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Abstract- Generally, H.264/AVC video coding standard 

with hierarchical bi-predictive picture (HBP) structure 

outperforms the classical prediction structures such as 

‘IPPP...’ and ‘IBBP...’ through better exploitation of data 

correlation using reference frames and unequal 

quantization setting among frames. However, multiple 

reference frames (MRFs) techniques are not fully exploited 

in the HBP scheme due to the computational requirement 

for B-frames, unavailability of adjacent reference frames, 

and with no explicit sorting of the reference frames for 

foreground or background being used. To exploit MRFs 

fully and explicitly in background referencing, we observe 

that not a single frame of a video is appropriate to be the 

reference frame as no one covers adequate background of a 

video. To overcome the problems, we propose a new coding 

scheme with the HBP which uses the most common frame in 

scene (McFIS), generated by background modeling, as a 

long term reference (LTR) frame for the third uni-

predictive reference frame, so that foreground and 

background areas are expected to be referenced from the 

two frames in the HBP structure and the McFIS 

respectively. There are two approaches to generate McFIS 

under the proposed methodology. In the first approach, we 

generate a McFIS using a number of original frames of a 

scene in a video and then encode it as an I-frame with 

higher quality. For the rest of the scene this generated I-

frame is used as an LTR frame. In the second approach, we 

generate a McFIS from the decoded frames and then use it 

as an LTR frame, without the need to encode the McFIS. 
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The first and the second approaches are suitable for a video 

with static background and dynamic background 

respectively. In general, the second approach requires more 

computational time compared to the first approach. The 

experiments confirm that the proposed scheme 

outperforms three state-of-the-art algorithms by improving 

image quality significantly with reduced computational 

time. 
 

Index Terms— Most common frame in scene (McFIS), video 

coding, Long term reference frame, and uncovered background 

I. INTRODUCTION 

.264/AVC video coding standard improves rate-

distortion (RD) performance significantly compared to 

its predecessors and competitors due to its state-of-the-

art techniques in Intra (I)- and Inter- (i.e., predictive (P)  and 

bidirectional (B)) frame coding [1]-[4]. Among them variable 

block size motion estimation (ME) with fractional pixel 

accuracy and multiple reference frames (MRFs) are the most 

important techniques in Inter-frame coding. However, this 

improvement comes at the expense of huge ME computational 

time. According to the analysis conducted by Huang et al. [5], 

ME consumes around 50~90% of overall encoding time. 

Obviously ME computational time also varies with the number 

of reference frames, precision of ME, etc. A comprehensive 

performance and complexity analysis on a tool-by-tool basis is 

provided in [6]. The MRFs technique facilitates better 

predictions than using one reference frame, targeting at video 

with features such as repetitive motion, uncovered background, 

non-integer pixel displacement, lighting change, etc. Wiegand 

et al. [7] propose a long-term memory scheme which used up 

to 50 previously decoded frames to determine the best motion 

vector. The number of reference frames in practical 

applications is limited due to (i) the requirement to identify the 

reference frames, (ii) computational time in ME which 

increases almost linearly with the number of reference frames 

unless fast motion search algorithms are used, and (iii) memory 

buffer size to store decoded frames in both encoder and 

decoder. Typically the number of reference frames varies from 

1 to 5. If the cycle of features (i.e., repetitive motions, 

uncovered background, etc.) exceeds the number of reference 

frames used in the MRFs where reference frames are 

consecutive, we may not get any coding improvement and 

therefore much of the computation with MRFs is wasted. 
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Sufficiently widely spaced MRFs can cover the whole cycle of 

features, but this approach is not practically feasible as with the 

increase in the number of reference frames, the memory 

requirement and the motion searching complexity increases 

significantly [11]; in addition, the proper MRFs in such cases 

are not easy nor practical to determine. 

A number of techniques including [5][8]-[10] reduce 

computational time associated with MRFs without significantly 

sacrificing image quality. They achieve this by avoiding 

unnecessary searching for various reference frames based on 

some assumptions about the correlation between the current 

frame and the previous frame [5][9], the homogeneity among 

the areas of the same object [8], and the accuracy of moving 

pixel segmentation [10].     

To reduce computational time associated with MRFs, a 

number of techniques [11]-[14] use only two reference frames: 

a long term reference (LTR) frame and a short term reference 

(STR) frame.  When the nth frame is being encoded, the (n-

1)th frame is used as the STR and the (n-N)th frame (where 

N>1) is used as the LTR for N frames. The LTR then jumps 

forward by N frames and again remains the same for encoding 

the next N frames. In this technique for N frames, each encoded 

frame is used as the STR and the Nth frame is used as the LTR. 

This process also allows high quality coding for the LTR by 

allocating more bits [12][13]  to improve the overall 

performance. The performance improvement is heavily 

influenced by the jumping parameter and the bit allocation 

strategy [11]. Liu et al. [11] propose an adaptive jump updating 

scheme with optimal LTR selection based on the RD 

relationship.  

The basic assumption of the dual reference frames for 

encoding the current frame is that the STR would be referenced 

for local motion i.e., moving areas, and the LTR would be 

referenced for still regions i.e., background areas of the frame 

[13]. Thus, it would be an implicit background (from the LTR 

frame) and foreground (from the STR frame) referencing 

system. Our hypothesis is that the better LTR frame should 

have maximum correlation (i.e., similarity) with the other 

frames and/or maximum background areas compared to the 

other frames, so better RD performance can be achieved with 

less computation.  

Recently a video codec popularly known as VP8 [15]-[18] 

also recommends dual reference frames using a virtual (or 

constructed) reference frame called a golden frame for 

background referencing, which retains a frame´s worth of 

decompressed data from the arbitrarily distant past (i.e., 

equivalent to an LTR frame). The codec can update any part of 

that frame at any future point in time. The golden frame or 

virtual reference frame is one kind of LTR frame which needs 

to be updated after a regular/irregular interval with higher 

quality based on (i) the speed of motion, (ii) how well each 

frame predicts the next one, and (iii) how frequently the golden 

frame is selected as the best choice reference frame for 

encoding macroblocks (MBs). A golden frame can be regarded 

as a better LTR frame because an LTR frame is unaltered once 

decided while a golden frame may be updated to maintain its 

relevancy.  

Wilkins et al. [18] propose a construction method of the 

golden frame based on local and global motion vectors of the 

MB-level. The proposed golden frame developed using image 

super resolution may have a larger size than the video frame 

size. Even before [18], techniques in [19]-[22] construct simple 

golden frames such as background-frame or background 

memory for efficient video coding based on block-based 

motion information. Mukawa and Kuroda [23] introduce 

background replenishment and the updating technique at the 

pixel level using the frame-difference signal to a certain 

threshold (against cumulative differences for a block) to decide 

whether a picture element belongs to a static or nonstatic 

region. For dynamic background adaptation, the background 

pixel value is changed by ±1 out of 256 toward the new 

reconstructed signal value. Hepper [24] modifies the technique 

by evaluating the change information of successive pictures to 

adapt new background information quickly. Due to the 

dependency on block-based motion vectors [19]-[22] (or block-

based processing [23] [24]) and lack of adaptability in multi-

modal backgrounds for dynamic environments, the background 

frame generation techniques in [19]-[24] could not perform 

well. Uncovered background can also be efficiently encoded 

using sprite/multiple-sprite [25] coding through object 

segmentation. Most of the video coding applications could not 

tolerate inaccurate video/object segmentations and expensive 

computational complexity incurred by segmentation 

algorithms. Wilkins et al.’s approach [18] suffers from the 

same drawbacks of the sprite/multiple sprite coding approach 

and the approaches in [19]-[24], as it is regarded as the 

amalgamation of those approaches. Moreover, updating any 

part of the golden frame based on the newly uncovered 

background is not effective due to the limitation of the 

accuracy and computational requirement for detecting the 

newly exposed background.   

