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INTRODUCTION

SUMMARY

We discuss the use of a lognormal (LN) random field as a model for the distribution of
matter in the Universe. We find a number of reasons why this should be a plausible
approximation to the distribution of density irregularities obtained by evolving from
Gaussian initial conditions. Unlike straightforward linear theory, the model always
has 0>0 but is arbitrarily close to the Gaussian at early times. It has the added
advantage that, like the Gaussian model, all its statistical properties can be formulated
in terms of one covariance function.

A number of interesting and important difficulties with the statistical treatment of
density perturbations are revealed by an analysis of this model. In particular, the LN
model is not completely specified by its moments. We explain why this could be true
for the actual matter field. We also show that the usual method of representing the
three- and four-point correlation functions of galaxies, in terms of the parameters Q
and R, is not useful for discriminating between Gaussian and non-Gaussian fluctua-
tions, and propose better parameterizations in terms of the skewness and kurtosis of
the three- and four-point distributions, respectively.

Other characteristics of the model, such as topology (genus curves, etc.), multi-
fractal behaviour, void probabilities and biasing (behaviour of ‘peaks’ relative to
background fluctuations) are also discussed. The model also provides a way of check-
ing the consistency of treatments of large-scale streaming motions in the Universe by
allowing us to determine the scale at which linear theory cannot be accurate for both
the matter and velocity fields.

We discuss a possible model for the number-count distribution of galaxies, based
on the LN distribution but allowing for discreteness effects which can make the
distribution of log n appear non-Gaussian, and show how to construct Monte-Carlo
simulations of point patterns (in one-, two, or three-dimensions) which contain
correlations of all orders.

the hierarchy} of n-dimensional joint probability density
functions, f,(0), connecting the density at different spatial

Ever since the pioneering studies of Neyman & Scott (1952)
it has been understood that our knowledge of the distribution
of galaxies is statistical and, therefore, incomplete in the
sense that we will never be able to predict the specific
locations of galaxies around us. It is also true that our
knowledge is incomplete even in a statistical sense: the dis-
tribution of galaxies in space is only completely specified by
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tDoob (1953) first demonstrated this fact. Doob defines two
stochastic processes to be stochastically equivalent only if all finite
dimensional joint distributions are identically equal for the two
distributions.

positions and our knowledge of these is restricted to low-
order moments and related functions. Just as the analysis of
galaxy catalogues gives us only partial information about the
f.» s0 is it true that physical models do not allow the f, to be
expressed in any analytic form. The late stages of galaxy
formation are usually modelled by discrete numerical
simulations (Efstathiou ef al. 1985, and references therein)
and one cannot extract any more information about the f,
from these than one could from a galaxy catalogue. Analytic
approximations for the growth of non-linear structure such
as the Zel'dovich approximation (Zel'dovich 1970; Bond &
Couchman 1988; Shandarin & Zel'dovich 1989), second-
order perturbation theory (Juszkiewicz, Sonoda & Barrow
1984; Coles 1990) or those techniques based upon the
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Burgers equation (Kofman & Shandarin 1988; Gurbatov,
Saichev & Shandarin 1989; Shandarin & Zel'dovich 1989;
Kofman, Pogosyan & Shandarin 1990) allow some progress
but still do not allow us to specify the f, completely. Both
theory and observations are therefore statistically under-
specified.

The only fully specified model for the density field of
widespread use in cosmology is the Gaussian random field.
The finite-dimensional joint distributions of such a field are
all multivariate Gaussian pdf’s and the model is therefore
statistically complete. This complete analytical specification
allows many complex properties of the local geometry of
such fluctuations to be calculated analytically which has
made them a favourite amongst applied mathematicians
(Rice 1945; reprinted in Wax 1954; Cartwright & Longuet-
Higgins 1956; Longuet-Higgins 1957, Adler 1981;
Vanmarcke 1983). The numerous physical motivations for
assuming Gaussian statistics for the smaller linear density
perturbations that are commonly supposed to have been
present at recombination, particularly from inflationary
models (Barrow & Coles 1990, and references therein), have
also led to a vast output of cosmological literature on the
statistical properties of such fluctuation fields (Kaiser 1984a;
Politzer & Wise 1984; Peacock & Heavens 1985; Bardeen et
al. 1986, hereafter BBKS; Jensen & Szalay 1986; Coles
1986; Couchman 1987a,b; Lumsden, Heavens & Peacock
1989; Coles 1989).

A Gaussian random field, however, can only be a model
for the linear density field, i.e. in the limit of zero fluctuation
amplitude. As soon as we start to deal with finite rms fluctua-
tions, o, the Gaussian model assigns a non-zero probability
to regions of negative density (e.g., Fry 1986). Although this
probability might be acceptably small when o is tiny, it must
grow with time as gravitational instability takes over, so that
the non-linear density field at late times cannot be described
consistently by a Gaussian random field. As we discussed
above, we have no theoretical means for specifying the f, in
this regime.

This difficulty highlights the importance that should be
attached to the construction of self-consistent stochastic
models for the density perturbation field. That is, models
which are not necessarily physically motivated but which are
completely specified statistically and which do not violate
common-sense conditions such as o> 0. Such models allow
us to see what it is that various clustering statistics are (or are
not) measuring and suggest better ways of discriminating
between theory and observations.

The usefulness of this approach was realized by Neyman
& Scott (1952) who constructed models for the discrete
galaxy distribution which are based upon the Poisson cluster
formula (see also Peebles 1980). Further discrete models are
the Thermodynamic model (Saslaw & Hamilton 1984), the
Bose-Einstein or negative binomial model (Carruthers &
Shih 1983) and the scaling ansatz of Schaeffer (1985). Not all
of these are, in fact, completely specified in the sense given
above but they are useful in illustrating some properties of
statistical tools commonly used in the analysis of galaxy
catalogues (e.g., Fry 1985). Unfortunately, few consistent
stochastic models for the continuous density fluctuation field
exist and those that do are difficult to handle analytically
(Coles & Barrow 1987; Coles 1988; Coles 1989). Further-
more, with the currently fashionable theoretical emphasis

upon biased galaxy formation, the relationship between the
matter distribution and the galaxy distribution has become
obscure. A consistent model for the density field should be
the starting point for studies of biasing.

In this paper, we shall study one particular stochastic
model for the cosmological density field, which we call a
lognormal (LN) random field. The model is fully specified
statistically; its intimate relationship to a Gaussian random
field allows many properties of the model to be calculated in
the same way as for a Gaussian field (Coles & Barrow 1987;
Coles 1988; Lucchin & Matarrese 1988; Coles 1989). The
model always has p>0 but becomes arbitrarily close to
Gaussian statistics at early times. After giving some technical
background in Section 2 and illustrating some of the motiva-
tions for thinking that the LN model might be a useful one
(Section 3), we study this field in some depth to see what we
can learn about the analysis of real density fields. In Section 4
we look at properties of the moments of the one-point
distribution. In Section 5 we calculate correlation functions
of all orders. In Section 6 we show how one can connect our
model for the density field to a Gaussian model for the
peculiar velocity field. In Section 7 we show how to construct
a model for the discrete number-count distribution from our
definition of the continuous density field. Some miscellane-
ous properties (maxima, topology, simulations and multi-
fractal behaviour) are discussed in Section 8. Finally, in
Section 9, we summarize the main conclusions and outline
areas for further work in the light of our analysis.

