or mandatory features in product families. This
allows the distinction of a special type of path.

Definition 4. Let (Q, A, q,—o, —¢) be an MTS and let 0 = qra1g2a2q3 - -+ be a
full path in its underlying LTS. Then o is a must path (from q1) if ¢; —=0 qiv1,
for all i > 0, in the MTS.

The set of all must paths from ¢ is denoted by O-path(qy). A must path o is
denoted by o5.

The MTS of Fig. in which dashed arcs are used for may transitions and
solid ones for must transitions, is another representation of the family of cof-
fee machines described in Section 2] Note that an MTS is able to model the
requirements concerning optional and mandatory characteristics through the
use of may and must transitions. However, an MTS is not able to model that
the actions 1€ and 1$ are exclusive (i.e. alternative features) nor that the ac-
tion cappuccino cannot be executed in a European product (as results from the
excludes relation between the features Cappuccino and 1$). This will be more
clear later, after we define how to generate correct products from an MTS.



50 P. Asirelli et al.

Definition 5. Given an MTS F = (Q, A, q, —0, —¢) specifying a family, a set
of products specified as a set of LTSs { P, = (Qi, Ai,q;,—i) | © > 0} may be
consistently derived by considering the transition relation —; to be —g UR,
with R C—, and by pruning all states that are not reachable from q.

More precisely, we say that P; is a product of F, denoted by P; - F, if and
only if g; - q, where ¢; & q holds, for some ¢; € Q; and q € Q, if and only if:

— whenever ¢ 50 ¢, for some ¢’ € Q, then 3¢, € Qi : i i ¢\ and ¢} - ¢,
and
— whenever ¢; ~; q., for some ¢, € Q;, then 3¢ € Q : ¢ L ¢ and ¢\ - ¢'.

Following Def. [l starting from the M TS of Fig. two consistent products can
be derived: the coffee machines for the European and Canadian markets shown
in Fig. [3l Note, however, that also the coffee machine described by the LTS of
Fig. can be consistently derived from this MTS. This is the demonstration
of the fact that MTSs cannot model constraints in feature models regarding
alternative features and the excludes relation. In fact, the product described
by the LTS of Fig. violates requirements 1 and 3 (cf. Section 2]) by allowing
the insertion of both 1€ and 1$ and at the same time offering cappuccino.

pour_sugar

pour_coffee cup_taken pour_coffee

(a) LTS of a European coffee machine.  (b) LTS of an Canadian coffee machine.

Fig. 3. (a)-(b) Modelling coffee machines for the European and Canadian markets

6 A Logical Framework for Modelling Variability

In [3], we showed how certain MTSs can be completely characterised by deontic
logic formulae and in [4] we presented a first attempt at a logical framework able
to address both static and behavioural conformance of products of a family.
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In this paper, we further develop that work and define a single logical frame-
work in which to express both the evolution in time and the variability notions
considered for product families. To this aim, we define the action-based and
branching-time temporal logic MHML based on the “Hennessy—Milner logic with
Until” defined in [I4)24], but we interpret it over MTSs rather than LTSs. This
leads to a deontic interpretation of the classical modal and temporal operators.

With respect to [4], we thus consider an action-based logic rather than an
action- and state-based logic, and in Section [l we will moreover provide model-
checking algorithms to verify MHML formulae over MTSs.

6.1 Syntax of MHML

MHML extends the classical Hennessy—Milner logic with Until by taking into
account the different type of transitions of an MTS and by incorporating the
existential and universal state operators (quantifying over paths) from CTL [I0].
As such, MHML is derived from the logics defined in [I4J23)24] and it is an
action-based variant of the logic proposed in [4].

MHML is a logic of state formulae (denoted by ¢) and path formulae (denoted
by ) defined over a set of atomic actions A = {a,b,...}.