In general, H.264 with HBP [26][27] outperforms the 

conventional prediction structure (such as ‘IPPP...’ or 

‘IBBP...’) due to its better exploitation of bi-predictive data 

correlation through preceding and succeeding frame 

referencing (i.e., two reference frames) together with unequal 

quantization/bit allocation among frames at different levels. To 

maintain bi-predictive referencing, the HBP may improve RD 

performance for motion areas using shorter-distance reference 

frames and for background areas using longer-distance 

reference frames. Moreover, to refer static and uncovered 

background areas, B-frame is not the right option as static and 

uncovered background areas have no motion. Thus, due to the 

unavailability of the adjacent reference frames or with no 

explicit background referencing being used, the HBP scheme 

cannot take full advantage of the MRFs (i.e., more than 2 

reference frames) benefits. Note that the golden/LTR frame can 

be regarded as MRFs.  

A ground truth background of a scene in a video sequence 

can be a better choice for a golden frame compared to a 

random frame to conform to the implicit background 



 

 

 

/foreground referencing assumption (i.e., the LTR is for static 

region reference and the STR is for moving region reference). 

In [28][29], the concept of McFIS (most common frame in 

scene) was introduced as a reference frame for 

normal/uncovered background regions of the current frame, 

based upon dynamic background modelling (DBM) [30]-[32]. 

Zhang et al. proposed a number of algorithms [38][39] using 

background modelling for surveillance video coding with a 

number of video sequences captured using stationary cameras. 

Zhang et al. [38] introduced two kinds of frames (namely 

background frame and difference frame) for input frames to 

represent the foreground/background. The background frame is 

modelled and encoded with very high quality. The difference 

frame is encoded using 9-bit H.264/AVC encoding. The 

experimental results show that the algorithm [38] outperforms 

H.264 for surveillance videos captured by stationary cameras 

by a significant margin. As the algorithm in [38] does not 

include any scene change detection (SCD) and adaptive group 

of pictures (AGOP) strategy, it is not suitable for video 

sequences with scene change and camera motion in its current 

form. The algorithm (in its current form) [38] needs many bits 

to encode high quality background frame at each scene change 

point. The requirement of bits for high quality background is 

sometimes higher compared to the saving of bits using the high 

quality of background frame in subsequent frames due to the 

short length of scene. 

In this paper, we propose a new HBP scheme using the 

McFIS as a golden frame to be the third reference frame so that 

the background regions can be referenced from the McFIS. We 

observe that an I-frame requires 2~10 times more bits (depends 

on the content of the videos and operational bit rates) compared 

to an inter (i.e., P or B)-frame for the same image quality. 

Generally, if a sequence does not contain any scene changes or 

extremely high motion compared to the adjacent frames, 

insertion of I-frames degrades the coding performance, 

although insertion of I-frame facilitates texture refreshing, error 

propagation control, and random access support. Therefore, we 

need to insert I-frames based on the AGOP determination and 

SCD algorithm. In the HBP prediction structure, AGOP 

determination based on SCD is quite challenging, due to the 

fact that the existing SCD determination algorithms [33]-[35] 

are based on the correlation of the temporal order of the frames 

in a video whereas the HBP does not maintain the temporal 

order of the frames while encoding. Therefore, we also devise 

an AGOP determination approach using adaptive SCD 

thresholding based on the same McFIS as the McFIS is capable 

of representing the stable region of a scene.  

 The prior works [28][29][40] introduced the McFIS 

concept; however, the generation process and application of the 

McFIS are different in the proposed scheme. In the prior 

works, the modeling of the McFIS uses frames (either 

reconstructed or original) in sequential time order (i.e., 

temporally in one direction). In the proposed method, we 

model the McFIS according to the hierarchical order (i.e., not 

sequential order) and use the McFIS for referencing purpose in 

hierarchical order. The experimental results indicate that using 

the McFIS as a third reference frame improves the RD 

performance significantly compared to the HBP with a decoded 

frame as the third reference frame. The results also reveal that 

the proposed schemes save up to 28% and 11% computational 

time respectively compared to the HBP with a third reference 

frame. As we know that multi-view video coding scheme 

H.264/MVC [41] uses HBP referencing approach for coding 

efficiency, thus, the approach adopted in the proposed scheme 

will open new research avenues to improve the coding 

efficiency of the multi-view video coding scheme by 

incorporating the McFIS in H.264/MVC.  

The rest of the paper is organized as follows: Section II 

illustrates the motivation of the proposed work by analyzing 

frame similarity and percentage of background in video, and 

then describes an intuitive HBP structure with three reference 

frames. Section III discusses the proposed new HBP prediction 

structure with the McFIS, which is generated using original 

frames and used as an I-frame for the third reference frame. 

Section IV describes how to apply the proposed concept with 

the McFIS, which is generated from coded frames and used as 

the golden frame in the HBP structure. Section V compares the 

computational time with relevant existing schemes. Section VI 

describes the experimental setup and analyzes the overall 

experimental results, confirming that the new scheme 

outperforms the conventional HBP and the HBP using LTR as 

the third reference frame.  Finally Section VII concludes the 

paper.   

II. RELATED DISCUSSION ON VIDEO CODING WITH 

HBP 

A. Frame Similarity and Percentage of Background 

The basic assumption of the dual reference frames for 

encoding the current frame is that the STR would be referenced 

for local motion i.e., moving areas, and the LTR would be 

referenced for still i.e., background areas of the frame [13]. 

Based on this assumption, our proposition is that a frame 

would be a better LTR frame if it provides better similarity 

and/or more background with other frames. The frame 

similarity is defined as the inverse of the mean absolute 

difference (MAD) between co-located pixels of two frames. 

Note that we do not consider global motion estimation in the 

similarity measurement as the proposed background modeling 

does not incorporate global motion. A pixel is defined as a 

background pixel if the pixel intensity difference between two 

co-located pixels is within one gray level. If the first 50 frames 

of two standard video sequences Paris and Silent are used, Fig. 

1 shows the average (i.e., using all pixels in a frame) similarity 

and percentage of background with respect to a frame (curves 

for the first 25 frames are shown in Fig. 1 (a) & (b)) with the 

rest of the frames in the video (without comparing itself). For 

example, a pixel in frame t is defined to be a background pixel 

if the difference between its value and the co-located value in 

all frames of the 50 frames is within one gray level. The curves 

correspond to different frames. Frame 15 provides the 

maximum similarity (based on the smallest MAD) for the other 



 

 

 

frames with Paris (see Fig. 1(c) which is derived from Fig. 1(a) 

after averaging). On the other hand, Frame 19 has the 

maximum background regions compared to the other frames 

for the Paris sequence (see Fig. 1 (d) which is derived from 

Fig. 1(b) after averaging). As the difference is not significant 

(this is the reason that a good LTR is not easy to find from 

video frames, since, more often than not, it does not exist in 

natural video!), we need to propose a new method in this paper 

for finding a better LTR frame i.e., golden frame compared to 

the existing LTR frames (see the next paragraph for more 

details). 

  

(a) 
 

(b) 

(c) 
 

(d) 

Fig. 1: Frame similarity and percentage of background with respect to other 

frames: average similarity and percentage of background among frames of 

Paris video sequence: (a) similarity; (b) percentage of background among 

frames; (c) average similarity of (a); (d) average background of (b); and the 

curves with bold red markers denoting the frames corresponding to the 

maximum similarity or the maximum background among the first 25 

frames. 