2 DEFINITIONS AND TECHNICAL
BACKGROUND

This section contains some background material required for
understanding the technical details of the model we are
discussing. We shall take as our starting point the definition
of a Gaussian random field (Adler 1981; Vanmarcke 1983;
Peacock & Heavens 1985; BBKS). Such a field, X(r) will
have a one-point probability density function (pdf) f,(x)
given by a normal distribution with some mean and variance;
thatis X ~ N(u, 0?):

filx)= expl —(x —u)*/2%). (1)

oV2m

Furthermore, all the higher order n-point pdf’s, f,(x), of field
values at different positions 7, are multivariate normal:

- - 1 -
flx)=(2) " | exp(‘zzM,»,‘x,-xj)’ @
i
where x=(x,...,x,), x;=x(r;) and M is the covariance

matrix
M;={(X;—u)(X;—n).

Note that M; = 0? and we have assumed that each of the n
variates has the same mean u,=pu, ie. that the field is
stationary or statistically homogeneous. For a Gaussian
random field the covariances M;; are determined completely

by the covariance function, E(r), which depends only on
r;=|r;— r| if the field is statistically isotropic. Thus

E(r,-,-)={[X(r,-)—u][X(r/-)-—/t]}=M,~j. (3)
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The covariance function completely specifies all the finite
dimensional pdf’s for a Gaussian random field. The
relatively simple form of the f, for this random field allows
one to obtain exact solutions for many of the properties of
such fields (Rice 1945, reprinted in Wax 1954; Adler 1981;
Vanmarcke 1983; Peacock & Heavens 1985; BBKS).
Arbitrary non-Gaussian fields offer no such possibilities.
However, in Coles & Barrow (1987) we showed how to
construct a wide variety of model non-Gaussian fields by
using various non-linear transformations of Gaussian fields.
One particular field we looked at was the lognormal random
field which we obtained by transforming a Gaussian field via

Y(r)=exp[X(r)]. (4)

The transformation (4) results in the following one-point
distribution of Y:

(logy—/t)z] dy

fil)=— exp[— L (5
oJ2m o y

where u and o2 are the mean and variance of the underlying
Gaussian field X. A variate drawn from such a distribution is
usually denoted Y~ A(u, 0°) by the statisticians. The
resulting mean and variance of Y will be discussed later in
Section 4. Note that equation (5) is not enough to specify all
the statistical properties of the lognormal random field. We
need also to extend the definitions of the multivariate normal
distribution to

fn(yla"',yn)=(2”)_”/2|M|_”2

1 - 1
X exp _E LM ijl log(y;) log(}’j) [1T- (6)
ij i=1 )i
where M is the covariance matrix of the X-values (3). The
covariance function for y, which will be denoted &(r), is
discussed later in Section 5.

3 MOTIVATIONS FOR THE LOGNORMAL
MODEL

Now that we have explained how the lognormal random field
is constructed, we shall review the motivations for thinking
that it might provide a good model for the distribution of
density fluctuations in the Universe. It must be said at the
outset that some of these suggest only that f,(0) might be
described by a lognormal distribution A(u, %) (5) and say
nothing about the n-point distributions in general. However,
(6) gives the most straightforward extension of (5) and this
simple model still retains many interesting features.

3.1 Observations

Hubble (1934) first noticed that the distribution of galaxy
counts in two-dimensional cells on the sky could be well
approximated by (5). This possibility has also been discussed
by Peebles (1980). Recent more extensive galaxy redshift
surveys by the Durham group (Hale-Sutton er al. 1989;
Shanks et al. 1989) do, in fact, reveal a distribution of log N
that looks rather skewed. We are proposing the lognormal as
a model for the continuous density field, however, and it may
be that number counts are a biased tracer of the underlying
matter (see below) or that the discreteness of the distribution
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causes some spurious skewness (see Section 6) or, of course,
both. Although the evidence is therefore circumstantial, it
certainly does not contradict the model.

3.2 The central limit theorem

One of the primary motivations for supposing that
primordial density fluctuations might be Gaussian is the
Central Limit Theorem. This states that, if

Y=12> X,
i=1

where the X; are independent variates with finite variance,
then Y— N(u, 0?) as n— o independent of the distributions
of the underlying X. In inflationary models, each Fourier
mode of the perturbation field comes inside the horizon with
a random phase and the resulting superposition inside the
horizon leads to a Gaussian random field (Barrow & Coles
1990, and references therein).

We can build a non-linear analogue of this theorem by
assuming that, instead of a superposition, we have a product
of independent influences:

1=

Yy=1I1 Xx. (7)

i=1

If this is the case then log Y conforms to the requirements of
the central limit theorem so that Y~ A(u, ¢2). It may be seen
then that the lognormal is a paradigm for non-linear noise
just as the Gaussian is for linear noise. In an astrophysical
context, Zinnecker (1984) showed how hierarchical frag-
mentation or coagulation models lead to lognormal mass
functions; his model is just a special case of the above
argument. In the context of the explosion models of large-
scaled structure, Ostriker (1986) showed how the distribu-
tion of masses of structures formed by fragmentation of gas
in colliding shock fronts should be roughly lognormal. For an
extensive discussion of the genesis of lognormal and related
models in this way see Aitchison & Brown (1969) and Crow
& Shimizu (1988).

3.3 Kinematics

Let us consider the growth of inhomogeneities in an expand-
ing universe (Peebles 1980; Shandarin & Zel'dovich 1989).
We shall work with coordinates comoving with the Hubble
expansion x = r/a(t) where a(t) is the cosmic scale factor and
tis proper time. We split the total velocity field uinto Hubble
expansion and peculiar velocity components:

u=d(t)x+v(x, 1. (8)

The equation of continuity for the matter flow is

9 514 i lyiiop)=
6t+3(a)p+av(pv) 0. (9)

We shall now switch time coordinate to conformal time:
adt=dt and work with a different density variable: ¢ = pa®.
The equation (9) then becomes