Definition 6. The syntax of MHML is:

¢u=true| ¢ | oA | (a)p|[a]p | Ex | An
Tu=¢ U | o U

The semantics over MTSs makes MHML incorporate deontic interpretations
of the classical modalities. In fact, the informal meaning of the nonstandard
operators of MHML is as follows:

— (a) ¢: a next state exists, reachable by a must transition executing action a,
in which ¢ holds

— [a] ¢: in all next states, reachable by whatever transition executing action a,
¢ holds

— E m: there exists a full path on which 7w holds

— Am: on all possible full paths, 7 holds

— ¢ U ¢': in the current state, or in a future state of a path, ¢’ holds, while ¢
holds in all preceding states of the path (but not necessarily in that state)

— ¢ UP ¢/': in the current state, or in a future state of a path, ¢’ holds, while ¢
holds in all preceding states of the path (but not necessarily in that state),
and the path leading to that state is a must path

6.2 Semantics of MHML

The formal semantics of MHML is given through an interpretation over the
MTSs defined in Section Bl
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Definition 7. Let (Q, A, q, —po, —¢) be an MTS, let ¢ € Q and let o be a full
path. Then the satisfaction relation = of MHML over MTSs is defined as follows:

— q | true always holds

aE—¢ iff notqlo

aEoNG iff aE¢ andq=

—qF{@¢ iff 3¢ €Q:q>nd andd = ¢

—qEd¢ ff V@ €Q:qSoq andg = ¢

—qEE7m iff 30’ €path(q) : 0’ E

—qEA7T iff Yo' €path(q) : 0’ =

ocElpUY| iff 3j>1:0()EP andV1<i<j:o()E¢
oo U] iff 3j>1:0"¢)E¢ andV1<i<j:o" ()= ¢

The classical duality rule of Hennessy—Milner logic, which states that (a)¢ ab-
breviates —[a]—¢, does not hold for MHML. In fact, —[a]—¢ corresponds to a
weaker version of the classical diamond operator which we denote as P(a) ¢: a
next state may exist, reachable by executing action a, in which ¢ holds.

A number of further operators can now be derived in the usual way: false
abbreviates — true, ¢V ¢’ abbreviates —(=¢p A —¢’), = ¢’ abbreviates =@V ¢'.
Moreover, F' ¢ abbreviates (true U ¢): there exists a future state in which ¢
holds. Likewise, FJ ¢ abbreviates (true U™ ¢): there exists a future state of a
must path in which ¢ holds. Finally, AG ¢ abbreviates -E'F —¢: in every state
on every path, ¢ holds; and AGY ¢ abbreviates ~EF" —¢: in every state on
every must path, ¢ holds.

An illustrative example of a well-formed formula in MHML is thus

[a] (P(D) true A (p = {(c) true)),

which states that after the execution of action a, the system is in a state in which
executing action b is permitted (in the sense of a may transition) and, moreover,
whenever formula ¢ holds, then executing action ¢ is obligatory (in the sense of
a must transition). Note that by defining the semantics of MHML over MTSs,
we have indeed given a deontic interpretation to the classical box and diamond
modalities of Hennessy—Milner logic. In fact, MHML can express both permitted
and obligatory actions (features).

We could of course extend the semantics of MHML formulae to an interpreta-
tion over LTSs rather than over MTSs. In that case, since LTSs consist of only
must transitions, all modalities would need to be interpreted as in the classical
Hennessy—Milner logic; this would mean that the weaker version of the diamond
operator P(a)¢ in MHML would collapse onto the classical diamond operator
(a) ¢ of Hennessy—Milner logic.

6.3 Expressing Static and Behavioural Requirements

MHML is able to complement the behavioural description of an MTS by ex-
pressing constraints over possible products of a family, modelling in this way the
static requirements that cannot be expressed in an MTS.
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To begin with we consider the following formalisations of the static require-
ments 1 and 3 (cf. Section ).

Property A. The actions of inserting 1€ or 1$ are alternative features:

(EF (18) trueV EF (1€) true) A —~(EF P(18) true A EF P(1€) true)

Property B. The action cappuccino cannot be executed in Canadian coffee
machines (excludes relation between features):

((EF {(cappuccino) true) = (AG —P(18) true)) A
((EF (18) true) = (AG —P(cappuccino) true))

These formulae combine static requirements represented by the pure deontic
formulae of Section [Tl through their deontic interpretation in MHML, with
behavioural relations among actions expressible by the temporal part of MHML.

Recall that the deontic obligation operator is mapped onto MHML’s diamond
modality and the deontic permission operator is represented by MHML’s weaker
version of the classical diamond modality. It is important to note, however, that
the classical duality property among the O and P operators of deontic logic is
not preserved by this mapping.

To continue, we consider the following formalisation of the static part of re-
quirement 4 (cf. Section [2I).