Although the aforementioned frames (with bold red markers 

in the figure) represent the best (apparently!) frames (among 25 

frames) to be the LTR, the similarity or the amount of 

background of these frames is not significantly distinguishable 

from the other frames (i.e., via the comparison of the area 

under each curve). Therefore, we explore the use of McFIS 

instead in the rest of this paper. The golden frame [18] can 

provide better performance due to updating (based on block-

motion, prediction accuracy, etc.) compared to the static LTR 

frame.  

A. The HBP Prediction Structure 

H.264/AVC has the flexibility to decouple the coding and 

display order of frames. Moreover, any frame can be marked as 

a reference frame and used for prediction of the following 

frames independently of the corresponding slice types [26]. 

This flexibility and referencing are explored in the HBP 

prediction structure. Fig. 2 (a) shows a typical HBP structure 

[26] with encoding image types, coding and display order of a 

GOP (comprising 16 frames in a GOP for this case). To get the 

better coding performance of the HBP structure, different 

quantization parameters (QPs) are used for different hierarchy 

levels. Normally, finer quantization is applied to frames which 

are more frequently used as reference frames for the other 

frames directly or indirectly. For example, Frame 9 (according 

to the display order) in Fig. 2 (a) is used more frequently (6 

times directly for Frames 5, 7, 8, 10, 11 & 13, and 8 times 

indirectly for Frames 2, 3, 4, 6, 12, 14, 15 & 16) compared to 

any other frame (except the first frame) as a reference frame. 

Note that the first frame is used 4 times directly and 11 times 

indirectly as a reference frame. 

 
(a)  

 
(b)  

Fig. 2: Referencing of hierarchical B-picture prediction structure where 16 

frames are used as a GOP, (a) hierarchical B-picture prediction structure 

using two reference frames (i.e., bidirectional) and (b) the extra i.e., third 

reference frame (hierarchical B-picture prediction structure is similar to (a), 

thus they are not included in (b)).    

Due to the great flexibility of H.264/AVC on coding order, 

display order, and referencing, the MRFs techniques can be 

applied to the HBP. Intuitively, we make a three-reference 

HBP technique (HBP-3Ref) which is shown in Fig. 2 (b) based 

on the availability and closeness of the frames for referencing. 

Note that the HBP-3Ref has also the similar HBP prediction 

structure shown in Fig. 2(a), thus the HBP references are not 

included in Fig. 2(b). The HBP-3Refs scheme uses the two 

closest neighboring frames (subject to availability in terms of 

coding order) from two different directions (i.e., from List_0 

and List_1) for bi-predictive ME and motion compensation 

(MC). The scheme also uses the next closest neighboring frame 

for single directional ME and MC. Actually the third reference 

frame can be added to List_0 or List_1, however, we do not 

consider the third frame for bi-directional referencing with any 

other reference frame to reduce the computational complexity. 

The ultimate decision is taken for mode selection based on 

Lagrangian optimization [42] between the results of the two 

motion compensated techniques. For a frame in Fig. 2 (b), 



 

 

 

frames with outgoing arrows are the third reference frame. 

Take Frame 5 (according to the display order) as an example. 

Frame 1 and Frame 9 are used as two bi-predictive frames and 

Frame 17 is used as a third reference frame. On the other hand, 

to encode Frame 2, Frame 1 and 3 are used as bi-predictive 

frames and Frame 5 is used as the third reference frame.   

III. HBP STRUCTURE WITH MCFIS AS AN I-FRAME 

Due to the limited effectiveness of the MRFs technique in 

the HBP structure and to exploit the implicit 

background/foreground referencing, we propose a new coding 

scheme with HBP (named McFIS-I) using the McFIS (which is 

encoded as an I-frame at the beginning of a scene in a video) as 

a golden frame to be used as a third reference frame. In this 

scheme, the moving region of the current frame is expected to 

be referenced from the two bi-predictive reference frames, 

while the static/uncovered background area is expected to be 

referenced from the McFIS.  

When we select from three reference frames, our hypothesis 

is that the third reference frame (McFIS, LTR, or the farthest 

reference frame) is mainly used as a reference frame for static 

background or uncovered background areas. As the McFIS is 

used as a reference frame for static background areas, reference 

areas should be co-located with the current frames for static 

cameras, and the motion vector length should be zero. To 

alleviate computational complexity, we use the third reference 

frame as a normal reference frame (i.e., uni-predictive ME and 

MC using this reference frame instead of bi-predictive using 

two reference frames) and then used the Lagrangian Multiplier 

[42] to select the better one between this and the bi- predictive 

ME and MC using the first and the second reference frames. 

Note that the McFIS (like the concept of a golden frame 

[15]-[18]) is not displayable at the decoder. The McFIS is 

generated using a number of frames of a scene and encoded as 

an I-frame with high quality. To avoid multiple McFISes 

within a scene of a video sequence we also introduce an AGOP 

determination technique using a new SCD algorithm. Note that 

the existing SCD algorithm is not effective in the HBP 

structure as those techniques are derived based on the temporal 

ordering of frames.    

B. Structure of the Proposed Predictive Scheme with McFIS 

and HBP 

The proposed scheme (McFIS-I) is based on the HBP 

structure where we first generate a McFIS from a number of 

frames of a scene in a video (the generation process will be 

described in Section III.B). Then we encode it as an I-frame. 

All frames of a scene are encoded as either B-frames or P-

frames with an extra reference frame (i.e., McFIS) unless a 

scene change occurs. If there is a scene change, we generate a 

new McFIS and encode it as an I-frame, and all frames of that 

scene will be encoded either as B- or P- frames. We note that 

the first frame of a GOP (according to display order) is 

encoded as a P-frame using the McFIS in the proposed scheme 

whereas in the conventional scheme (see Fig. 2), it is encoded 

as an I-frame.  

As the McFIS plays an important role in the proposed 

scheme, we encode it with relatively finer quantization 

compared to the inter frames. We compute the QP for the I-

frame (QPIntra) as follows  
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where QPInter is the QP of the P-frame, and    . denotes the 

floor operation. QPIntra is also plotted against QPInter in Fig. 

3(a) for the entire range of QPs. At high bit rates (i.e., around 

QPInter = 20) the quality of the inter-frames is already higher so 

we need a higher quality McFIS to improve overall RD 

performance. To ensure this we use finer quantization for the I-

frame at the high bit rates and coarser quantization at the low 

bit rates through the formulation of Equation (1). Fig. 3(b) 

shows the difference between QPInter and QPIntra, for the middle 

range of QPs. There is little effect in the RD performance of 

the proposed method based on our experimental results if we 

use variable QPIntra for QPInter>40 and QPInter<20 to encode the 

McFIS. For P or B frames, we maintain the same quantization 

variations mentioned in [26] for different hierarchy levels. 

Based on a given quantization parameter for key pictures QP0, 

the remaining quantization parameters for pictures of a given 

temporal level k > 0 are determined by QPk = QPk-1 + ( k = 1 ? 

4 : 1 ). For SCD we propose an adaptive thresholding scheme 

(to be described in Section III.D) based on the ratio of the 

SADs among the frames of a GOP.   

(a) 
 

(b) 

Fig. 3: The relationship between QPs of Intra-frame (i.e., McFIS) and QPs of 

Inter-frame (P-frame) of the proposed scheme; (a) QPInter vs. QPIntra for entire 

range of QPInter (also shown mathematically in Equation (1)), and (b) 

difference between QPInter and QPIntra against QPInter for middle range of QPs 

(which are mostly used in typical video coding applications).    

