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ABSTRACT

The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis,
replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are
translated via an internal ribosome entry site (IRES) located at the 59 UTR, which acts as a scaffold for recruiting multiple
protein factors. Replication of the viral genome is initiated at the 39 UTR. Bioinformatics methods have identified other
structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform
structure at the 39 end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 39 end of the
genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range
RNA–RNA interaction between the 59 and 39 ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring
substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are
essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus
were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the
existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 59–39 end
bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.
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INTRODUCTION

The hepatitis C virus (HCV) genome is a 9.6 kb long, (+)
polarity, single-stranded RNA molecule (Choo et al. 1989;
Kato et al. 1990; Takamizawa et al. 1991). The single open
reading frame (ORF) is flanked by highly structured 59 and
39 untranslatable regions (UTRs), which contain essential
domains for viral translation, replication, and infectivity
(Fig. 1A; Tsukiyama-Kohara et al. 1992; Wang et al. 1993;
Kolykhalov et al. 2000; Friebe et al. 2001; Friebe and
Bartenschlager 2002; Yi and Lemon 2003a,b). The genomic
RNA serves as mRNA for the production of a single
polyprotein product, which is co- and post-translationally

processed by viral and cellular proteases to yield structural
and nonstructural proteins. Viral protein synthesis is ini-
tiated in a cap-independent manner by a highly conserved
domain that acts as an internal ribosome entry site (IRES)
(Fig. 1A), largely located at the 59 UTR (Tsukiyama-Kohara
et al. 1992; Wang et al. 1993). This represents an alternative
mechanism to that employed by cellular mRNAs, in which
40S ribosomal subunits are directly recruited in the absence
of any other canonical initiation factor, directly positioning
the start codon at the ribosome P site (Lytle et al. 2002;
Ji et al. 2004; Otto and Puglisi 2004). The HCV IRES spans
a region of 340 nucleotides (nt) that includes a short
stretch of the 59 core coding sequence (Fig. 1A; Reynolds
et al. 1995; Wang et al. 2000), and has a complex
organization that must be preserved for it to be active
(Lukavsky et al. 2000; Odreman-Macchioli et al. 2000;
Collier et al. 2002; Kieft et al. 2002). Under physiological
magnesium concentrations, the IRES is folded into four
stem–loop motifs (designated I–IV) that define different
functional domains (Fig. 1A), each with essential roles in
ribosome recruitment and viral RNA synthesis. Domain
IIId, which is particularly important in IRES function

Abbreviations: HCV, hepatitis C virus; FMDV; foot and mouth disease
virus; IRES, internal ribosome entry site; UTR, untranslatable region; CRE,
cis-acting replication element.

Reprint requests to: Alfredo Berzal-Herranz, Departamento de Biologı́a
Molecular, Instituto de Parasitologı́a y Biomedicina ‘‘López-Neyra,’’
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FIGURE 1. (A) Sequence and secondary structure for the 59 and the 39 ends of the HCV genome. The 59 UTR plus domains V and VI located at the
core coding sequence are included. The minimum region for IRES activity is shown. The 39 end of the viral genomic RNA is organized into two
structural elements: the CRE region and the 39X-tail, separated by a hypervariable sequence and the polyU/UC stretch. Numbers refer to the nucleotide
positions of the HCV Con1 isolate. Residues accessible to RNase T1, RNase V1, or lead processing under nondenaturing conditions are indicated by an
asterisk, an arrow, or underlined, respectively. Start and stop translation codons placed at positions 342 and 9371, respectively, are shown in bold. (B)
Diagram of the transcripts encompassing different functional domains of both the 59 and the 39 ends of the HCV genome used in this study.
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(Barria et al. 2008), is composed of two short helices
separated by a loop E and capped by an apical loop folded
into a U-turn motif (Fig. 1A; Jubin et al. 2000; Klinck et al.
2000). Domain IIId acts as the main anchoring site for
the 40S ribosomal subunit (Kolupaeva et al. 2000; Lukavsky
et al. 2000; Babaylova et al. 2009). The high sequence
and structural conservation rate among the hepaciviruses
and even related RNA viruses firmly supports its require-
ment for viral persistence (Jubin et al. 2000; Barria et al.
2008).

The 39 UTR is an evolutionarily conserved structural
element around 200 nt long located at the 39 end of the
HCV RNA genome (Fig. 1A; Kolykhalov et al. 1996), and
has a critical function in HCV replication (Kolykhalov et al.
2000; Friebe and Bartenschlager 2002; Yi and Lemon 2003a,
b) and virion infectivity (Yanagi et al. 1999). Three dif-
ferent domains can be identified in this UTR: the highly
variable region (VR), a polyU/UC tract of variable length
and composition, and the 39X tail, composed of three stem-
loops (Fig. 1A, 39SLI, 39SLII, 39SLIII; Tanaka et al. 1996;
Blight and Rice 1997; Ito and Lai 1997).

Other functional and evolutionarily conserved RNA
motifs distinct from those present in the UTRs have been
recently described by analyzing the variability of syn-
onymous sites, through structural alignment studies, and
through classical phylogenetic comparisons. These motifs may
act as cis signals that modulate essential steps of the viral
cycle (Tuplin et al. 2002, 2004; Lee et al. 2004; You et al.
2004). The 59 core coding sequence shows a high sequence
conservation rate, which was initially thought to be related
to the existence of alternative reading frames (Walewski
et al. 2001; Xu et al. 2001; Choi et al. 2003; Branch et al.
2005); however, its importance has recently been shown in
the preservation of structures important for IRES activity
and replication (domains V and VI) (Fig. 1A; Wang et al.
2000; Kim et al. 2003; Beguiristain et al. 2005; McMullan
et al. 2007; Vassilaki et al. 2008). Within the 39 end of the
NS5B coding sequence, the stem–loop 5BSL3.2 is embed-
ded in a cruciform structure that has been identified as a
cis-essential element for viral RNA synthesis (cis-acting
replication element [CRE]) (Fig. 1A; Lee et al. 2004; You
et al. 2004). The 5BSL3.2 stem–loop consists of two G-C
rich helices connected by an eight-base bulge, and an apical
loop (Fig. 1A; Friebe et al. 2005). Disruptions in this
folding lead to replication-incompetent HCV genomes
(You et al. 2004; Friebe et al. 2005). Moreover, subtle
changes in the loop region prevent RNA replication, indi-
cating that sequence specificity is required for interaction
with protein factors and/or RNA functional elements.
Indeed, a kissing complex important for viral RNA syn-
thesis is established between the apical loop of 5BSL3.2 and
39SL2 in the 39HCV-39X tail (Friebe et al. 2005). More
recently, the internal loop of 5BSL3.2 has been involved
in the formation of an apical loop–internal loop (ALIL)
interaction with structural elements located upstream in

the NS5B coding sequence, suggesting the importance of
long-range RNA–RNA interactions in the modulation of
multiple steps of the viral cycle (Diviney et al. 2008).