Property C. A ringtone must be rung whenever a cappuccino is delivered:

(EF (cappuccino) true) = (AF (ring_a_ tone) true)

This is an example of a requires relation between features. Note that such a
static relation between features does not imply any ordering among the related
features; e.g., a coffee machine that performs a ringtone before producing a
cappuccino cannot be excluded as a product of the family of coffee machines
on the basis of this relation. It is the duty of the behavioural description of a
product (family) as provided by an LTS (MTS) to impose orderings.

Subsequently, we consider the following formalisation of a further requirement
that is particularly interesting for the user of a coffee machine:

Property D. Once the user has selected a coffee, a coffee is eventually delivered:
AG |[coffee] AF" (pour_coffee) true

7 Model-Checking Algorithms for MHML

The problem model checking aims to solve can be stated as: Given a desired
property, expressed as a formula v in a certain logic, and a model M, in the
form of a transition system, one wants to decide whether M = 1 holds, where



54 P. Asirelli et al.

k= is the logic’s satisfaction relation. If M [~ 4, then it is usually easy to generate
a counterexample. If M is finite, model checking reduces to a graph search.

Based on the model-checking parameters M and v, different strategies can be
pursued when designing a model-checking algorithm. The following global model-
checking algorithm extends classical algorithms for the Hennessy—Milner logic
and for CTL to MHML [TOTT3T]. Actually, the only variation is the distinction
of the transition relation (—¢ or —p) used in the different cases.

Algorithm 1. A global model-checking algorithm for MHML.

for all ¢ € Q do L(q) := {true} for all ¢ € Q do
for i = 1 to length(+)) do if 3¢:q 0 ¢, ¢1 € L(¢') then
for all subformulae ¢ of ¢ such that L(q) := L(q) U{¢}
length(¢) =i do else if ¢ = P(a) ¢1 then
if ¢ = true then for all ¢ € Q do
{nothing to do} if 3¢': ¢ S¢ ¢, ¢1 € L(¢) then
else if ¢ = - ¢; then L(q) := L(q) U {9}
for all ¢ € Q do else if ¢ = E (¢1 U™ ¢2) then
if ¢1 ¢ L(g) then T:={q| 2 € L(g)}
L(q) := L(q) U {9} for all ¢ € T do
else if ¢ = ¢1 A ¢2 then L(q) := L(q) U{E (¢1 U" ¢2)}
for all ¢ € Q do while T # @ do
if p1€L(q) and ¢2€L(q) then choose g € T
L(q) := L(q) U{¢} T:=T\{q}
else if ¢ = [a]¢1 then for all p such that p —g g do
for all ¢ € Q do if E(¢1 U ¢2)¢ L(p) and ¢1 € L(p)
ifVqiqZoq, p1€L(¢) then then
L(g) = L(g) U {$} L(p) = L(p) U{E (61 U 6))
else if ¢ = (a)¢1 then T:=TU{p}

Algorithm [ stores in L(q) all subformulae of 1 that are true in ¢, initially
associating true to every state and then evaluating subformulae of increasing size
on the MTS. Evaluating Until formulae requires another visit of the MTS. The
algorithm’s complexity is O(|9|x|Q| % (|Q|+|—0])). A more efficient version uses
for Until a depth-first search: its complexity is linear w.r.t. the state space size.

Note that we consider only one of the existential Until operators; other com-
binations of existential /universal quantification and Until operators can be dealt
with similarly. In particular, the procedure for the classical Until operator U can
be obtained from that for UP by allowing a may transition in its inner for-loop.

Verifying properties A-D on Figs. 2H3l with Algorithm [ leads to Table [l

Finally, note the potential for inconsistency: An MTS of a family might not
allow any products that satisfy all constraints on features expressed by MHML
formulae, i.e. all MHML formulae complementing the behavioural description of
an MTS would be false in that MTS. This clearly advocates the usefulness of
our model-checking algorithm on MTSs.
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Table 1. Results of verifying properties A-D on Figs. 2H3] with Algorithm [II

Property Fig.|2(a)|Fig.[2(b)| Fig.|3(a)| Fig.[3(b)|

A false false true true
B false true true true
C false true true true
D true true true true

8 Towards the Derivation of Correct Products from a
Family Description

In Section 5.1l we sketched an algorithm for deriving LTS descriptions of correct
products from the MTS description of a product family. These products are
correct in the sense that they respect the family’s requirements as modelled by
the MTS, such as, e.g., the presence of features that are optional or mandatory
but also their behavioural ordering in time. We subsequently presented a relation
between LTSs and MTSs to formalise when an LTS is a product of a family
(specified as an MTS).