C. McFIS Generation  

Each pixel position of a scene is modeled independently by 

a mixture of K Gaussian distributions [29]-[32]. A pixel 

position may be occupied by different objects and backgrounds 

in different frames. Each Gaussian model represents the 

intensity distribution of one of the different components e.g., 

objects, background, shadow, illumination, surround changes 

(like clouds in an outdoor scene), etc. observed by the pixel 

position in different frames. A Gaussian model is represented 

by the recent pixel intensity, mean of pixel intensity, pixel 

intensity variance, and weight (i.e., how many times this model 

is satisfied by the incoming pixel intensity). The system starts 

with an empty set of models and initial parameters. If the 

maximum number of models allowable for a pixel is three, we 



 

 

 

can get a maximum of 3×H×W models for each video scene 

where H×W is the resolution of a frame.  

 For a pixel, the McFIS generation algorithm is shown in 

Fig. 4 which takes the recent pixel intensity (i.e, pixel intensity 

at the current time, Xt) and existing model for that pixel 

position (if any) as inputs and returns background pixel 

intensity (i.e., McFIS) and the background model. For every 

new observation Xt at the current time t, it is first matched 

against the existing models in order to find one such that the 

difference between the newly arrived pixel-intensity and the 

mean of the model is within 2.5 times of the standard deviation 

(STD) of that model. If such a model exists, its associated 

parameters are updated with a learning rate parameter. The 

recent pixel intensity of the model is replaced by the newly 

arrived pixel intensity. If such a model does not exist, a new 

Gaussian is introduced with the intensity as a mean (μ), a high 

STD (σ), recent pixel value (γ), and a low weight (ω), and the 

least probable model is evicted. The least probable model is 

determined based on the lowest value of ω /σ among the 

models. We have fixed the initial parameters in this 

implementation as follows: maximum number of models for a 

pixel K = 3, learning rate α = 0.1, weight ω = 0.001, and 

variance  = 30 as mentioned in [28]-[32]. Obviously, there is 

influence of the initial parameters in the background modeling 

and eventually in coding performance. For example, if we use 

K =2 instead of 3 we may miss the stable background for a 

scenario where two foregrounds (e.g., objects and clouds) 

appear after a stable background for a given time. If we use α = 

0.01 instead of α = 0.1, the model takes longer to update the 

current background/foreground. A small weight makes sure 

that when a new model is introduced, it could not be selected 

as a background model immediately after its introduction. 

Thus, a model could not be selected as a background model 

when the model is introduced due to a noise. The variance 

controls the range of pixel intensities which can be covered by 

a model. In the proposed scheme, we tried different initial 

values, and then fixed the values for better performance using 

different video sequences. Note that we use all frames from the 

first two GOPs for McFIS generation and then used it to 

encode all frames (i.e., all GOPs) of the scene. We do not 

change the McFIS unless a scene change occurs. A new McFIS 

is generated, encoded, and then used for a new scene. Of 

course, this is just a possibility of configuration for encoding.  

We assume that the k-th Gaussian at time t represents a pixel 

intensity with mean
t
k , STD

t
k , the recent value 

t
k , and the 

weight
t
k such that 1

k

t
k . The learning parameter α is 

used to balance the contribution between the current and past 

values of parameters such as weight, STD, mean, etc. After 

initialization, for every new observation Xt at the current time t, 

it (i.e., Xt) is first matched against the existing models in order 

to find one (e.g., kth model) such that |Xt – 
1t

k | ≤ 2.5
1t

k . If 

such a model exists, update the corresponding recent value 

parameter 
t
k  

with Xt. Other associated parameters are updated 

with learning rates as follows [29]: 
tt

k
t
k X  1)1( ; (2) 

)()()1(
212 t

k
tTt

k
tt

k
t
k XX   

; (3) 

  1)1( t
k

t
k , (4a) 

and the weights of the remaining Gaussians (i.e., l where l ≠ k) 

are updated as 
1)1(  t

l

t

l  . (4b) 

The weights are then renormalized. If such a model does not 

exist, a new model is introduced with γ = µ  = Xt,  = 30, and ω 

= 0.001 by evicting the K-th (i.e., the third model based on w/σ 
in descending order) model if it exists.  

 

Fig. 4: Pseudo code for McFIS Generation algorithm. 

 

To get the background pixel intensity from the DBM 

technique above for a particular pixel, we take the mean value 

of the background model that has the highest value of ω/σ. In 

this way we can make a background frame (comprising 

background pixels) as the McFIS. Examples are shown in Fig. 

5 using the first 50 original frames of Hall Monitor video 

Algorithm [Ψt
,  Ωt

] = McFISgeneration (X
t
, Ωt-1

) 

Parameters: Xt is the pixel intensity at time t; Ω is the 

structure of K Gaussian mixture models at time t-1 

where each model contains mean, STD, weight, and 

recent value i.e., {
1t

k ,
1t

k ,
1t

k ,
1t

k }; Ψt is the 

background pixel intensity i.e., McFIS at time t.    

For the first time 
t
1 = {Xt, 30, 0.001, Xt }; Ψt = Xt; 

otherwise  

 IF (|Xt – 
1t

k | ≤ 2.5
1t

k  for any k≤K 

Update 
t
k ,

2t
k , 

t
k , according to Equations (2), 

(3), and (4); ;tt
k X  

 ELSE 

  Find the maximum number of models, τ in Ω; 

  IF (τ <K) 

   ;1
tt X ;301 

t
 ;001.01 

t
  

   
;1

tt X  

  ELSE 

   ;tt X ;30t
 ;001.0t

 ;tt X  
  ENDIF 

 ENDIF 

 Normalized all 
t
k so that 1

k

t
k ;  

 },,,{ t
k

t
k

t
k

t
k

t
k  for all k; 

 Sort 
t
k based on 

tt  / in descending order; 

;1
tt 



 

 

 

sequences. Fig. 5 (a) shows the 50th frame of videos, and Fig. 5 

(b) show corresponding McFISes. The oval in (b) indicates the 

uncovered background captured by the corresponding 

McFISes. We also create a background frame shown in Fig. 

5(c) using a motion vector-based technique [19]. This 

background does not capture uncovered background (i.e., no 

background at the man’s position (black regions) due to the 

non-zero motion vectors for those regions). Thus, this 

background frame is not suitable for efficient coding compared 

to the background generated using DBM. To capture the 

uncovered background by any single frame is impossible 

unless this uncovered background is visible for one frame and 

that frame is used as an LTR frame in the relevant existing 

approaches (this is practically very difficult to ensure). Thus, 

the McFIS is more suitable as an LTR frame than any single 

pre-encoded frame.   
 

 
(a) 50th frame of 

Hall monitor 

 
(b) 50th McFIS of 

Hall Monitor 

 
(c)Background frame 

generated by [19] 

Fig. 5: Examples of McFIS and uncovered background (inside 

the ovals) using  Hall Monitor video sequence, (a) original 50th 

frame, (b) corresponding McFIS, and (c) background-frame 

generated from Hall Monitor video using [19]. 

D.  McFIS as the Third Reference Frame in the HBP Structure  

To verify the quality of McFIS to be an LTR frame, we 

analyze the similarity (in terms of 1/MAD) of frames and the 

percentages of background with respect to McFIS and the first 

frame (used often as a reference frame in the conventional 

scheme). We use two kinds of McFISes: McFIS and McFIS-

Instant. For the former, we use all 50 original frames of a video 

sequence to generate McFIS and then the final McFIS at the 

50th frame is used to calculate the similarity and percentage of 

background of those 50 frames individually. For the latter, the 

1st to the (i-1)-th frames are used to generate the (i-1)-th McFIS 

and then the McFIS is used to calculate similarity and 

percentage of background for the i-th frame; for example, to 

get similarity and percentage of background for the 20th frame, 

we generate the McFIS using the first 19 frames. Note that for 

the 50th frame, the similarity and percentage of background for 

the McFIS and McFIS-Instant are the same as both use the 50th 

McFIS. Also note that, in the implementation, the calculation 

of similarity and percentage of background is not needed. The 

results are shown in Fig. 6 (note that the curves for the first 

frame in all 2 subfigures are the same as the corresponding 

ones in Fig. 1). The figure shows that both McFIS and McFIS-

Instant exhibit better correlation compared to the first frame. 