Most cellular mRNAs and many viral RNAs adopt
a circular conformation that promotes efficient protein
synthesis (Sachs et al. 1997; Edgil and Harris 2006). The
acquisition of this conformation is mainly mediated by the
recruitment of protein factors that simultaneously interact
with both ends of the mRNA, facilitating the bridging
between the 59 and the 39 ends (Sachs et al. 1997). Alter-
natively, some viruses have developed RNA motifs located
at both ends of the genome with complementary sequences
that promote the protein-independent circularization of
the mRNA. This is the case of flavivirus (Harris et al. 2006),
certain picornaviruses, such as FMDV (Serrano et al. 2006),
retroviruses (Ooms et al. 2007; Kenyon et al. 2008), or
Dengue virus (Polacek et al. 2009), among others. With
respect to HCV, conflicting results regarding the role of the
39 UTR in viral protein synthesis have been reported (Ito
et al. 1998; Ito and Lai 1999; Fang and Moyer 2000; Michel
et al. 2001; Murakami et al. 2001; Kong and Sarnow 2002;
McCaffrey et al. 2002; Imbert et al. 2003; Bradrick et al.
2006; Song et al. 2006; Lourenco et al. 2008). Today it is
commonly accepted that the 39 end exerts an enhancer
translational effect through the recruitment of viral
and cellular protein factors that stimulate IRES activity
(McCaffrey et al. 2002; Bradrick et al. 2006; Song et al.
2006; Lourenco et al. 2008). However, little is known about
the possibility of establishing direct, long-range RNA–RNA
interactions between the ends of the HCV genome that
might modulate not only translation, but other viral pro-
cesses as well.

The present work describes a novel long-range RNA–
RNA interaction between the apical loop of subdomain IIId
in the IRES and the internal loop of 5BSL3.2. To our
knowledge, this is the first reported connection based on
sequence complementarity between the ends of the HCV
genome. The functional importance of the interacting RNA
motifs suggests the formation of this complex to have a
modulating role in viral protein synthesis and in the switch
from translation to replication during the viral cycle.

RESULTS

Identification of a long-distance RNA–RNA
interaction in the HCV genome

To look for functional links between the ends of the HCV
genome mediated by direct RNA–RNA interactions, two
RNA transcripts resembling the natural 59 and 39 ends of
the HCV were constructed (Fig. 1B). The RNA molecule
representing the 59 end (59HCV-691) contained the first
691 nt of the HCV genome, therefore encompassing the
whole 59 UTR and a significant portion of the core-coding
sequence. This should resemble the functional folding of the
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IRES to be examined (Wang et al. 2000;
Kim et al. 2003; Beguiristain et al.
2005). For the 39 construct, the 39

UTR was extended at its 59 end with
the three last hairpins of the NS5B
coding sequence (39HCV-9181), thus
enabling the correct interplay between
these regions and favoring functional
folding (You et al. 2004; Friebe et al.
2005). 32P-internally labeled 59HCV-
691 RNA was incubated with a molar
excess of the nonlabeled 39 end construct
under low magnesium concentrations
and resolved in native polyacrylamide
gels (Fig. 2A). A dose-dependent com-
plex with lower electrophoresis mobility
was detected. This provides evidences of
the existence of an interaction between
the ends of the HCV genome. Binding
assays were repeated four times and the
data fitted to a nonlinear equation to
obtain the dissociation constant, Kd.
The 39 fragment bound at high affinity
with a Kd value of 49.5 nM; the ampli-
tude of the reaction reached up to 77%
(Fig. 2A; Table 1). This led us to ask
whether the inverse reaction was also
possible. To answer this question, the 39

end was internally labeled and incu-
bated with increasing concentrations
of the nonlabeled 59HCV-691 RNA. A
retarded complex was observed, indi-
cating that the interaction occurs irre-
spective of the RNA probe used (Fig.
2B). Surprisingly, a 10-fold increase in
the Kd value was observed with respect
to that obtained for the 59 probe (Fig.
2B; Table 1). This asymmetry in the
reaction might be related to the specific
reaction conditions.

To further study the specificity of the
interaction, the 59 and the 39 transcripts were challenged
with a nonrelated RNA molecule, RNA 667 (Fig. 2C). This
was unable to interact with either of the HCV genome ends.
Similar results were obtained when the 59 and the 39 probes
were incubated with the corresponding 39- and 59-end
transcripts of FMDV (Fig. 2D). A lack of interaction was
also detected when the 59- and 39-end constructs were
incubated with the respective antisense transcripts (Fig.
2E), verifying the strand specificity of the complex.

Taken together, these results demonstrate the occurrence
of an interaction between functional domains at the 59 and
39 ends of the HCV genome. This complex is specific for
HCV and occurs in a dose-dependent manner, in the
absence of proteins, and at low magnesium concentrations.

The specific RNA–RNA interaction between the
59 and 39 ends of the HCV RNA genome is restricted
to the IRES domain and the CRE region

Truncated mutants encompassing different viral RNA re-
gions were constructed, aimed at experimentally identifying
the functional domains essential for 59–39 contact. The 59

partner was the IRES and the 59core-coding sequence
(CCS), while the 39 end was divided into the CRE region,
the polyU/UC stretch, and the 39HCV-39X tail (Fig. 1B).
Each of these molecules was challenged with increasing
concentrations of the corresponding full-length nonlabeled
RNA to test their ability to interact. For the 59 end, only the
transcript containing the IRES efficiently associated with

FIGURE 2. RNA–RNA interactions established between the 59 and the 39 ends of the HCV
genome. (A,B) 59–39 ends binding is concentration dependent. Transcripts 59HCV-691 and
39HCV-9181 were alternatively used as probes and challenged with increasing concentrations
(10–500 nM) of their corresponding interacting partners in binding buffer. Complexes were
fractionated in 5% native polyacrylamide gels with TBM. These assays were repeated four times
and data were fitted to a non/linear equation for the calculation of the Kd value. This
interaction is sequence and strand specific, since no complex was detected under similar
conditions when the probes were incubated with a nonrelated RNA sequence, RNA 667 (C);
the UTRs for the FMDV, 59FMDV, and 39FMDV (D); or the corresponding antisense
transcripts asHCV-691 and asHCV-9181 (E).
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the 39 end (Fig. 3A,B), excluding the core-coding sequence
as a participant in complex formation. The essential inter-
acting region at the 39 end was restricted to the CRE do-
main (Fig. 3C). Neither the 39HCV-39X tail nor the polyU
stretch complexed with the 59 fragment (Fig. 3D,E). The
IRES and the CRE region therefore appear to interact in a
dose-dependent manner to yield the complex.