In [I9], the authors present an algorithm for checking conformance of LTS
models against M'TS ones according to a given branching relation, i.e. for check-
ing conformance of the behaviour of a product against its product family’s be-
haviour. It is a fixed-point algorithm that starts with the Cartesian product of
the states and iteratively eliminates those pairs that are not valid according to
the given relation. They have implemented their algorithm in a tool that allows
one to check whether a given LTS conforms to a given MTS according to a
number of different branching relations.

Both algorithms allow the derivation of products (specified as LTSs) that are
correct with respect to the MTS model of a family of products. As we have seen
in the previous section, this means that these products might be incorrect with
respect to the static constraints that cannot be expressed in MTSs, such as, e.g.,
the presence of features that are alternative or part of an excludes relation.
Since these constraints can be formulated in MHML, we envision an algorithm
for deriving correct LTS descriptions of products from an MTS description of
a product family and an associated set of MHML formulae expressing further
constraints for this family. The idea is to prune optional (may) transitions in the
MTS in a counterexample-guided way, i.e. based on model-checking techniques.

We informally present our idea by considering as example Property A of Sec-
tion B3] i.e. 1€ and 1$ are alternative features:

(EF (18) trueV EF (1€) true) A ~(EF P(18) true A\ EF P(1€) true)

Model checking this formula over the MTS of Fig. returns as counterexample
two paths through this MTS, one starting with the 1$ action and one starting
with the 1€ action. Both these actions are optional, which means that two correct
products (cf. Fig.[B]) can be derived from this MTS: one by pruning the 1$ action
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and one by pruning the 1€ action instead. At this point, model checking should
be repeated in order to see whether other counterexamples remain (which is not
the case for our example).

Based on the principle illustrated by means of this example, an algorithm
can be devised in which the conjunction of the constraints is repeatedly model
checked, first over the MTS description of the product family and consequently
over the resulting (set of) pruned MTSs. These intermediate MTSs are obtained
by pruning may transitions in a counterexample-guided way until the formula
(conjunction of constraints) is found to be true.

The precise definition of such an algorithm is left for future work, and re-
quires a careful study of the different possible types of constraints and of the
effectiveness of the counterexample-guided pruning. After an initial analysis, it
seems that local model checking is a more effective strategy to base such an algo-
rithm on, due to its ability to generate counterexample paths early on, without
the need of an extensive exploration of the state space. The resulting algorithm
would thus allow one to generate all LT'Ss that satisfy both the family’s require-
ments as modelled by the MTS and its associated set of MHML formulae, i.e. all
products that are correct with respect to the MTS model of a family of products.

9 Conclusions and Future Work

In this paper we have continued the line of research we initiated in [3J4] with the
following contributions:

1. We have introduced the action-based branching-time temporal logic MHML,
which allows the expression of both constraints over the products of a family
and constraints over their behaviour in a single logical framework.

2. We have set a first step towards a modelling and verification framework based
on model-checking techniques for MHML, by providing a model-checking al-
gorithm to verify MHML formulae over MTSs and by sketching a way to derive
correct products from a family description. Both an analysis of the complexity
of the model-checking algorithm for MHML and the actual implementation of
a model-checking environment for MHML are left as future work.

Such an actual implementation of a model-checking environment for MHML
could be an extension of existing model-checking tools, like UMC [G/7I28]| or
MTSA [I5]. UMC is an on-the-fly model checker for UCTL (UML-oriented CTL)
formulae over a set of communicating UML state machines. MTSA, built on top
of the LTS Analyser LTSA, is a tool that supports the construction, analysis
and elaboration of MTSs. To this aim, we can make use of the fact that model
checking MTSs is not more complex than model checking LTSs, as checking an
MTS can be reduced to two times checking an LTS [I9].

The added value of the logical framework we have introduced in this paper can
thus be summarised as allowing the possibility to reason, in a single framework,
on static and dynamic aspects of products of a family. Moreover, from a theo-
retical point of view, we provide a novel deontic interpretation of the classical
modal and temporal operators.
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Finally, there are a number of aspects of our line of research that require a

deeper understanding:

— how to identify classes of properties that, once proved over family descrip-

tions, are preserved by all products of the family;

— how to evaluate quantitative properties, like the number of different possible

products of a family;

— how the approach scales to real-world situations in PLE;
— how to hide the complexity of the proposed modelling and verification frame-

work from end users.
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