This figure shows that McFIS would be the better choice to be 

the LTR frame as it provides more coverage of the background 

(static and uncovered background). In addition, it has 

demonstrated that McFIS-Instant performs generally better 

than McFIS because of its closeness to the current frame for 

which similarity and amount of background are determined. 

However, in the actual implementation of lossy 

encoder/decoder, we cannot use McFIS-Instant as the decoder 

does not have error-free decoded frames (in terms of 

quantization and channel error). Thus, we develop a modified 

McFIS-Instant approach (named McFIS-D) using decoded 

frames (instead of original frames) which will be described in 

Section IV.   

E. SCD and Adaptive GOP Determination 

Insertion of an I-frame without significant scene change 

exhibits poor RD performance, although it has other 

advantages such as allowing random access into the sequence 

and cutting off error propagation for noisy channels. We need 

to determine SCD and then AGOP for optimum RD 

performance. The conventional SCD algorithms [33]-[35] for 

AGOP determination need temporal frame correlation whereas 

the HBP scheme does not maintain temporal frame order in its 

coding order. However, modified conventional SCD algorithms 

can be applied in HBP cases by determining the temporal order 

and creating scene change tags at the corresponding frames. 

Moreover, as the McFIS has inherent characteristics of 

representing a scene by retaining its stable portion (i.e., 

background); it can be effectively used in the SCD and AGOP 

determination. We can determine the adaptive threshold based 

on the SAD ratio of the first few consecutive frames (which are 

also used to generate the McFIS) of a scene against the McFIS 

and then use it to detect scene change for the rest of the frames. 

When scene change occurs, we need to regenerate a new 

McFIS and a threshold. Obviously, if we first detect the scene 

change and then insert an I-frame at the appropriate place, the 

RD performance for the frames after scene change will be 

higher. Then we need to maintain two McFISes, one for the 

frames before and another for the frames after a scene change 

in a GOP. This will be more complicated if there are multiple 

scene changes within a GOP. Therefore, we just use a single 

McFIS for a GOP in the proposed scheme, to demonstrate the 

basic idea.     

The scene changes when there is a significant change (i.e., 

compared to a predefined threshold) in terms of the SAD 

between the McFIS and the current frame and between the 

McFIS and the previous frame. Motion of frames in a scene 

 
(a) (b) 

Fig. 6: Correlation between the first frame, McFIS, and McFIS-Instant 

(generated up to that frame where background (or similarity) is 

calculated) and other frames; (a) percentages of backgrounds of the 50 

frames against the first frame, McFIS, and McFIS-Instant respectively, 

and (b) similarity (expressed in 1/MAD), McFIS, and McFIS-Instant 

respectively. 



 

 

 

may not be the same, and thus it is very difficult to determine 

the threshold based on a small number of frames and then use it 

for all frames that follow for scene change determination. To 

determine a better threshold we encode different video 

sequences using different bit rates by H.264, and observe that 

the PSNRs calculated using a pair of coded adjacent frames in 

a scene is within a certain range. The lowest PSNR level that 

we find by analysing a number of coded video sequences is 18 

dB under a wide range of bitrates. Without actual coding, we 

generate distorted frames where PSNRs are around 18 dB. We 

add noise to the frames of a video randomly in such a way that 

the PSNRs of any two adjacent frames are approximately 18 

dB. Then we find the maximum SAD among them, which is 

used for SCD threshold determination. The resultant threshold 

indicates the possible inter-frame difference bound within a 

scene (i.e., without scene change), and inter-frame difference 

with scene change should be above this threshold. Of course, 

this is just one way to determine the threshold. 

TABLE 1 

A MIXED VIDEO SEQUENCE FOR SCD AND AGOP 

Mixed (QCIF)  Frames Frames in Mixed 

Sequence 

Scene Change at 

Frame 

Akiyo  150 1~150 ~ 

Miss America  100 151~250 151 

Claire  100 251~350 251 

Car phone  100 351~450 351 

Hall Monitor  150 451~600 451 

News  100 601~700 601 

Salesman  150 701~850 701 

Grandma  100 851~950 851 

Mother  100 951~1050 951 

Trevor  150 1051~1200 1051, 1111 

We calculate SAD using the noisy frames against the McFIS 

and find the maximum ratio. The maximum ratio indicates the 

maximum frame variation of the frames with respect to McFIS. 

Clearly, 18dB distortion from noise is different from 18dB 

distortion from natural video signal, however, we use it as an 

approximation and to avoid false SCD in a frame with a rapid 

object movement, we use a higher threshold i.e., twice the 

maximum ratio. To test SCD and AGOP we create a mixed 

video sequence (see Table 1) comprising 1200 frames from ten 

different video sequences. There are ten scene changes (at 

Frame 151, 251, 351, 451, 601, 701, 851, 951, 1051, and 1111) 

where 9 scene changes occur between every two individual 

video sequences and one scene change occurs within a video 

sequence (i.e., in the Trevor video sequence).  

An SCD is detected if the ratio of SAD is greater than the 

adaptive threshold determined above. Unlike the existing SCD 

and AGOP determination algorithms, we also use percentage 

of reference to detect SCD. It is obvious that if the percentages 

of reference from the third frame (i.e., McFIS) is very low (i.e., 

zero or near zero), then the McFIS no longer represents the 

background of the frame. Thus, we assume that when a SCD 

occurs, a new McFIS needs to be generated.  Fig. 7 shows SCD 

using the proposed (McFIS-I) approach where eight scene 

changes are detected by the adaptive threshold (indicated by 

solid circles) and two scene changes are detected by low 

percentages of reference. In our implementation, we assume 

that if the percentage of reference is below 2%, then SCD 

occurs. Scene change detection is always a challenging issue as 

the definition of scene change can be varied such as abrupt 

scene change, camera zooming, camera panning, and scene 

dissolving, etc. In our experiments we combine two metrics to 

determine a scene change. The first one is based on the 

difference between two frames, which is quite successful in the 

case of abrupt scene change, and the second one is based on the 

percentage of reference which can be successful in the cases of 

zooming, panning, and scene dissolving scenario. 

 

Fig. 7: Scene change detection using the proposed method for mixed video 

sequence with a total of 10 scene changes in the 1200 frames where solid circle 

and dotted circle indicate scene change detection by the adaptive threshold 

based on SAD ratio and the threshold based on the percentages of references 

respectively.  

IV. HBP STRUCTURE WITH MCFIS GENERATED FROM 

DECODED FRAMES 

In the proposed McFIS-I algorithm (described in Section 

III), McFIS is generated using a number of original frames of a 

scene and then encoded as an I-frame to be used as a third 

reference frame for the entire scene. There are several 

problems with the McFIS-I algorithm, and one of them is the 

need for transmission of McFIS in each scene. In addition, 

McFIS can also lose its similarity with the scene if more 

uncovered background regions are exposed later in the scene. 

Moreover, it is not easy to determine the best possible number 

of frames to participate in the McFIS generation process due to 

the diversified nature of the actual videos. 