Theoretical model for the interaction between
the 59 and 39 ends of the HCV genome

Folding softwares based on dynamic programming
algorithms—RNAcofold and RNAup—were used to deci-
pher the most plausible motifs involved in the establish-
ment of the complex formed between the 59 and 39 ends of

the HCV genome. RNAcofold allows the input of two RNA
sequences that are concatenated and folded into a dimer
(Hofacker et al. 1994; Bernhart et al. 2006). This program
computes the minimum free energy of all possible dimers
and reports the most stable structure. RNAup contemplates
the thermodynamics of an RNA–RNA interaction as the
sum of two contributing energies, one required to alter the
secondary structure of the interacting residues, the other
gained as a result of dimer formation (Hofacker et al. 1994;
Mueckstein et al. 2006). Both tools suggested the same
theoretical model in which domain IIId of the IRES asso-
ciates with 5BSL3.2 in the CRE region (Fig. 4). The essential
nucleotide G263 located at the base of the apical loop of
domain IIId may initiate contact with C9301 adjacent to
the internal loop of 5BSL3.2. The interaction might extend
up to A288 for the 59 end and A9275 for the 39 end. The
resulting dimer, with a DG value of �6.48 kcal/mol, was
stable enough to be detected experimentally under the pre-
sent assay conditions. Though the formation of the whole
duplex is plausible in a thermodynamic context, the struc-
ture of the interacting domains makes the progression of
the duplex beyond the loops unlikely. One might assume
the formation of a kissing complex involving ALIL inter-
actions between the IIId and 5BSL3.2 domains of the HCV
genome (Fig. 4).

TABLE 2. Oligonucleotides used in this study

Oligonucleotide 59–39 sequence

39HCV-HindIII TATAAGCTTACTTGATCTGCAGAGAGGCCA
T7pHCV-9181 TATGAATTCTAATACGACTCACTATAGGGCAGTAAGGACCAAGCTCAA
T7pasHCV-701 TAATACGACTCACTATAGACCCAAATTGCGCGACCT
IRES-HCV GCCAGCCCCCTGATGG
T7pasHCV-9606 TAATACGACTCACTATAGACTTGATCTGCAGAGAG
HCV-9181 GGGCAGTAAGGACCAAGCTCAAA
59T7pHCV TAATACGACTCACTATAGCCAGCCCCCTGATGG
asHCV-372 TTTTTCTTTGAGGTTTAGGATTCGTGCT
T7pHCV-373 TAATACGACTCACTATAGCCAAACGTAACACCAACCGC
asHCV-691 ACCCAAATTGCGCGACCTAC
asHCV-9371 TCGGTTGGGGAGTAGATAGAT
T7pHCV-9360 TAATACGACTCACTATAGCTCCCCAACCGATGAACGG
39HCV ACTTGATCTGCAGAGAGGCCA
T7pHCV-9507 TAATACGACTCACTATAGTGGTGGCTCCATCTT
T7pHCV-IIId TAATACGACTCACTATAGGGCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTT
asHCV-IIIdasT7p AAGGCCTTTCGCGACCCAACACTACTCGGCTAGCCCTATAGTGAGTCGTATTA
T7pHCV-IIIdmut TAATACGACTCACTATAGGGCTAGCCGAGTAGTGTTCCCTCGCGAAAGGCCTT
asHCV-IIIdmut-asT7p AAGGCCTTTCGCGAGGGAACACTACTCGGCTAGCCCTATAGTGAGTCGTATTA
T7pasHCV-IIId TAATACGACTCACTATAGACAAGGCCTTTCGCGACCCAACACTACTCGGCTAGC
HCV-IIId-asT7p GCTAGCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTCTATAGTGAGTCGTATTA
T7pHCV-SL3.2 TAATACGACTCACTATAGGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCTGGTT
asHCV-SL3.2 asT7p AACCAGCGGGGTCGGGCACGAGACAGGCTGTGATATATGTCTCCCCCGCTGTAACCCTATAGTGAGTCGTATTA
T7pHCV-SL3.2mut TAATACGACTCACTATAGGGTTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGGGGGACCCCGCTGGTT
asHCV-SL3.2mut asT7p AACCAGCGGGGTCCCCCACGAGACAGGCTGTGATATATGTCTCCCCCGCTGTAACCCTATAGTGAGTCGTATTA
T7pasHCV-5BSL3.2 TAATACGACTCACTATAGAACCAGCGGGGTCGGGCACGAGACAGGCTGTGATATATGTCTCCCCCGCTGTAA
HCV-5BSL3.2-asT7p TTACAGCGGGGGAGACATATATCACAGCCTGTCTCGTGCCCGACCCCGCTGGTTCTATAGTGAGTCGTATTA

The T7 promoter is underlined; the antisense sequence for the T7 promoter is shown in italics. Restriction sites are noted in bold.

TABLE 1. Binding variables of the HCV 59–39 interaction

RNA
probe

Unlabeled
RNA transcript

Kd

(nM)a
Bmax

(%)a

59HCV-691 39HCV-9181 49.53 6 4.07 77.05 6 1.57
39HCV-9181 59HCV-691 506.84 6 115.32 76.51 6 10.28

aValues are the means of four independent assays 6 SD. Kd is the
dissociation constant and Bmax the amplitude of the binding
reaction.
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In summary, in silico predictions suggest that the
sequences involved in the 59-39 HCV ends map within
the IIId domain at the 59 end and the 5BSL3.2 domain at
the 39 end.