% | (5-V)o+o(V-0)=0. (10)
at

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

220z 1snbny /| uo Jasn aonsnp jo Juswuedaq "S'N Aq 890€Z0L/L/1L/81Z/a121e/Seluw/wod dnoojwapede//:sdjy wol papeojumoq


http://adsabs.harvard.edu/abs/1991MNRAS.248....1C

FIOOIWNRAS 7487 .~ AC

4 P. Coles and B. Jones

Writing the total time derivative as d/df, this becomes

1i‘g=—(V‘v). (11)
odr

If the initial peculiar velocity field is Gaussian then so is
(V-v) (Rice 1945, in Wax 1954). If it continues to grow
linearly then the peculiar velocity divergence stays Gaussian
and scales with 7: (Vv ),=(V-v)(7/7,). We therefore find
that

o(x)= g, exple(x) 7%, (12)

where ¢ is a Gaussian random field= —¥V-v),_, 7, '. The
expression (12) is of a similar form to equation (4). We can
therefore regard a lognormal distribution as being a
kinematical model for the density distribution, obtained by
extrapolating the equation of continuity into the non-linear
regime by assuming linear velocity fluctuations. Fry (1986)
argued that v should be more robust to higher order correc-
tions than g; there is certainly a less pressing need for v to
depart from Gaussian behaviour since » is not constrained to
be >0. The model therefore seems rather natural. It is,
however, a very crude model: no account is taken of the
geometry of the local velocity field so, unlike the Zel'dovich
approximation (Zel'dovich 1970), it cannot reproduce
pancaking in three dimensions. It should, however, give a
good description of the general tendency of the matter to
clump in the weakly non-linear regime. It is interesting to
compare this model with a one-dimensional version of the
Zel'dovich approximation (Shandarin & Zel’dovich 1989). In
this approximation, the local matter density grows as

e=gy(1-e?)"". (13)

The full (3D) version of the Zel'dovich approximation has a
rather more complex dependency on the geometry of the
local e-field but behaves in qualitatively the same way
(Shandarin & Zel’dovich 1989). Expanding each of these in
powers of 7 and noting that 7« ¢!/* when the Universe is
matter-dominated, we find that both approximations
reproduce linear theory:

0=(0— g0y~ 1t*? (14)

although the higher order contributions are different. Note
that the Zel'dovich approximation predicts the formation of
caustics (0~ ) which the lognormal model does not. We
shall return to this problem in Section 4.

Note also that the treatment above is entirely Lagrangian -
the coordinates we are using will fall into developing non-
linear overdensities - so cannot be accurate to treat
structures in Eulerian space except possibly in the weakly
non-linear regime.

3.4 Biased galaxy formation

Various aspects of lognormal distributions have been
discussed in the literature in connection with biased galaxy
formation. In the simplest biased models, galaxy or cluster
formation occurs only where the local mass density exceeds
some threshold level v. This is known as ‘sharp’ or ‘step-
function’ thresholding. Various authors have attempted to
refine this approach by arguing that, in practice, there is
more likely to be a non-linear relation between the mass-

density and the resulting number of galaxies. Kaiser & Davis
(1985) proposed an extension of Kaiser’s (1984a,b) biased
model of cluster formation that would work for massive
superclusters of galaxies. Their model relates the number of
galaxies per unit mass inside and outside the supercluster via

(Nﬁ)sys - exp( KEAI) (%)global, (15)

where A, is the linear theory density contrast and x, depends
on the model of galaxy formation: in simple models
#x, = v*(1+2z;)"! where z; is the redshift of galaxy formation.
Szalay (1988) has discussed this in terms of using an
exponential threshold function rather than a step-function
(see also Borgani & Bonometto 1990). Note that equation
(15) leads to a lognormal distribution of N,/M if the linear
density fluctuations are Gaussian. This is not quite the same
as saying that the density fluctuations are lognormal, which is
what our model involves, but the similarities are sufficient to
provide further reasons for such an in-depth study.

3.5  Simplicity

All the above discussion provides only partial motivation for
our model. The lognormal is one of the simplest ways of
defining a fully self-consistent random field which always has
©0> 0 and, most importantly, is one of the few non-Gaussian
random fields for which interesting properties are calculabie
analytically. (For an interesting application in a different
cosmological context, see Barrow & Morgan 1983.) It has no
more free parameters than the Gaussian from which it is
derived and in many cases analytic results are obtained more
easily for this model than the Gaussian (Vanmarcke 1983;
Coles & Barrow 1987; Coles 1988; Szalay 1988).

In subsequent sections we shall see that even such a simple
model exhibits some strange behaviour and teaches us much
about the limitations of statistical treatments of non-linear
density fluctuations.

4 PROPERTIES OF THE ONE-POINT LN
DISTRIBUTION

Here we shall discuss some of the properties of A(u, 0?)
relevant to large-scale structure. The most obvious starting
point is to consider the moments of the distribution about the
origin, usually denoted u,:

©

<Y">=#:1=J Y'A(u, 0°) dy. (16)

0

These are easily evaluated explicitly in terms of 4 and o2,
wn=exp(nu+n’a*/2). (17)

The moments about the mean, which we shall denote u,, are
obtained in the usual way. We shall only be interested in u,
and u,. The variance is £2= u, — (u,)’ so that

ur=exp(2u+ o%)[exp(o?)—1]. (18)

The third moment about the mean is

s =ps= 3 s+ 2(,) .
=exp(3u +30?/2)[exp(0?) — 1] [exp(0?)+2]. (19)
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It is interesting also to compute the skewness of this distribu-
tion (Kendall & Stuart 1988):

||
r {w}

=lexp(0?) = 1]'*[exp(0?)+2]. (20)

Note that I'>0 as 0— 0. These results obtain for a general
lognormal field. When we discussed kinematics in Section 3,
we suggested that the best model for g was given by equation
(12). For simplicity we shall work with a new variable y = o/
0o According to our model we find that y ~A(0, a27*),
where o2 is the variance of the e-field introduced in Section
2. This, however, leads to an immediate problem when we
calculate the mean. Substituting these parameters in (17) we
get

(x)y=exp(o?r'/2). (21)

In other words the mean density of the Universe increases
with time. The reason for this problem is that our extrapola-
tion of the continuity equation into the non-linear regime
incorporated no requirement that matter be conserved
globally. We can circumvent the problem by ‘renormalizing’ y
so that it always has the same mean (y)=1: y=y
exp(— o2t*/2). Thatis, y ~ A(— 027*/2, o7*). The moments
of x about the origin become

(x")=exp[n(n—1)oi7*/2] (22)
The variance, 22, is given by
S2=exp(o2t*)—1. (23)

Recall that 7o/ during matter domination. We can see
that the rms fluctuation of the density = ~ 72/ to lowest
order in ¢ so that, again, we are reproducing linear theory.
The skewness of y is just

I'=[exp(0?t*)—1]'?[exp(0?t*)+2] (24)

so that the skewness vanishes at early times. We shall return
to this in Section 5. Fig. 1 shows the behaviour of the distri-
bution of y with time: it looks Gaussian at early times and
becomes progressively more and more skewed as time
progresses.