A. McFIS with decoded frame (McFIS-D) 

To address the above mentioned issues we also propose a 

modified algorithm (named McFIS-D) where the McFIS is 

generated and updated (in both encoder and decoder) using 

decoded frames so that no McFIS needs to be encoded for use 

in the decoder (as mentioned in Section III.C). We note that 

McFIS-Instant and McFIS-D are equivalent if lossless 

encoding is used. Obviously the McFIS-D algorithm requires 

more computational time (both in the encoder and the decoder) 

compared to the McFIS-I algorithm as it requires updating the 

background model and generating the background frame after 

encoding each frame. However, unlike the McFIS-I algorithm, 

it does not require any extra frames (i.e., McFIS) to encode and 

transmit. In the McFIS-D scheme the first frame of a scene is 
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encoded as an I-frame. Note that the McFIS-I scheme is more 

similar to the LTR-based scheme because after generation it is 

not modified over time, and on the other hand, the McFIS-D 

scheme is closer to the golden frame-concept because it is 

continuously modified using newly coded frames.     

Obviously, the background frame generation procedure of 

the McFIS-I (using original frames) and the McFIS-D (using 

decoded frames, involving error due to quantization) 

algorithms are not the same. We need to minimize the 

distortion of the decoded frames for McFIS generation. Let 

1tM and 
'
tM be the final (t-1)-th McFIS and t-th McFIS after 

incorporating the (t-1)-th decoded frame respectively. We 

generate the final t-th McFIS as follows: 




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(5) 

where τ and Tp are the weighting factor and threshold 

respectively. In our experiment we used τ = 0.5 and Tp = 5. If 

the difference between two co-located pixel intensities in 

adjacent McFISes is less than Tp, we assume that this happens 

due to quantization effects rather than foreground/background 

changes, since the difference is very small. Thus, Tp is used to 

minimize the distortion due to the quantization and results in 

RD performance improvements. Since quantization errors of 

two co-located pixels of subsequent frames would not be the 

same, the weighted average of the two intensities reduces the 

distortion. Due to the different quantization values used in 

different kinds of frames (e.g., I, P, or B) and different 

hierarchical levels of frames (e.g., B1 to B3 in Fig 3), co-

located pixels may have different quantization error. 

Instead of using the mean value (of the model) as the 

background pixel’s intensity (refer to the fourth paragraph in 

Section III.B), the McFIS-D approach uses the recent pixel 

value:  when a pixel satisfies a model (see the condition in Line 

9 of Fig. 4), the pixel intensity is stored as the recent value of 

the model [32]. In the McFIS-D algorithm, the McFIS is 

always updated with the latest decoded frame and used as a 

third reference frame, and thus, the McFIS generated by the 

recent value provides more reference compared to that of the 

McFIS-I algorithm due to the closeness with the current frame. 

This ensures better RD performance. It is evidenced by the 

McFIS-Instant as demonstrated in Fig. 6. On the other hand, if 

the McFIS-I algorithm uses the recent value to generate the 

McFIS, it could not perform well for those frames at the end of 

a long scene. Due to the longer frame delay for the encoder and 

decoder, we could not use all frames of a long scene for 

background modeling and the McFIS generation for the 

McFIS-I scheme. As we use a small number of frames of a 

scene to generate McFIS in the McFIS-I scheme, the recent 

pixel values of the frames loses its relevancy to the frames 

towards the end of a long scene if there are small changes in 

the background. Moreover, as the McFIS-I scheme generates 

background from the original frames, the fluctuation of the 

background pixel intensity for a pixel position is limited 

(because there is no quantization distortion), and thus, the 

mean value works better in the McFIS-I case.  

B. Similarity and Difference among McFISes 

In this paper we mention three kinds of McFISes: McFIS-I, 

McFIS-D, and McFIS-Instant.  

McFIS-I: In this scheme, we use a number of original frames 

of a scene to generate McFIS and then McFIS is encoded as an 

I-frame with finer quantization and used as a third reference 

frame for the rest of the frames (except the first frame) of the 

scene. Thus, one extra frame needs to be coded for the McFIS-I 

scheme. In this scheme we code the first frame of a video scene 

as a P-frame using the McFIS frame as a reference frame. To 

generate the McFIS, we use the mean value of the background 

model. 

McFIS-D: In this scheme, the McFIS is generated from the 

decoded frames. We use the (i-1)-th McFIS as a third reference 

frame to encode the i-th frame. Unlike the McFIS-I scheme, we 

do not need to encode it because the same mechanism is used 

to generate it in the encoder and decoder. In this scheme we 

encode the first frame of a video scene as an I-frame. To 

generate the McFIS, we use the recent value of the background 

model and Equation (5).    

McFIS-Instant: McFIS-instant is equivalent to McFIS-D if 

lossless decoded frames (in terms of channel error and 

quantization error) are available at the encoder and decoder. It 

has been demonstrated through experimental results that 

McFIS-Instant performs generally better than the McFIS 

because of its closeness to the current frame for which 

similarity and amount of background is determined. However, 

in actual implementation of lossy encoder/decoder, we cannot 

use McFIS-Instant, as the decoder does not have error-free 

decoded frames.                      

V. COMPUTATIONAL COMPLEXITY 

The proposed techniques (both McFIS-I and McFIS-D) 

require extra operations to generate and encode (or update) the 

McFIS compared to the original state-of-the-art scheme HBP, 

the scheme HBP with three reference frames (HBP-3Ref) or 

the scheme HBP with LTR frame (HBP-LTR). In McFIS-I, as 

we generate and encode the McFIS once for a scene using the 

first few frames, the impact of extra operations is negligible if 

the scene is sufficiently long; the proposed McFIS-D scheme 

requires more computation as it needs to update the McFIS 

after encoding each frame. Note that the McFIS-D scheme 

requires computational time in the decoder as we do not send 

any McFIS.    

The proposed techniques aim to reference the current frame 

for its background or more stable regions, and thus, small 

search range ME should be sufficient to find the best match for 

the background region. The small non-zero search length 

addresses camera jerking and/or the need for fractional ME. 

Thus, if we use small search length ME for the third reference 

frame, the proposed techniques need comparable or less 

computation compared to the HBP-3Ref scheme. For 

comparison, we also use another scheme (HBP-FirstFrame) 

which is the same as the proposed McFIS-I scheme but 

replacing McFIS with the first frame of a scene. The 

computational time requirements by different algorithms are 



 

 

 

shown in Fig. 8 against the HBP scheme and the HBP-3Ref 

scheme. Note that we consider full search length for all types 

of reference frames in the HBP and HBP-3Ref schemes, 

however, we consider full search length for B-type reference 

frames and short search length for the third reference frame 

(i.e., first, LTR, or McFIS) in the HBP-FirstFrame, HBP-LTR, 

and both proposed schemes (i.e., McFIS-I and McFIS-D) 

because the third reference is only used for referencing the 

static/occluded background areas. In the experiment we use 15 

and 2 for the full search length and short search length 

respectively.  

The figure reveals that the extra computational time 

requirements for HBP-3Ref, HBP-LTR, HBP-FirstFrame, and 

two proposed (i.e., McFIS-I and McFIS-D) techniques are 

57%, 7%, 11%, 13%, and 40% compared to the HBP scheme 

respectively. On the other hand, the computational time saving 

for HBP-LTR, HBP-FirstFrame, and two proposed (i.e., 

McFIS-I and McFIS-D) techniques are 32%, 29%, 28%, 11% 

compared to the HBP3Ref scheme. The algorithms were 

executed on a personal computer (Intel® Core™ 2 CPU 6600 

@ 2.4GHz, 3.5 GB RAM). Note that there is no significant loss 

(i.e., bit rate increases less than 1% and PSNR decreases less 

than 0.02 dB) of RD performance by the proposed techniques 

while small search lengths are used, while the other scheme 

such as HBP-3Ref increases bit rates and decreases quality 

more as it does not only refer to background regions. Thus, we 

could not use short search lengths for the scheme.  