Domains IIId and 5BSL3.2 are key elements
in the interaction between the 59 and 39
ends of the HCV genome

In vitro binding competition assays were performed to
experimentally validate the role of the IIId and 5BSL3.2
domains in complex formation. 39HCV-9181 was incu-
bated with a molar excess of nonlabeled 59HCV-691 to
yield a complex with retarded mobility in native poly-
acrylamide gels (Fig. 5A). A reduction in the proportion of
this product up to 70% was detected in the presence of
increasing amounts of an antisense transcript for domain
IIId, asIIId (Fig. 5A,C), whereas the use of a nonrelated
RNA, RNA 80, as a competitor induced no reduction in
complex formation (Fig. 5B,C). This confirms the specific-
ity of the interaction and suggests domain IIId to be an
essential component in the interaction between the 59 and
39 ends of the HCV genome. The inverse assay was then
performed to analyze the role of 5BSL3.2 in the formation
of the complex. The 59 probe was incubated with a molar
excess of the nonlabeled 39-end construct, either in the
presence or absence of as5BSL3.2, an antisense transcript
for 5BSL3.2. This molecule effectively competed with the
complex formation (Fig. 5D,F), confirming its importance
in the establishment of the interaction. Again, RNA 80
induced no changes in complex formation (Fig. 5E,F).

Taken together, these results confirm the importance of
domains IIId and 5BSL3.2, and identify them as essential
partners in the establishment of the long-range RNA–RNA
interaction between the 59 and 39 ends of the HCV genome.

RNA structure probing
of the interacting nucleotides

RNA structure probing of the residues
involved in the association was per-
formed by partial digestion with RNases
and lead. To analyze the 59 end, the
59HCV-691 transcript was 59-end la-
beled and used as a substrate for partial
cleavage with the single-stranded endo-
nucleolytic reagents RNase T1 (G resi-
dues) and lead (any nucleotide). The
magnesium concentrations were the
same as those used in the binding
assays. The degradation pattern resem-
bled that previously described (Figs. 1A,
6A; Kieft et al. 1999), in which unpaired
nucleotides in loops and single-stranded
regions appeared sensitive to cleavage.
Changes in this map were detected

when the reactions proceeded in the presence of the 39

construct 39HCV-9181 (Fig. 6A). Residues in the apical
loop of domain IIId were now clearly resistant to degra-
dation by RNase T1, suggesting their involvement in the
establishment of an interaction with the 39 end of the HCV
genome. Slight protection around nucleotide 360 was also
noticeable, as well as in the apical loop IIIc (Fig. 6A). The in
silico modeling predicted no interaction at these sites (data
not shown).

FIGURE 3. The essential interacting domains reside in the IRES and the CRE regions.
Different truncated variants for the functional elements of the 59 and the 39 ends of the HCV
genome were 32P-unifomly labeled and incubated with a range of concentrations (10–500 nM)
of their corresponding interacting partners. (A,B) Unlabeled 39HCV-9181 transcripts were
challenged with the RNA probes 59HCV-IRES and 59HCV-CCS, respectively. (C,D) Unlabeled
59-end transcript, 59HCV-691, with the probes corresponding to the CRE region, 39HCV-CRE,
and the 39HCV-39X tail, respectively. (E) PolyU RNA was incubated with internally labeled
59HCV-691.

FIGURE 4. Theoretical model for the interacting domains. RNAcofold
and RNAup softwares were used to predict the residues involved in
the binding between the 59 and the 39 ends of the HCV genome.
Complementary sequences were identified in the IIId domain in the
IRES and in the 5BSL3.2 hairpin in the CRE region. The interaction is
proposed to be initiated at the nucleotides indicated by arrows. The
kissing interaction between the apical loop of domain IIId and the
internal loop of 5BSL3.2 region is boxed. The encircled residues were
mutated as noted to generate the respective inactive variants.
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The 39 end of the NS5B coding sequence adopts a well-
defined cruciform structure previously detected by endo-
nuclease cleavage and subsequent primer extension of the
digestion products (You et al. 2004). Similar experimental
conditions were used to map the interacting residues in 39

end. The 39HCV-9181 RNA was treated with RNase T1,
which is specific for single-stranded G residues, and RNase
V1, which cleaves base-paired nucleotides or stacked helical
single-stranded regions. This assay confirmed many of the
structural features previously detected for this region, par-
ticularly around 5BSL3.2 (Figs. 1A, 6B; You et al. 2004; data
not shown). Clear signs of cleavage by RNase V1 were no-
ticeable in the theoretical single-stranded region upstream
of 5BSL3.1. This is likely due to the involvement of these
residues in the establishment of the interaction with the 59

segment of the 39 UTR that generates the cruciform struc-
ture in which the CRE region is embedded (You et al.
2004). The presence of the 59HCV-691 RNA rendered
residues in the internal loop of the 5BSL3.2 domain clearly
resistant to cleavage by RNase T1 and sensitive to RNase V1
processing, suggesting their involvement in the formation
of a duplex with the 59-end construct (Fig. 6B). In agree-
ment with these results, a clear increase in RNase V1-
mediated processing was detected at the flanking stems of
the internal loop, C9306 and U9289. This was likely due to
stabilization of these stems or to the formation of the het-
eroduplex formed between the interacting molecules. No
changes in the degradation pattern were detected in other
regions of the 39-end RNA (data not shown), which sup-
ports the idea of an interacting site being located in 5BSL3.2.

These results are in good agreement with the theoretical
model by which interaction between the 59 and 39 ends of

the viral genome is mediated by the essential domains IIId
and 5BSL3.2.

59–39 complex formation is mediated by an apical
loop–internal loop (ALIL) interaction

The key determinants in the interaction between the HCV
IRES and the CRE region were then studied in more detail.
Complementary sequences map to the apical loop of
domain IIId and the internal loop of 5BSL3.2. Therefore,
it is tempting to assume that these motifs are involved in
the initiation of the complex formation via an ALIL
interaction. To test this hypothesis, RNA molecules encom-
passing the wild-type domain IIId and 5BSL3.2, as well as
mutant versions, were generated (Fig. 4). Mutants for
domain IIId (IIIdmut) contained a three nucleotide sub-
stitution in the apical loop (GGG to CCC); similarly,
5BSL3.2mut had three modified residues in its internal
loop (CCC to GGG). These changes did not alter the in
silico predicted secondary structure of the interacting
domains (data not shown). In vitro binding assays were
performed to study the occurrence of interactions between
these molecules. As expected, complex formation was
detected for the wild-type versions of the independent
stem-loops irrespective of the RNA probe used (Fig. 7A,B,
lanes 1–3), consistent with the proposed interaction
between the IIId and 5BSL3.2 domains. Mutant variants
for both domain IIId and 5BSL3.2 were unable to generate
efficient and/or stable complexes with their corresponding
wild-type targets under the assay conditions (Fig. 7A,B,
lanes 4–6). Binding was restored when both mutants were
simultaneously incubated (Fig. 7A,B, lanes 7–9), though to