Many properties of statistical fluctuations can be
expressed succinctly in terms of the Moment Generating
Function, M(s), defined by

sl‘l

, =J’dxf(x)e”‘=<e”>, (25)

where the u, are defined by equation (17) (see Pecbles 1980;
Fry 1985). Inserting the form of the lognormal into this
equation leads to a divergent integral for any real, positive
(non-zero), s. [For negative s, the integral in (25) is finite, but
the series expansion diverges. See the remarks below
concerning the Void Probability Function.] This strange
behaviour is related to an important property of the
lognormal distribution: it is not completely determined by its
moments. In other words, one could construct at least one
different distribution with all moments identical to those of a
given lognormal distribution. This problem is discussed
extensively in the statistical literature (Aitchison & Brown
1969; Kendall & Stuart 1977; Crow & Shimizu 1988). The
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var(x)=10.0
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Figure 1. Lognormal distributions P(y) generated from underlying
Gaussian distributions with variance shown. The variable y is
related to the Gaussian x via y=exp[x —var(x)/2], as discussed in
the text prior to equation (22), in order to conserve matter globally.

5

condition that any set of moments completely determine a
probability distribution can be put in a number of ways. The
simplest is the requirement that

lim sup(u,s"/n!)'"<1 (26)

n—>

or, using Stirling’s approximation for !

lim sup(u,)’"/n<k/s, (27)
h—

where k is a constant and s is any real non-zero s. These
conditions are not satisfied for the lognormal since (u.)""" ~
exp(u + no?/2).

It seems therefore that our non-linear density distribution
cannot be described completely, in a statistical sense, by a
complete specification of all its moments. One might argue
here that this does not have any implications for the descrip-
tion of the real distribution of matter in space because we just
happen to have picked a pathological distribution in our
choice of the exponential transformation of the initial
conditions. Recall, however, how the Zel'dovich (1970)
approximation boils down to a similar transformation that
would have y =(1-¢e7?)~! (13). If £ is Gaussian in this case,
it is very straightforward to show that, far from being
completely determined by its moments, none of the moments
of the distribution of y actually exist, even for arbitrarily
small o,. This is explained by noting that there will always be
a finite number of caustics in a field evolved according to
(13). These might be very improbable (e7?=1 for a caustic
which is very unlikely if 0,72 < 1), but still cause a divergence
of the integral when it is taken over an infinite space. The
widespread use and success of the Zel’dovich approximation
suggest that the problem we have discovered in connection
with the lognormal is likely to be true of any non-linear
density field with a long positive tail. Indeed, one way of
stating the conditions (26, 27) is that the one-point pdf
should not decay any slower than an exponential at large y
(Kendall & Stuart 1977, p. 423). Note, however, that it is the
very high peaks which cause the divergence of the integral.
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When such a high peak forms, the local density field will
probably not be well-described by a lognormal and the
Zeldovich approximation certainly breaks down when a
caustic forms. It may be that the strong clustering in such
regions is better described, for example, by one of Fry’s
(1985) hierarchical distributions which are all uniquely
determined by their moments. Whether the actual matter
density field possesses this non-uniqueness property is there-
fore open to some doubt, but it is quite possible that it does.

In physical terms, the reason for non-uniqueness is that all
the high-order moments are dominated by the very high-
density regions of the density field. In a distribution where
there are very high overdensities and no compensating
underdensities (i.e. a skewed field bounded to the left at
zero), the high-order moments tell us only about the densest
clusters and practically nothing about the voids in between.
We could therefore re-arrange the voids, keeping the high-
order moments the same but obtaining a different overall
distribution. This is the reason behind White’s (1979) sugge-
tion that void probabilities should provide a good
discriminant between various types of model fields. One can
actually see this problem explicitly in the lognormal model
by looking at the void probability function which is simply
written as

B(V)=M(~1)

after suitable scaling of the variable (White 1979; Fry 1985).
We saw that for the LN distribution, the Moment Generating
Function for negative values of s can only be defined in terms
of an integral (which, unfortunately, cannot be done
analytically) and the series expansion in terms of moments
diverges. We can see therefore that a unique expression for
the void probabilities exists, but it cannot be expressed in
terms of all the moments of the distribution. This demon-
strates that, in general, F(V') contains at least information
about all moments of the distribution and, in cases like the
LN distribution, it in fact contains more information than is
contained in all the moments.

As a final point before we go on to discuss correlation
functions, it is worth stressing that, just as the complete set of
moments does not completely characterize the one-point
distribution, so the complete set of n-point covariance
functions cannot fully specify the n-point distribution. (The
moments basically determine the correlation functions at
zero lag.) This places even more importance upon searches
for alternative statistical measures of clustering than the
traditional correlation function approach initiated by Peebles
and his co-workers (Peebles 1980, and references therein).

5 CORRELATIONS IN THE LN MODEL
5.1 Two-point correlation functions

We use Peebles’ (1980) method for covering the covariance
functions of continuous random fields into the n-point
correlations functions of a point data set. The two-point
correlation function is calculated from the moments of the

two-point pdf f;(x,, x,):

_ O =) =<0»
()

&(r) (28)

so that

Ixix2f(x15 Xz) Xm dy,
[ Txfi(x

We shall work with the y-field defined in Section 4 to avoid a
proliferation of factors of g,. The x; correspond to different
positions- r; and r=|r; —r,|. The integral is easily evaluated
by substituting the form (6) for the two-point distribution and
then transforming back to a bivariate Gaussian. We find that

&(r)=exp[E(r)] - L. (30)

Devotees of biased clustering theory will recognize this as the
Politzer & Wise (1984) approximation for the correlation
function of high-level regions of a Gaussian random field; it
is an exact expression for the (unbiased) correlation function
of a lognormal field in terms of the covariance funcion of the
underlying Gaussian field.

Our discussion of kinematics in Section 3.3 suggested that
the generating Gaussian field should be related to the
divergence of the peculiar velocity field e(r)=(V-v). If this
field has covariance function = (r) at 7= 7, then the matter
correlation function scales as

1+&(r)= (29)

E(r,1)=exp [Eo(r) (l) j]—* 1. (31)

Ty

Again, we find that linear theory is reproduced, with &(r)
scaling as ~ ¢*/3. Furthermore, as we enter the non-linear
regime the correlation function begins to steepen, as demon-
strated in Fig. 2. This is a well-known feature of non-linear
gravitational clustering, as evidenced by numerical simula-
tions (see, Efstathiou er al. 1985). One difficulty with the
model (31) is that it predicts that &(r)= 0 at the same rfor all
7. Numerical experiments are generally too noisy to deter-
mine the zero-crossing with any real accuracy, but alternative

—
S 0 var(x)=1.0
X -1
b=
o7

-3

var(x)=0.01
- var(x)=0.1

0 10 20 .3'0 4lO 50 60 70 80 90 100

r (Mpc, h=0.5)

Figure 2. Evolution of the matter correlation function via the
expression (31). The correlation functions are those generated by
transformations of Gaussian processes with variances shown.
Steepening of the correlation function is only perceptible for the
highly non-linear model. The underlying correlation functien is that
of Cold Dark Matter correlation function smoothed on a scale of 10
Mpc (h=0.5).
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theoretical techniques do suggest that the zero-crossing
should move in the non-linear regime (Bond & Couchman
1988; Coles 1990). However, we know already that this
model is only going to be reliable in the weakly non-linear
regime anyway and these theoretical studies show that the
zero-crossing is robust to small-scale non-linear effects when
the large-scale clustering is still weak.