The proposed techniques need extra time in the encoder and 

decoder compared to the other relevant techniques due to the 

background modeling. The background modeling time is fixed 

and does not depend on the search length. The experimental 

result shows that extra 0.64% and 2% of encoding times are 

needed using McFIS-I and McFIS-D methods respectively 

compared to the encoding time of 100 frames with 15 search 

length. For the McFIS-I scheme we do not need extra 

computational time for background modeling in the decoder as 

we send encoded McFIS for the decoder. However, we need 

extra time for background modeling in the decoder for the 

proposed McFIS-D scheme. In the scheme, the decoder 

requires the same time as the encoder for background modeling 

due to the same procedure is applied in the encoder and the 

decoder. 

VI.  OVERALL EXPERIMENTAL RESULTS 

A. Experimental Setup: 

To compare the performance of the proposed schemes (i.e., 

McFIS-I and McFIS-D), we implement H.264 with HBP 

prediction structure, as well as the aforementioned HBP-3Ref, 

HBP-LTR, and HBP-FirstFrame. All algorithms are 

implemented based on H.264 (adapted from the JM 18 

H.264/AVC reference software) recommendations with 25 Hz, 

±15 as the search length with quarter-pel accuracy. 

Experimental results show that relative performance 

differences among the schemes do not vary significantly if we 

increase the search length to 32 or 64. We use QCIF (176 by 

144 pixels) and CIF (352 by 288 pixels) size video sequences. 

H.264-HBP and HBP-3Ref have 16 GOP size i.e., they have I-

frames at regular intervals (i.e., at the first frame of each GOP) 

whereas the proposed methods and the HBP-FirstFrame 

method have I-frames only when scene change occurs. The 

proposed techniques have three reference frames and the HBP 

structure has two reference frames. Thus, for fair comparison 

we select the HBP-3Ref and HBP-LTR schemes for 

comparison. The same QP for high quality LTR frame and 

McFIS has been used for fair comparison. We use Lagrangian 

multiplier as 3/)12(285.0  QP  where QP varies for different types 

of frames. We use a number of QPs from 20 to 40 for P-frames 

and QPs for other types of frames are adjusted based on the 

recommended values in HBP scheme (see discussion in Section 

II.A).  In the HBP-LTR scheme, we use the jumping parameter 

as 32 and select the high quality LTR frame as the first I-frame 

of an even number GOP in a video. We also use other jumping 

parameters (e.g., 16) and other frames (e.g., the middle frame 

of a GOP) as LTR frame, but the above mentioned 

combination is the best. Note that all frames of the first two 

GOPs in a scene are used to generate the McFIS in the 

proposed McFIS-I scheme.  

 

The schemes use two closest neighboring frames (subject to 

availability in terms of coding order) from two different 

directions (i.e., List_0 and List_1) for bi-directional motion 

estimation and compensation. The schemes also use the third 

frame (the third closest, the first frame, the LTR frame, and the 

McFIS by the HBP-3Refs, HBP-FirstFrame, HBP-LTR, and 

Fig. 8: Computational complexity of the proposed techniques (McFIS-I 

and McFIS-D), the HBP-LTR, the HBP-FirstFrame, the HBP-3Ref 

schemes against HBP and HBP-3Ref schemes. 

(a) 
 

(b) 

Fig. 9: (a) Increase (%) of skip MBs against the HBP scheme with three 

reference frames (HBP-3Ref) by HBP-LTR, HBP-firstFrame, and the 

proposed (McFIS-I and McFIS-D) algorithms for mixed video sequence; 

and (b) the percentages of references from the 3rd reference frame by HBP-

3Ref, HBP-LTR, HBP-FirstFrame, and proposed (McFIS-I and McFIS-D) 

schemes. 



 

 

 

the proposed schemes respectively) for uni-predicitve ME & 

MC. The ultimate decision is taken for mode selection based 

on the Lagrangian optimization [42] between the results of the 

two motion compensated techniques. A total of 288 frames are 

used for all video sequence (except for the Popple, Football, 

and Mixed video sequences where 112, 112, and 1200 frames 

are used). 

 

(a) (b) (c) (d) 

Fig. 10: Reference regions (non black blocks) using HBPLTR, McFIS-I, and 

McFIS-D methods; (a) original image, (b), (c), and (d)  reference blocks by 

HBPLTR, McFIS-I, and by McFIS-D methods respectively. 

B.  Performance Comparisons 

As the McFIS represents the stable part of a scene (i.e., 

static/uncovered background), the proposed schemes have 

more skip MBs compared to other algorithms. Fig. 9 (a) shows 

20~85% and 8~70% increase (in percentages) of skip MBs 

using the proposed McFIS-D and McFIS-I schemes compared 

to the HBP-3Ref scheme. Fig. 9 (b) shows percentages of 

references coming from the third frame by the relevant 

algorithms. The proposed McFIS-I and McFIS-D schemes 

select more areas (i.e., more blocks) from the third reference 

frame (i.e., McFIS) compared to other schemes while encoding 

a frame. This indicates that the McFIS can capture more 

background compared to other third reference frame.   
     TABLE 2 

PERFORMANCE COMPARISON USING BD-PSNR [36][37] AGAINST HBP SCHEME 

Video Sequence 3Ref LTR First Frame McFIS-I McFIS-D 

News 0.02 0.45 1.99 3.29 3.83 

Hall Objects 0.04 0.13 1.60 2.95 3.61 

Salesman 0.00 0.24 2.30 4.03 4.30 

Tennis 0.28 0.54 0.16 1.05 1.40 

Trevor 0.17 0.24 0.12 0.39 0.61 

Mixed 0.35 0.42 0.69 1.30 1.67 

Silent 0.12 0.36 1.93 3.07 3.34 

Paris 0.16 0.27 1.04 1.40 2.00 

Bridge Close 0.12 0.18 0.73 1.80 1.77 

Popple 0.30 0.21 0.43 0.68 0.82 

Average 0.16 0.30 1.10 2.00 2.34 

Fig. 10 shows evidence where various schemes encode a 

block using different reference frames. In the figure we show 

an original frame (Frame 23 of Silent) and its referencing 

scenario by either B reference frames or LTR frame (i.e., high 

quality LTR frame for HBPLTR scheme and McFIS for the 

proposed McFIS-I and McFIS-D schemes). While coding the 

corresponding blocks, the HBP-LTR and the proposed methods 

use the LTR frame or McFIS as a reference frame for the 

normal areas (i.e., non black blocks) of Fig. 10(b), (c), and (d) 

and B- frames (according to the hierarchy structure) as 

reference frames for the black blocks of Fig. 10(b), (c), and (d). 

The figure confirms that areas of McFIS reference (see Fig. 10 

(c), and (d)) are larger and more aligned to the background 

areas compared to the areas of the LTR frame (see Fig. 10 (b)).    