FIGURE 5. Binding competition assays. Antisense RNA molecules for the putative interacting domains IIId and 5BSL3.2 were used in
competition assays. 32P-labeled 39HCV-9181 transcripts were incubated with a molar excess of their interacting partners, 59HCV-691, and
increasing concentrations (0.5–2.5 mM) of an antisense RNA for domain IIId, asIIId (A) or a nonrelated RNA, RNA 80 (B). Similar assays were
performed for the reciprocal interaction (D,E). Changes in complex formation were quantified and data are represented in graphs (C,F).
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a lesser extent than for the wild-type versions, supporting
the idea of an ALIL interaction being necessary for efficient
complex formation.

DISCUSSION

General models of translation initiation for eukaryotic
mRNAs propose a closed loop conformation for these
molecules mediated by RNA–protein and/or protein–protein
interactions (for review, see Komarova et al. 2006). Pro-
karyotic mRNAs and many viruses, however, have simpler
systems based on direct end-to-end RNA communication
via base-pairing (Edgil and Harris 2006; Komarova et al.
2006). With respect to positive single-stranded RNA vi-
ruses, such us luteovirus and tombusvirus, these are pro-
moted by stem–loop structures that interact to generate
efficient and specific kissing complexes (Komarova et al.
2006). In hepacivirus genomes, circularization has been
proposed to be mediated by protein factors. Their interac-
tion with each of the ends has been proved (Edgil and
Harris 2006), however, to date, no evidence of circulariza-

tion has been reported. Neither has direct contact between
both RNA ends been demonstrated.

The HCV genome contains well-defined RNA structural
elements in its UTRs that have been studied in depth. More
recently, other phylogenetically conserved secondary struc-
tures in the coding sequence have been identified by
bioinformatic methods (Tuplin et al. 2002; 2004; You
et al. 2004; McMullan et al. 2007; Diviney et al. 2008).
Our knowledge of these regions, however, is limited, and
both their three-dimensional folding and function are now
subjects of much research. One of the most studied
domains is the short stem loop 5BSL3.2, which is located
at the 39 end of the NS5B coding sequence. Its structural
integrity is essential for replication (You et al. 2004; Friebe
et al. 2005), probably due to its participation in distant
interactions with structural elements of the 39 UTR (Friebe
et al. 2005). The results of the present study show that
5BSL3.2 also associates with the essential domain IIId of the
IRES. To our knowledge, this is the first report describing a
long-range RNA–RNA interaction between functional
domains of the 59 and 39 ends for the HCV genome.

FIGURE 6. Secondary structure analysis of the 59 and the 39 ends of the HCV genome and identification of the interacting residues. (A) 32P-59-
end-labeled 59HCV-691 was partially digested with RNase T1 or Pb2+, either in the absence (�) or presence (+) of the 39HCV-9181. The right
panel shows a different run length aimed to resolve the higher molecular weight cleavage products. The functional subdomains of the IRES region
are indicated. C, 59HCV-691 incubated in binding buffer. T1L, T1 cleavage ladder. (B) Primer extension analysis of the 39HCV-9181 transcript
treated with RNase T1 or RNase V1 in the absence (�) or presence (+) of the 59-end RNA. cDNA products were analyzed in 6% denaturing
polyacrylamide gels in parallel with a sequence ladder obtained with the same labeled primer. The autoradiograph shows the results obtained for
the CRE region.
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The present results show that the 59–39 contact is stable
at low magnesium concentrations and that this contact is
sequence and strand specific (Fig. 2).

The complex is efficiently generated in vitro in the
absence of protein factors, though a further stabilization
of the interaction by auxiliary elements is likely in a
biological context. In fact, a role for the NFAR protein
family in the preservation of the 59–39 UTR contacts of the
pestivirus genome has been suggested (Isken et al. 2004).
For HCV, numerous cellular proteins, including polypyr-
imidine tract-binding protein (PTB) (Tsuchihara et al.
1997; Ito and Lai 1999), La autoantigen (Spangberg et al.
1999), and ribosomal proteins (Wood et al. 2001), among
others, have been proposed to bind to the 39 UTR and
stimulate IRES-dependent translation. The well-documented
interaction of the HCV NS5B protein to the SL3.2 do-
main postulates the implication of the viral polymerase
in the genome circularization (Zhang et al. 2005). This
supports the notion that protein factors might act as mo-
lecular bridges that reinforce the interaction shown here.

The RNase probing and binding assays show that the
main interacting regions reside in domain IIId of the IRES
and 5BSL3.2 of the NS5B coding sequence, as predicted in
silico by the RNAcofold and RNAup computations. These
regions are highly conserved among hepacivirus and related
flaviviruses (Jubin et al. 2000; Tuplin et al. 2002; You et al.
2004; Barria et al. 2008), supporting the idea that this
contact may also occur in other closely related viral sys-

tems. Interestingly, small changes in the degradation pat-
tern of the apical loop IIIc and the region surrounding
nucleotide 360 were observed in 59 end probing in the
presence of the 39 construct. These positions were not
predicted in the in silico experiments to participate in the
association between the ends of the RNA molecules. How-
ever, they might act as secondary interacting sites, which
might further stabilize the complex. They may be also the
result of structural rearrangements in the IRES arising as a
consequence of the initial interaction.

The present results also provide evidence that the asso-
ciation process is initiated by an ALIL interaction. ALIL
complexes are a type of kissing complex widely distributed
in nature, and play important roles in many biological
processes (Brunel et al. 2002). In vitro-selected RNA
aptamers also exploit this strategy to efficiently associate
with their targets (Aldaz-Carroll et al. 2002; Da Rocha
Gomes et al. 2004). In all cases, the presence of a short
stretch of sequence complementarity located in the apical
and internal loops of the interacting domains is sufficient
to stabilize the resulting complex. A peculiarity shown by
all these systems is that the G-C rich stems flank the
internal interacting loop (Aldaz-Carroll et al. 2002; Brunel
et al. 2002; Da Rocha Gomes et al. 2004). Interestingly, this
feature is also shown by 5BSL3.2, further supporting the
ALIL interaction model. Thermodynamic predictions pro-
pose the extension of the duplex beyond the interacting
loops based on sequence complementarity (Fig. 4). How-
ever, though the extension of the base-pairing regions is
plausible in a thermodynamic context, the structure of the
interacting domains, particularly the presence of a loop E in
domain IIId, makes the progression of the duplex beyond
the loops unlikely. A more detailed structural analysis is
needed to confirm this.