The observational data suggest that the galaxy-galaxy
two-point correlation function is well-fitted by the form

sgﬁ=(ﬂ_' (32)

Yo

with =5 h~! Mpc (see Shanks et al. 1989 for a discussion
of the data). Our expression would suggest a break with any
self-similar form for &(r) as non-linear clustering develops
and therefore seems to be at odds with the observations. In
fact, the observations do suggest that there may be a break in
the power law at r=10 A~! Mpc (Shanks et al. 1989) and
the power-law behaviour may well be generated by strong
non-linear behaviour (Peebles 1980; see also the comments
below about hierarchical higher order corelations) rather
than evidence for any scale-invariance in the initial data, i.e. a
power-law form for E(r). Our model therefore provides a
simple not-too-unconvincing heuristic model for the growth
of correlations into the non-linear regime.

5.2 Three-point correlation functions

The three-point correlation function §(ry, r,, r3)=§,p; is
obtained by a generalization of (28):

O =N = 0)xs —<x>)>'

Ci3= <X> (33)
Noting that ()= 1 for this field, we find that
Cias =02 X3 — i) = U2 x3) = ) + 2. (34)

If we denote &; = &(r;) and note that 1+ &;=(x,y,), we find
that

(X1x2x3)=exp[E p + By + By (35)
and eliminating = we find that
Ci23=&51 810+ 812803+ 8385+ 81265385, (36)

so that the three-point correlations of the LN random field
obey a well-known form known as the Kirkwood scaling
relation (Kirkwood 1935; Peebles 1980; Matarrese, Lucchin
& Bonometto 1986; Bonometto, Lucchin & Matarrese
1987; Szalay 1988).

Observational determinations of the three-point correla-
tion function were carried out by Groth & Peebles (1977)
who found that their results were consistent with a purely
hierarchical form (Peebles & Growth 1975) for &,,:

C13=0(&3 81t 81060+ E53E3) (37)

with Q=1 out to about 2 A~! Mpc. Importantly, these
results are obtained only from two-dimensional data, which
leads to some uncertainty in the interpretation (Bonometto et
al. 1987). Whether the triple term absent from (36) is signifi-
cant has been a question of considerable debate in recent
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times. Groth & Peebles (1977) argue strongly that this term is
absent in the data; Shanks’ (1979) analysis suggested that one
cannot discriminate the two possiblities. Bonometto et al.
(1987) found that their de-projection technique gave a best
fit with the triple term present. More recently still, Téth,
Hollési & Szalay (1989) have analysed the three-point
correlations of rich clusters and find no evidence for the tri-
ple term, which seems bad news for biased theories of rich
cluster formation which also predict the existence of this
term (Kaiser 1984a; Politzer & Wise 1984; Jensen & Szalay
1986). In any case, the observations of galaxy triplet correla-
tions are only reliable out to distances where the galaxy pair
correlations are very strong. They do not strongly constrain
the weakly non-linear behaviour we are interested in. The
generation of hierarchical higher order correlations during
the strongly non-linear regime is extremely plausible (Davis
& Peebles 1977; Peebles 1980; Hamilton 1988). One also
wonders what sense there is in quoting tight error bars on
Q(1£0.1 is quoted by Téth er al. 1989) when different
determinations of &(r) give a factor of ~ 10 variation at these
distances (Shanks et al. 1989).

Numerical simulations (Fry 1985; Melott & Fry 1986)
show that it is not difficult for any model to reproduce Q ~ 1.
It may be that this is because of the generation of hierarchical
clustering during the strongly non-linear phase, but we shall
argue here that, if one wishes to discriminate between
arbitrary models in the weakly non-linear regime, then Qis a
bad statistic to choose.

For illustrative purposes we shall consider three-point
correlations for point configurations which are equilateral
triangles &,,=&,;=£&;,=&(r). The restricted three-point
correlation function is then

gea=exp[3&(r)]— 3 exp[&(r)]+2. (38)
Putting x = exp[&(r)] we find that

gea=(x—1%(x+2). (39)
We thus obtain

eq _ Ceq -

0 07 (x+2)/3 (40)

(remembering that (y)=1), so that Q should really be a
function of distance; the uncertainties in the quoted obser-
vational results may be sufficient to conceal this behaviour in
the data. This does not tend to zero at early times in our
model, even though we know that the lognormal model looks
arbitrarily close to a Gaussian when the generating variance
is small. The statistic Q is often interpreted as a measure of
the skewness of the distribution (e.g. Peebles 1980; Fry
1985). This analysis demonstrates that it is not a good
measure of (multivariate) skewness because it does not go to
zero even when the univariate distribution is unskewed
(Section 4): Q%9—1 as ¢2~0 and I' > 0. A more sensible way
of discriminating between models would be to use an
extension of the skewness we introduced in (20):

(ge9y?
E(ry’

which goes to zero as r— . The extension to the non-
degenerate case is straightforward. We can actually calculate

1/2
r(r) =[ } =[(x—1)(x+2)"? (41)
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I' for the two-dimensional data of Groth & Peebles (1977),
assuming that Q is actually constant as they claim. The result
is that

I(6)~ 61~ (42)

where y~1.7-1.8. Clearly the skewness is decreasing with
angular separation so the distribution may be tending
towards a multivariate Gaussian for larger separations.

We must stress here that we are not arguing that Q should
not be used in galaxy clustering studies. If the correlations
are strong then they might well be hierarchical in form and Q
is then the best way to parameterize them. However, it would
be misguided to attempt to continue its use into the region
where the correlations are weak; it is an inappropriate
statistical tool for measuring slight departures from Gaussian
behaviour.