Unlike cellular mRNAs, which only contain translational
regulatory elements, viral RNA genomes encompass differ-
entially evolved functional regions that act in nonsimulta-
neous processes of the infective cycle, such as protein
synthesis and replication. Consequently, direct communi-
cation between these motifs might act as a functional link
for the correct switch from translation to replication,
defining a riboswitch-like motif. During early HCV infec-
tion, uncapped RNAs initiate the IRES-dependent protein
synthesis, which is proposed to be stimulated by host
factors bound to the 39 UTR (Bradrick et al. 2006; Song
et al. 2006). It seems plausible that the 5BSL3.2 domain
should exert an additional modulatory activity over viral
translation through its interaction with domain IIId. Once
viral protein accumulation is guaranteed, nonstructural
factors are gathered within the endoplasmic reticulum to
generate the membranous web required for replication.
Transition between these processes is complex and requires
strict control that needs to integrate multiple functional
elements. The interaction involving domains IIId and
5BSL3.2, together with other viral factors previously

FIGURE 7. Mutations in the loops of the interacting domains
interfere with the association between IIId and 5BSL3.2. Binding
assays were accomplished with the probes IIId or 5BSL3.2 and their
nonlabeled interacting partners. Variations in nucleotide composition
were introduced as indicated in Figure 4 to generate the respective
mutants. (A) The internally labeled IIId or IIIdmut RNAs were
challenged with the 5BSL3.2 or 5BSL3.2mut transcripts. Complexes
were resolved in 8% native polyacrylamide gels with TBM. (B)
Reciprocal experiments where the RNA probes 5BSL3.2 or
5BSL3.2mut were incubated with the nonlabeled IIId or IIIdmut
transcripts.
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proposed (Domitrovich et al. 2005; Lourenco et al. 2008),
might be involved in this regulation.

In summary, the present results firmly support the
existence of a protein-independent 59–39 communication
in the HCV genome that involves RNA elements essential
for viral translation and replication—domain IIId of the
IRES and 5BSL3.2. The resulting complex shows sequence
and strand specificity and represents a new cis-element
involved in the regulation of multiple processes during
HCV infection.

MATERIALS AND METHODS

DNA templates and RNA synthesis

All RNAs were synthesized by in vitro transcription and purified
as previously described (Barroso-delJesus et al. 1999).

DNA templates for the generation of 59HCV-691 RNA, RNA
667, and RNA 80 were obtained as previously reported (Romero-
López et al. 2005, 2007). A plasmid containing the 39HCV-9181
was constructed as follows. DNA encoding the CRE domain plus
the 39 UTR of HCV was obtained by reverse transcription and
amplification of total RNA from Huh-7 cells harboring a stable
subgenomic replicon (Huh-7 NS3-18) (Larrea et al. 2006), a kind
gift of Dr. Rafael Aldabe (University of Navarra, Spain). Briefly,
cells were cultured in DMEM supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Invitrogen), 2 mM
L-glutamine (Sigma), and 0.5 mg/mL of G-418 (Sigma) at 37°C
in a 5% CO2 atmosphere. A total of 500,000 cells were lysed with
Trizol reagent (Invitrogen) following the manufacturer’s instruc-
tions to obtain intracellular RNA. cDNA synthesis was accom-
plished using 100 ng of total RNA and employing the High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
A fraction of the resulting cDNA was used for amplification with
primers 39HCV-HindIII and T7pHCV-9181 to yield the construct
T7p39HCV-9181. This was cloned in the EcoRI and HindIII
restriction sites in the pUC19 vector to generate the plasmid
pU39HCV-9181, which was then digested with HindIII to obtain
the DNA template for the synthesis of 39HCV-918.

DNA templates encompassing the antisense sequences for the 59

and 39 ends of HCV, asHCV-691 and asHCV-9181, respectively,
were obtained by PCR. For the asHCV-691 construct, the
pUCHCV-691 plasmid was used as a template for amplification
with primers T7pasHCV-701 and IRES-HCV. The antisense se-
quence for the 39 end was amplified from the plasmid pU39HCV-
9181 using oligonucleotides T7pasHCV-9606 and HCV-9181.

DNAs encoding the truncated forms of the 59 and 39 ends of the
HCV genome were generated by amplification as follows. Plasmid
pUCHCV-691 was used as a template for amplification with the
primers 59T7pHCV and asHCV-372 to yield 59HCV-IRES; alter-
natively, hybridization and amplification with the oligonucleo-
tides T7pHCV-373 and asHCV-691 produced 59HCV-CCS.
Several specific primer pairs were used with the plasmid pU39

HCV-9181 to produce amplicons with modified 39 ends: oligo-
nucleotides T7pHCV-9181 and asHCV-9371 were used to gener-
ate 39HCV-CRE containing the CRE region and T7pHCV-9507
and 39HCV to generate an amplicon with the 39HCV-39X tail.

Plasmids containing the 59 and 39 UTRs of FMDV, pGEM-
IRES-8 and psubTAG, respectively (Ramos and Martinez-Salas

1999; Lopez de Quinto et al. 2002; Serrano et al. 2006) were the
generous gift of Dr. Encarnación Martı́nez-Salas (Consejo Supe-
rior de Investigaciones Cientificas).

The annealing of specific oligonucleotides was used to generate
the following dsDNA templates:

Domain IIId: oligonucleotides T7pHCV-IIId and asHCV-
IIIdasT7p;

Domain IIIdmut: T7pHCV-IIIdmut and asHCV-IIIdmut-asT7p;
AsIIId: T7pasHCV-IIId and HCV-IIId-asT7p;
Domain 5BSL3.2: T7pHCV-SL3.2 and asHCV-SL3.2 asT7p;
Domain 5BSL3.2: T7pHCV-SL3.2mut and asHCV-SL3.2mut

asT7p; and
As5BSL3.2: T7pasHCV-5BSL3.2 and HCV-5BSL3.2 asT7p.

See Table 2 for the oligonucleotide sequences.