5.3 Higher order correlations

It is a straightforward matter to extend the calculations above
to the general nth order correlation functions. We find that
the Kirkwood scaling relation is generalized to

&n(rh”"rn):n[g(ri’ rj)+1]_1‘ (43)

i>j

Observational results have only been obtained with any
confidence for the fourth-order term (Fry & Peebles 1978;
Sharp, Bonometto & Lucchin 1984). The results are less
certain but seem to be consistent with the hierarchical form

Ni23a =R (81,8233, + ...(12 terms))]
+Ry[&1,613814+ ... (4 terms)), (44)

where the first sum is over all 12 distinct ‘snake’ connections
and the second is over the four distinct ‘star’ graphs. The
values of R, =2.5 and R,=4.3 are uncertain by at least ~ 50
per cent. We can see an analogous problem to that which we
found for Q by again specializing to the case where galaxies
are at the corners of regular tetrahedra so that the &;; are all
equal. The model (44) would have #7°=constant &(r)?
whereas our lognormal model has

799 =(x— 1P[x?+3x2+ 6x+6]= EI[E3+ 6£2+15& + 16]
(45)

giving us

Redoc poa/E3 oc [E3+ 6E2+ 158 +16] (46)

so, like Q, the R would depend on distance in this model.
More importantly, this parameter does not go to zero as
r—~o and £—0. Again the best discriminator would be
obtained by defining a kurtosis coefficient:

Ke=np/E2=E[E3+ 682+ 156 +16] (47)

which has the desired properties. Because of the possibility
that ‘snake’ and ‘star’ configurations might cluster differently
as in the model (44), it is more difficult to generalize this
definintion to the case of non-degenerate separations. The
simplest way is to define two coefficients x, and x, so that
the denominator in (47) comprises a sum over snakes and
stars, respectively as in (44).

6 CONSISTENT TREATMENT OF
DENSITIES AND VELOCITIES

Considerable theoretical attention has been paid in recent
times (Gorski er al. 1989, and references therein) to the
analysis of streaming motions revealed by redshift-indepen-
dent estimators of galaxy distances (Collins, Joseph &
Robertson 1986; Lynden-Bell et al. 1988; Gorski er al. 1989,
and references therein). These studies invariably involve the
application of purely linear perturbation theory to the pecu-
liar velocity field. As we discussed in Section 3.3, it seems
more reasonable to invoke Gaussian statistics for the local
velocities than for the matter density. Our ansatz for g(x)
allows us to determine in a very straightforward way at what
scale the observed (linear) velocity correlations imply a
departure from linear theory for the matter correlations.

The scale at which non-linear effects become important is
particularly relevant for studies of biasing (Coles 1986;
BBKS; Coles 1989; Lumsden et al. 1989) which have
demonstrated that the biased correlation function is sensi-
tively dependent upon the shape of the underlying matter
correlation function. Bond & Couchman (1988) and Coles
(1990) have employed approximate analytical techniques
(the Zel'dovich approximation and second-order perturba-
tion theory respectively) to estimate the departures from
linear theory and found them to be slight on scales ~25 A~!
Mpc for the popular CDM model. We shall see in this section
how the model (12) provides a simple estimate of the scale at
which departures from Gaussian statistics become
important.

To show the consistency of our treatment of matter and
velocity fields we shall use the notation of Gorski (1988) (see
also Gorski et al. (1989). In Gorski’s notation, the covariance
function of the total (3D) peculiar velocity field in linear
theory is

W(r)=@(x)v(x+r)
=W, (r)+2%,(r)

_ HXQ? J'°° P(K) sin(kr)
27t

dk, 48
0 kr ( )

where P (k) is just the power spectrum of the linear density
fluctuations. Following the work of Rice (1945) (reprinted in
Wax 1954; see also BBKS; Coles 1989) we find that

E(r)=(e(x)e(x+r)

~(V-o&)[V-v(x+r)

= —d*W¥(r)/dr? (49)
so that .

E(r)~ r P(k)k?[sin(kr)/kr] dk

which is just the linear theory matter correlation function,
&(r). The usefulness of this connection is that we can esti-
mate the non-linear contribution to &(r) by comparing

& with [exp(§;)—1].

This is a much simpler check on the validity of the linear
approach than those by Bond & Couchman (1988) or Coles
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(1990) and is still more rigorous than the usual assumption
that one can use linear theory until & = 1. If we look at the
normalization of the CDM model (with £=0.5 and Q,=1,
for example) we find that, in the b=1 case, the difference
between linear and LN extrapolations is about 13 per cent at
r=10 h~! Mpc and falls to less than 1 per cent at r=25 h~!
Mpe, figures which are surprisingly close to those obtained
by Bond & Couchman (1988) and Coles (1990). Our model
seems to be a helpful consistency check on linear theory.

Note that we do not expect the actual shape of &(r) to be
given accurately at small separations by (31); what we do
claim is that we can use (31) to estimate the order-of-
magnitude departures from linear theory in the weakly non-
linear regime.

7 A MODEL FOR THE GALAXY NUMBER-
COUNT DISTRIBUTION

Our discussion of the lognormal model has so far been
limited to the treatment of the fluctuations in total matter
density with position in space. It may be that there is a very
non-linear relationship between the local matter density and
the local number-density of galaxies; this is the idea behind
biased galaxy formation (see Section 8.3 and references
therein). To avoid further complexities, however, we shall
suggest a simple way of extending the (continuous) lognormal
distribution to provide a description of the (discrete)
number-count distribution which does not invoke biasing
and which has, at least on average, a linear relationship
between galaxy number density and mass density.

Let us suppose that g is distributed according to ¢ ~ A(x,
0?) (see Section 2.1). An easy (but not unique) way of obtain-
ing a discrete distribution-of galaxies is to assume that the
number of galaxies at a point is given by a Poisson process
with some mean density A but that this 4 is given by the local
mass density:

A= Bp, (50)

where f is some constant, normalized to give the correct
number density of the objects in question. Note that we
actually assumed a relation of the form (50) in our treatment
of the correlations in Section 5 (Peebles 1980). With these
two assumptions the probability of finding r galaxies in a
small volume V¥, which is incorporated in 3, at a point
where the local mass density is o is just

©

Pr(N= n)=J p(A( P(n|)dA

0

- Jl_%r e-w-lexp[—4*[1%(12/52‘”] ] a.
oy2m ™0

(51)

There is no known simpler way of writing this distribution,
which is an example of a unimodal lattice distribution
(Johnson & Kotz 1970, p. 31; Crow & Shimizu 1988, pp.
195-210). Fry (1985) suggested a method for deriving such
distributions from the moment generating function M(s).
Fry’s prescription will not work for our model as the moment
generating function does not exist for the lognormal distribu-
tion, as we found in Section 3.