Binding assays

The analysis of RNA–RNA interactions was performed essentially
as previously described (Serrano et al. 2006). Briefly, 0.5 nM of
32P-labeled RNA was challenged with increasing concentrations of
the target molecule. Prior to complex formation, RNA molecules
were independently denatured for 3 min at 95°C in binding buffer
(50 mM sodium cacodylate at pH 7.5, 300 mM KCl, and 1 mM
MgCl2) (Ferrandon et al. 1997) and subsequently transferred to
ice for 15 min. Reactions were initiated by mixing both molecules
and proceeded at 37°C for 30 min. The resulting complexes were
immediately resolved in 6%–8% native polyacrylamide gels
supplemented with 2.5 mM MgCl2. Electrophoresis was per-
formed at 4°C over 5 h at 15 mA in TBM buffer (45 mM Tris-
HCl at pH 8.3, 43 mM boric acid, and 0.1 mM MgCl2). Gels were
dried, scanned, and analyzed as previously described (Romero-
López et al. 2007). Kd values were calculated using Sigma Plot 8.02
software according to the equation y = (Bmaxx)/(Kd + x) (Puerta-
Fernández et al. 2005), where y is the percentage of complexed
inhibitory RNA, Bmax is the amplitude of the reaction, x is the
concentration of the target RNA, and Kd the dissociation constant.

Competition binding assays were performed under similar
conditions. Briefly, 0.5 nM of internally 32P-labeled RNA was
complexed with a constant amount of the target molecule. The
complex was challenged with increasing concentrations (0.5–2.5
mM) of the competitor RNA. All RNA molecules were denatured
and renatured separately, as noted above and subsequently mixed.
Complexes proceeded for 30 min and the reaction products re-
solved, analyzed, and quantified as indicated.

In silico predictions of the interacting sequences

RNAcofold (Hofacker et al. 1994; Bernhart et al. 2006) and
RNAup (Hofacker et al. 1994; Mueckstein et al. 2006) softwares
were employed to predict the interacting residues between the 59

and 39 ends of the HCV genome using the Web interface at http://
rna.tbi.univie.ac.at/ (Vienna RNA web servers). Sequences 59HCV-
691 and 39HCV-9181, as well as several truncated forms, were
subjected to both analyses with the aim of examining all possible
interacting residues.

RNA–RNA interaction probing assays

Probing assays of the complex between the 59 and 39 end were
carried out with 32P 59-end-labeled 59HCV-691 RNA. Complexes
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were constructed as described above by incubating 50 fmol of
the 32P 59-end-labeled 59HCV-691 RNA (z200 CPS) with 10
pmol of the nonlabeled 39 end, 39HCV-9181. Control reactions
were performed in the presence of an equal amount of tRNA.
Digestions were initiated by the addition of RNase T1 (0.1 units;
Industrial Research) or Pb2+ acetate (30 mM; Merck), and in-
cubated at 30°C for 5 and 20 min, respectively. Reactions were
stopped by the addition of EDTA 100 mM and by phenol
extraction. RNAs were precipitated with ethanol and analyzed in
high resolution denaturing polyacrylamide gels (6% acrylamide, 7
M urea). These were dried and scanned as above.

Alternatively, the identification of the interacting residues at
the 39 end was essentially performed as previously reported (You
et al. 2004). Briefly, complex formation was accomplished as
noted above and subjected to partial digestion with 0.1 units of
cobra venom RNase V1 (Pierce Biotechnology) or 0.1 units
of RNase T1 (Industrial Research) at 4°C for 10 and 5 min,
respectively. Cleavage reactions were stopped as above and the
RNA extracted using phenol-chloroform followed by ethanol
precipitation. The degradation pattern was mapped by primer
extension with the 32P 59-end-labeled primer (You et al. 2004).
Total processed RNA was mixed with 2 pmol of primer oligonu-
cleotide and denatured for 2 min at 95°C. Extension was then
performed at 42°C in a 20 mL reaction volume with RT buffer,
dNTPs 0.5 mM and 100 U SuperScript II RT (Invitrogen). cDNA
products were analyzed in high resolution denaturing polyacryl-
amide gels (8% acrylamide, 7 M urea), which were dried and
scanned as above. Dideoxy sequencing reactions were prepared
using the Sequenase 7-deaza-dGTP DNA Sequencing Kit (USB)
with the same oligonucleotide employed for the primer extension
reactions and the plasmid pU39HCV-9181. Reactions were run in
parallel to identify the RT extension products.
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Romero-López and Berzal-Herranz

1750 RNA, Vol. 15, No. 9

 Cold Spring Harbor Laboratory Press on March 2, 2015 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Harris E, Holden KL, Edgil D, Polacek C, Clyde K. 2006. Molecular
biology of flaviviruses. Novartis Found Symp 277: 23–39; discussion
40, 71-23, 251-253.

Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M,
Schuster P. 1994. Fast folding and comparison of RNA secondary
structures. Monatsh Chem 125: 167–188.

Imbert I, Dimitrova M, Kien F, Kieny MP, Schuster C. 2003. Hepatitis
C virus IRES efficiency is unaffected by the genomic RNA 39NTR
even in the presence of viral structural or nonstructural proteins.
J Gen Virol 84: 1549–1557.

Isken O, Grassmann CW, Yu H, Behrens SE. 2004. Complex signals in
the genomic 39 nontranslated region of bovine viral diarrhea virus
coordinate translation and replication of the viral RNA. RNA 10:
1637–1652.

Ito T, Lai MM. 1997. Determination of the secondary structure of and
cellular protein binding to the 39-untranslated region of the
hepatitis C virus RNA genome. J Virol 71: 8698–8706.

Ito T, Lai MM. 1999. An internal polypyrimidine-tract-binding
protein-binding site in the hepatitis C virus RNA attenuates
translation, which is relieved by the 39-untranslated sequence.
Virology 254: 288–296.

Ito T, Tahara SM, Lai MM. 1998. The 39-untranslated region of
hepatitis C virus RNA enhances translation from an internal
ribosomal entry site. J Virol 72: 8789–8796.

Ji H, Fraser CS, Yu Y, Leary J, Doudna JA. 2004. Coordinated
assembly of human translation initiation complexes by the
hepatitis C virus internal ribosome entry site RNA. Proc Natl
Acad Sci 101: 16990–16995.

Jubin R, Vantuno NE, Kieft JS, Murray MG, Doudna JA, Lau JY,
Baroudy BM. 2000. Hepatitis C virus internal ribosome entry site
(IRES) stem–loop IIId contains a phylogenetically conserved GGG
triplet essential for translation and IRES folding. J Virol 74: 10430–
10437.

Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S,
Sugimura T, Shimotohno K. 1990. Molecular cloning of the
human hepatitis C virus genome from Japanese patients
with non-A, non-B hepatitis. Proc Natl Acad Sci 87: 9524–
9528.

Kenyon JC, Ghazawi A, Cheung WK, Phillip PS, Rizvi TA, Lever AM.
2008. The secondary structure of the 59 end of the FIV genome
reveals a long-range interaction between R/U5 and gag sequences,
and a large, stable stem–loop. RNA 14: 2597–2608.

Kieft JS, Zhou K, Jubin R, Murray MG, Lau JY, Doudna JA. 1999. The
hepatitis C virus internal ribosome entry site adopts an ion-
dependent tertiary fold. J Mol Biol 292: 513–529.

Kieft JS, Zhou K, Grech A, Jubin R, Doudna JA. 2002. Crystal
structure of an RNA tertiary domain essential to HCV IRES-
mediated translation initiation. Nat Struct Biol 9: 370–374.

Kim YK, Lee SH, Kim CS, Seol SK, Jang SK. 2003. Long-range RNA–
RNA interaction between the 59 nontranslated region and the
core-coding sequences of hepatitis C virus modulates the IRES-
dependent translation. RNA 9: 599–606.

Klinck R, Westhof E, Walker S, Afshar M, Collier A, Aboul-Ela F.
2000. A potential RNA drug target in the hepatitis C virus internal
ribosomal entry site. RNA 6: 1423–1431.

Kolupaeva VG, Pestova TV, Hellen CU. 2000. An enzymatic foot-
printing analysis of the interaction of 40S ribosomal subunits with
the internal ribosomal entry site of hepatitis C virus. J Virol 74:
6242–6250.

Kolykhalov AA, Feinstone SM, Rice CM. 1996. Identification of a
highly conserved sequence element at the 39 terminus of hepatitis
C virus genome RNA. J Virol 70: 3363–3371.

Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM. 2000. Hepatitis C
virus-encoded enzymatic activities and conserved RNA elements
in the 39 nontranslated region are essential for virus replication in
vivo. J Virol 74: 2046–2051.

Komarova AV, Brocard M, Kean KM. 2006. The case for mRNA 59
and 39 end cross talk during translation in a eukaryotic cell. Prog
Nucleic Acid Res Mol Biol 81: 331–367.

Kong LK, Sarnow P. 2002. Cytoplasmic expression of mRNAs
containing the internal ribosome entry site and 39 noncoding
region of hepatitis C virus: Effects of the 39 leader on mRNA
translation and mRNA stability. J Virol 76: 12457–12462.

Larrea E, Aldabe R, Molano E, Fernandez-Rodriguez CM,
Ametzazurra A, Civeira MP, Prieto J. 2006. Altered expression
and activation of signal transducers and activators of transcription
(STATs) in hepatitis C virus infection: In vivo and in vitro studies.
Gut 55: 1188–1196.

Lee H, Shin H, Wimmer E, Paul AV. 2004. cis-acting RNA signals in
the NS5B C-terminal coding sequence of the hepatitis C virus
genome. J Virol 78: 10865–10877.

Lopez de Quinto S, Saiz M, de la Morena D, Sobrino F, Martinez-
Salas E. 2002. IRES-driven translation is stimulated separately by
the FMDV 39-NCR and poly(A) sequences. Nucleic Acids Res 30:
4398–4405.

Lourenco S, Costa F, Debarges B, Andrieu T, Cahour A. 2008.
Hepatitis C virus internal ribosome entry site-mediated translation
is stimulated by cis-acting RNA elements and trans-acting viral
factors. FEBS J 275: 4179–4197.

Lukavsky PJ, Otto GA, Lancaster AM, Sarnow P, Puglisi JD. 2000.
Structures of two RNA domains essential for hepatitis C virus
internal ribosome entry site function. Nat Struct Biol 7: 1105–1110.

Lytle JR, Wu L, Robertson HD. 2002. Domains on the hepatitis C
virus internal ribosome entry site for 40s subunit binding. RNA 8:
1045–1055.

McCaffrey AP, Ohashi K, Meuse L, Shen S, Lancaster AM,
Lukavsky PJ, Sarnow P, Kay MA. 2002. Determinants of hepatitis
C translational initiation in vitro, in cultured cells and mice. Mol
Ther 5: 676–684.

McMullan LK, Grakoui A, Evans MJ, Mihalik K, Puig M, Branch AD,
Feinstone SM, Rice CM. 2007. Evidence for a functional RNA
element in the hepatitis C virus core gene. Proc Natl Acad Sci 104:
2879–2884.

Michel YM, Borman AM, Paulous S, Kean KM. 2001. Eukaryotic initiation
factor 4G-poly(A) binding protein interaction is required for poly(A)
tail-mediated stimulation of picornavirus internal ribosome entry
segment-driven translation but not for X-mediated stimulation of
hepatitis C virus translation. Mol Cell Biol 21: 4097–4109.

Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF,
Hofacker IL. 2006. Thermodynamics of RNA–RNA binding.
Bioinformatics 22: 1177–1182.

Murakami K, Abe M, Kageyama T, Kamoshita N, Nomoto A. 2001.
Down-regulation of translation driven by hepatitis C virus internal
ribosomal entry site by the 39 untranslated region of RNA. Arch
Virol 146: 729–741.

Odreman-Macchioli FE, Tisminetzky SG, Zotti M, Baralle FE,
Buratti E. 2000. Influence of correct secondary and tertiary RNA
folding on the binding of cellular factors to the HCV IRES. Nucleic
Acids Res 28: 875–885.

Ooms M, Abbink TE, Pham C, Berkhout B. 2007. Circularization of
the HIV-1 RNA genome. Nucleic Acids Res 35: 5253–5261.

Otto GA, Puglisi JD. 2004. The pathway of HCV IRES-mediated
translation initiation. Cell 119: 369–380.

Polacek C, Foley JE, Harris E. 2009. Conformational changes in the
solution structure of the dengue virus 59 end in the presence and
absence of the 39 untranslated region. J Virol 83: 1161–1166.

Puerta-Fernández E, Barroso-delJesus A, Romero-López C, Tapia N,
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