Model for the cosmological mass distribution 9

From (51) it is straightforward to calculate the kth order
factorial moments (Kendall & Stuart 1977, p. 65):

pyg =k, (52)
(k]

where a = fe# and w= ¢”'. From these we quickly determine
both the central and non-central moments. The results are

pi=alw

wy=alolawfw+1]

Us= aJola’ o' +3aww +1)
,u;=a\/Z[a3w7\/Z+6a2w4+7aw\/5+l] (53)

and so on for the non-central moments (i.e. about the origin).
For the first few central moments we find

,uz=a\/Z[a(w— IWo+1]
ws=adola’o(o—1(0+2)+3a(w—1w+1]
ui=ajola’ wfo(w’ +20° + 3w’ - 3)

t6a’w(w—1) 0’ +o—1)+aJo(To—4)+1].  (54)

Note that, when a\/Z) is small, the last term dominates in
each of these expressions; in particular, the non-central
moments are equal and are therefore just those of a Poisson
distribution. The distribution is then discreteness-
dominated. When ayw is large the first term dominates and
the non-central moments are just those of the lognormal
distribution derived in Section 4. It can be seen, therefore,
that the distribution of log n will look significantly non-
Gaussian for some parameter choices. It may be that
discreteness fluctuations of the sort we have introduced here
could result in a skewed distribution of log n. Furthermore,
note that the procedure of ‘binning’ galaxies to produce a
histogram of number-counts does not necessarily leave the
distribution unchanged. If the bin size is greater than some
scale length of order the coherence length of the fluctuations
(Coles 1988), the binned distribution will tend to look like a
Gaussian independently of the actual distribution. When
looked at in terms of log n, the distribution would therefore
look skewed. The observations mentioned in Section 2.1 do
not therefore rule out the use of a lognormal as a model for
the underlying matter distribution; detailed modelling is
needed to test this hypothesis.

8 FURTHER PROPERTIES OF LN DENSITY
FLUCTUATIONS

8.1 Maxima

We discussed already (in Section 3) that the LN model can be
regarded as a kind of biasing in itself. It is also possible to
calculate the statistical properties of the peaks of LN fluctua-
tions to the same extent as one can for Gaussian fluctuations.
The details of the calculations are given in Coles (1989) and
so will not be repeated here. The usefulness of such
calculations is that one can examine how sensitively the
clustering properties of maxima (or high-level regions)
depend on the underlying statistics. The need for such an
examination is clear because we know Gaussian statistics
cannot be correct when 6 ~ 1 (Section 1; Fry 1986). In fact,
the LN random field exhibits similar biased correlations to
the Gaussian (Coles 1989) so this problem seems not to be
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severe for the usual theoretical treatments of biased galaxy
formation. Indeed, this behaviour seems to be part of a
general tendency for the statistics of high peaks to be only
rather weakly dependent on the exact form of the underlying
statistics (Coles & Barrow 1987; Catelan, Lucchin &
Matarrese 1988).

8.2 Topology

In Sections 4 and 5 we demonstrated the importance of
finding alternative statistical characterizations of clustering
patterns to the traditional approach based on moments and
correlation functions. One promising avenue in recent years
has been to look at the topology of the distribution obtained
by smoothing the point distribution on some scale. Topologi-
cal characteristics such as the genus, Euler-Poincaré charac-
teristic, mean curvature etc. change when the field so
obtained is ‘sliced’ at different threshold levels v. The
variation of topology with v can be used to discriminate
between different clustering models (Gott, Melott &
Dickinson 1986; Gott, Weinberg & Melott 1987; Hamilton,
Gott & Weinberg 1987; Weinberg, Gott & Melott 1987;
Couchman 1987b; Coles 1988; Melott, Weinberg & Gott
1988). An explicit calculation of these topological charac-
teristics for two-dimensional LN random field was carried
out by Coles (1988). The extension to 3D is trivial when one
notes that the unique mapping (4) of a Gaussian on to the
LN field ensures that the topology of the LN field above the
level x must be the same as that of the Gaussian field above
the level log x. We shall not give the detailed results here as
they essentially involve a replacement of v by log v in the
genus curves of the above references.

What is worth pointing out, however, is that the technique
used by the topologists cited above to calculate the slicing
levels for comparing topologies is not the best way to utilize
the topological behaviour for statistical discrimination
between Gaussian and non-Gaussian fields. Gott et al.
(1987) pick their level by choosing the same fraction of
points to be above the level in each comparison case. For a
LN field, this procedure would produce a genus curve
identical to that of a Gaussian field (apart from a
normalization factor): since there is a one-to-one mapping,
(4), the top 1 per cent points of the X-field map to the top 1
per cent points of the Y-field and the mapping therefore
preserves the topology above fixed fractile levels. One could
therefore not discriminate between the Gaussian and a LN
field by this procedure. Furthermore, any density field
obtained by a unique mapping would behave in a similar way.
A particular example is the Zel'dovich (1970) approxima-
tion: in the early stages of non-linear evolution the points
contained in a volume element at Eulerian position x all
arrive there from the same Lagrangian position g so there is a
similar unique mapping. (The weak dependence of topology
so defined in this regime can also be observed in numerical
simulations; Melott, private communication.) Later on the
matter flow becomes a multistream flow (‘shell crossing’
occurs: Shandarin & Zel'dovich 1989) and the uniqueness is
broken. In general circumstances, however, the procedure
outlined above does not make the most of the discrimatory
power of topological characteristics. A better way of
choosing the level v would be to pick v to be a fixed number
of standard deviations above the mean. Although this makes

the procedure into a parametric one, a substantial increase in
the power of the discriminant would be obtained (see also
Coles & Barrow 1987).

8.3 Simulating LN fluctuations

Although, as we have seen, many of the properties of LN
fields are tractable analytically, there are circumstances
where one might have to resort to Monte-Carlo simulations.
Coles (1988, 1989) showed how to simulate continuous
lognormal fields on a grid using FFT techniques. The
extension to three dimensions is straightforward and will not
be given here.

It is useful, however, to show how the technique can be
extended to allow the simulation of clustered point patterns.
Previously the techniques available for such simulations have
been limited to variations on the Poisson cluster models
pioneered by Neyman & Scott (1952) (see also Peebles 1980;
Barrow & Bhavsar 1987, and references therein). A
laborious trial-and-error computer model for galaxy
clustering studies was presented by Soneira & Peebles (1978)
which incorporated correlations up to fourth-order but no
further. More recently, Messina et al. (1990) have performed
N-body simulations for non-Gaussian initial perturbations.
Their algorithm for generating the starting configuration is
based on the Zel'dovich approximation (Section 3.3) and can
only generate mildly non-Gaussian initial conditions.
Furthermore, they are restricted to white noise fluctuations
(i.e. possessing a correlation function which is identically
zero everywhere) so that their method cannot reproduce
initial fields possessing information about all the finite-
dimensional distributions.

The LN field allows us to construct discrete simulations
very easily. The 2D case is outlined here but the procedure
can be generalized very straightforwardly. One simply picks
the desired correlation function for the continuous LN
density field, calculates the covariance of the Gaussian field
required to generate it {ie. E(r)~log[1l+ &(r)]}, performs a
random-phase FFT to generate the e-field on a grid and then
maps this on to a x-field, defined on a grid, via y;;=exp(e;).
If one desires the mean number of galaxies for each
realization to be (N,) then the probability of finding a galaxy
at the position {i, j} is just

py=1- exp(— ﬁXij)
= By (small B), (55)

where the choice of B determines (N,):
<Ng>=Np_Z exp(-—ﬂxq')’ (56)
i

where N, is the number of grid positions (‘pixels’). The actual
number of galaxies will vary from realization to realization
and care must be taken that the distribution is not
discreteness-dominated (see Section 7). Examples of point
patterns generated in this way are given in Fig. 3.

8.4 Multifractal description

Another alternative to traditional characterizations of galaxy
clustering is the multifractal formalism (Jones ez al. 1988,
and references therein). We shall concentrate on its use for
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(a)

(b)

ka3

Figure 3. Simulations of clustered point patterns generated from lognormal random fields using the method described in Section 8.3. The
underlying Gaussian fluctuations have variances (a) 0.01, (b) 0.1, (c) 1.0 and (d) 10.0 so these maps have one-point distributions like those
shown in Fig. 1. They all possess the same shape correlation function but the amplitude is scaled according to the variance of the generated
process. The correlation function is &(r)oc(1+ r2/2r2)™", as used by Coles (1988), with r, approximately 3 per cent of the map edge. Each is laid
down on a 256 X 256 grid by an FFT technique as discussed in the text. The number of points varies slightly from simulation to simulation, but
is about 650 in each of the cases considered. The development of clustering is clearly visible.

characterizing a point data set, such as that produced by the
simulations of Section 8.3, although oné could, in principle,
apply it to smoothed density fields. There are many ways of
defining the multifractal behaviour, all interrelated. We shall
concentrate here on the function 7(q) which is defined in
terms of the moments of the occupation probabilities of cells
of vanishingly small size s:

i q
_ i 102ZP(5)"
o logs

7(q) (57)

When one is dealing with a point set, one cannot let ¢ tend to
zero because the cell-counts then become discreteness-
dominated. It is easy to see how this happens. The occupa-
tion probabilities will be given by an expression of the form
(55). The value of B will just be proportional to the cell
volume, s3, and the ratio in (57) can be replaced by a
derivative using UHopital’s rule. As s—0, p;~ s3. The result
is a linear dependence of 7(q) on g characteristic of the scale-

independent purely fractal behaviour exemplified by Poisson
noise.

Fortunately, the behaviour of (57) at finite (but small) s
seems also to be interesting (Jones et al. 1988). The multi-
fractal behaviour can be calculated by noting that, not only
does B scale with s, but so does the variance of the Gaussian
field which generates the lognormal, previously denoted &, so
in general the pure fractal behaviour is broken. We find, for
small s, that a term proportional to g(q —1)h*(t)do?/ds is
added to the linear expression obtained for the Poisson-
dominated case above [Ah(z) is the time-scaling factor in (22)].
The homogeneous scaling behaviour is therefore broken and
the departure is greater at late times and for large |g|. In
other words, both the deep ‘voids’ (described by negative q)
and the high ‘peaks’ (positive g) show the greatest departure.
Note also that, when g=0 or g=1, 7(q) is unchanged from
the Poisson scale-invariant case. This means that our
exponential transformation leaves unchanged the Haussdorf
dimension D, and the information dimension D, (using the
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notation of Jones et al. 1988). We can estimate do?/ds by
modelling the ‘binning’ process as equivalent to smoothing
the e-field on a scale s. The power spectrum of ¢ [the Fourier
transform of Z (r)] is thus, e.g. for Gaussian smoothing,

Pk, s)=Pk)exp(— k?s?)
so that

do. _ ~2sJ P(k)k* exp(—k’s*) dk, (58)
ds 0

and the manner of the multifractal scaling of the LN model
depends on the power-spectrum of the underlying Gaussian
field.

It is worth remarking here that one has to be careful in
applying this sort of statistic in practice because, when one
smooths the field on a scale of order the coherence length of
the fluctuations, one changes the underlying statistics. If one
smooths on a large scale the statistics of the smoothed field
will approach the Gaussian form by virtue of the central limit
theorem. One must tread a narrow line, therefore, between
discreteness domination on the one hand and smoothing
domination on the other. Further expertise in using multi-
fractal techniques will be gained by using them on realiza-
tions of LN fields and we shall return to this in future work.
In particular, such models can help us determine the best
way of extracting the 7(q) from a data set. Bearing in mind
the difficulties with the other statistics we have uncovered
and the fact that so much useful information is related to the

multifractal function 7(q) (Jones et al. 1988), we consider

this to be an important avenue for exploration.

9 CONCLUSIONS

We have studied the properties of a particular non-Gaussian
random field, the lognormal random field, and found several
reasons (both statistical and kinematical) why it should be an
interesting model to study with regard to the statistics of
large-scale galaxy clustering.

The model’s close relationship to a Gaussian random field
(the general LN field includes the Gaussian case in the limit
of zero rms fluctuation) allows to perform a complete
statistical decomposition and calculate analytically how the
usual statistical quantities used in analyses of galaxy
catalogues would behave if the density fluctuations were as
given by the model. The most important points of this
analysis are the following.

(i) It is by no means obvious that the actual density
distribution is such that it can be specified by all its moments.
The LN distribution is in no way ‘pathological’ but does
possess this disturbing property.

(ii) The ‘Void Probability Function’ cannot be expressed
as a moment expansion in this model since the moment
generating function does not exist. This function therefore
contains more information than can be contained in the set
of moments of the distribution. This is intimately related to
(i).

(iii) A calculation of the higher order correlation
functions for the model demonstrates that the usual
parameterization of higher-order correlations in terms of Q
and R, although possibly useful in the strongly non-linear

regime, will not be useful for discriminating between
Gaussian and non-Gaussian fluctuations in general.
Alternative parameterizations are presented and discussed.

(iv) The model allows an heuristic treatment of the
steepening of the two-point correlation function in the non-
linear regime and the generation of higher-order correlations
from initially Gaussian perturbations.

(v) A connection can be made between our model for the
non-linear density field and the statistics of the linear velocity
field. This allows us to determine the domain within which
linear theory can simultaneously apply to both density and
velocity.

(vi) The model reveals that current procedures for
treating the ‘topology’ of the regions where the density
exceeds a given threshold do not make the most of the
information available from the topological measures used.
We have proposed a new procedure.

(vii) We have outlined a new ‘paradigm’ for the simulation
of clustered point data sets as an alternative to traditional
methods based on Poisson clusters and given some examples
of the results obtained.

(viii) The multifractal approach can provide important
information about departures from purely fractal scaling
behaviour. Simulations are needed to determine the compu-
tational procedures that best utilize the information
contained in such measures.

It is possible to regard the LN model under different lights.
To some it will be a plausible model for the large-scale
distribution of matter that can be tested against observations.
We have shown how such a test could be performed and will
return to this question in later work when better clustering
data are available. To others, more sceptical perhaps, the
model is just a ‘toy’ model which has no real physical justifi-
cation but which illustrates some of the likely pitfalls of
currently popular statistical approaches when we try to
extend them into the weak clustering regime, where there are
currently very poor data. Toys such as this one (and the
others mentioned in the introduction) should be taken
seriously; like the best children’s games, they are educational
as well as entertaining.
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