TABLE 3 

PERFORMANCE COMPARISON USING BD-BIT RATE (%) [36][37] AGAINST HBP 

SCHEME 

Video Sequence 3Ref LTR First Frame McFIS-I McFIS-D 

News -0.23 -4.17 -15.45 -24.76 -32.19 

Hall Objects -1.79 -2.68 -20.93 -41.32 -48.70 

Salesman -0.22 -2.44 -19.99 -31.06 -31.38 

Tennis -3.95 -6.73 -4.76 -12.86 -16.76 

Trevor -2.34 -2.92 -2.47 -5.12 -7.89 

Mixed -5.01 -5.38 -9.34 -16.71 -21.67 

Silent -1.84 -4.98 -21.81 -32.99 -33.84 

Paris -1.94 -2.51 -12.51 -16.78 -23.22 

Bridge Close -2.64 -3.28 -11.96 -29.66 -30.13 

Popple -4.43 -3.21 -6.76 -10.16 -11.88 

Average -2.44 -3.83 -12.60 -22.14 -25.77 

BD-PSNR and BD-Bitrate are two measures to see the 

average difference between two RD curves [36][37].  In our 

case we consider four points (for PSNRs and Bit rates) which 

are covered by all algorithms using different QPs. The PSNR 

range varies in different video sequences; however, normally 

we cover PSNR range from 33.0 dB to 44.0 dB. Table 2 and 

Table 3 show a summary of the RD performance in terms of 

BD-PSNR and BD-Bit rate [36][37] for a wide range of bit 

rates against HBP scheme. Table 2 reveals that the proposed 

techniques (i.e., McFIS-I and McFIS-D) outperform the HBP-

3Ref scheme on average by 1.84 dB and 2.18 dB respectively 

when 10 standard video sequences are used. Table 3 

demonstrates that the proposed techniques reduce the bit rates 

on average by 20% and 23% respectively on average compared 

to the HBP-3Ref scheme when the same video sequences are 

used. 

 

Fig. 11(a) shows frame-by-frame PSNR comparisons for the 

Tennis QCIF video sequence using the proposed McFIS-D 

scheme against the HBP-3Ref scheme under the same bit rate 

(i.e., 440 kbps) with the same QPIntra but different QPInter. Note 

that the figure is drawn based on the display order of frames 

rather than encoding order. The proposed McFIS-D scheme 

detects 6 scene changes with 256 frames. The proposed 
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Fig. 11: (a) Frame-by-frame PSNR comparisons for the Tennis video 

sequence using the proposed McFIS-D and HBP-3Ref techniques under the 

same bit rate; (b) RD performance of the proposed schemes (McFIS-I, 

McFIS-D, and McFIS-D with fixed GOP) against existing algorithms. 



 

 

 

schemes such as McFIS-I and McFIS-D use flexible GOP 

based on the scene change. However, if we allow fixed GOP 

(i.e., by inserting I-frame at regular interval) in the proposed 

scheme, the proposed scheme still outperforms the relevant 

existing schemes (see Fig. 11(b)).  

Fig. 12 shows the overall RD performance for a wide range 

of bit rates using a number of video sequences, inclusive of a 

mixed video sequence comprising 1200 frames from ten 

different video sequences to test the effectiveness of the SCD 

and AGOP on RD performance by the proposed techniques. 

We select four video sequences (tennis and Tempete) with 

complex object motion and camera motion with scene changes 

to investigate the effectiveness of the proposed techniques in 

camera motion and scene change situations.  

The figure confirms that the proposed techniques outperform 

the relevant state-of-the-art algorithms, namely HBP, HBP-

3Ref, and HBP-LTR. The RD performance in Fig. 12 reveals 

that the proposed technique also outperforms the relevant 

techniques for a wide range of bit rates for Tennis, Mixed 

video, and Silent video sequences. Actually, the overall PSNR 

improvement came from good reconstruction of background by 

keeping the good reconstruction foreground. Moreover, a smart 

video encoder/decoder can be designed to encode foreground 

with better quality by allocating more bits which are saved 

from background coding. As expected, the performance gain of 

the proposed techniques depended on the amount of 

background in a video. For example, Silent has more 

background area compared to Paris and hence the performance 

improvements of the proposed techniques are more significant.  

 

 

 

Fig. 12: RD performance by the proposed (McFIS-I and McFIS-D), HBP, 

HBP-3Ref, HBP-LTR, and HBP-FirstFrame algorithms using a wide range 

of standard video sequences. 

Overall, as can be seen from Table 2, Table 3, and Fig. 12, 

the proposed methodology outperforms the existing schemes 

consistently in a wide range of situations (visual content, 

bitrates and resolutions). If we compare the RD performance 

between the McFIS-I and HBP-FirstFrame techniques in Fig. 

12, we can see the gain due to introduction of the McFIS. For 

example, it is around 1.0 dB for Silent at 1200 kbps. If we 

compare the RD performance among the McFIS-I, HBP-

FirstFrame and HBP-3Ref techniques in Fig. 12, we can see 

the gain due to introduction of AGOP. For example, it is also 

around 1.0 dB for Silent at 1200 kbps. For the McFIS-I scheme 

we cannot use McFIS as a reference frame until it is generated. 

We used all frames from the first two GOPs to generate the 

McFIS and then we can use it for subsequent frames. Thus, we 

need two GOPs frame delay in the McFIS-I scheme. To avoid 

frame delay, we can continue coding without McFIS until it is 

generated. The proposed McFIS-D has no frame delay problem 

as the McFIS can be used from the very beginning, although 

the performance gain due to McFIS in the McFIS-D scheme for 

the initial few frames may not be significant. 

We test our algorithms with camera motion video sequence 

such as Tennis, Trevor, Garden, and Tempete. The 

experimental results show that the proposed technique (McFIS-

D and McFIS-I) outperforms the other relevant algorithms 

where camera motion is relatively low (e.g., Tennis and 

Trevor). However, the proposed McFIS-I technique in its 

current state could not provide better RD performance 

compared to the other methods for the video sequences with 

high camera motion e.g., Tempete, Garden, and Football as the 

McFIS-I technique encodes a number of I-frames (one at each 

scene change) due to the low percentage of McFIS references 

(see the last paragraph of Section III.D). This occurred due to 

significant zooming in the Tempete video and huge motion 

activities in Football sequence. It is interesting to observe that 

the proposed McFIS-D technique outperforms the other 

relevant algorithms at high bit rates for the Tempete, Football, 

and Garden sequence with small margin. This occurred due to 

two reasons (i) unlike the McFIS-I scheme the McFIS-D 

scheme does not encode any I-frames at the scene change 

points (thus saving bits), (ii) the McFIS-D technique updates 

its McFIS dynamically to make it relevant for referencing 

future frames. We conduct the experiment using all algorithms 

for Foreman, Calendar, and Bus video sequences to see the 

effect of camera panning. The result shows that the McFIS-I 

method determines a number of scene changes and does not 

provide coding gain compared to others. Thus, the McFIS-I 

scheme is suitable for long scene with static background and 

the McFIS-D is suitable for both short and long scene with 

dynamic background. In general, the McFIS-D scheme requires 

more computational time compared to the McFIS-I scheme. 

The bottom line is that the proposed McFIS-D scheme does not 

deteriorate the RD performance compared to other schemes 

even in camera motion scenarios.         

To avoid frame delay at either a scene change point or at the 

starting point of a video, the first few frames of a scene are 

encoded without using the latest McFIS in the proposed 

McFIS-I scheme as it needs a number of frames for the McFIS 

modeling. On the other hand, for the proposed McFIS-D 

scheme, we can use McFIS for encoding frames at the 

beginning as the background modeling and generation and 

using of the McFIS are simultaneous. The proposed McFIS-D 



 

 

 

scheme does not introduce any frame delay. Thus, in both 

proposed methods, we can avoid frame delay. We need 

memory in both encoder and decoder to store a McFIS 

(equivalent to a frame) for referencing purpose. Except for the 

HBP scheme, all other schemes need extra memory to store the 

third reference frame, LTR frame, or McFIS for the encoder 

and the decoder. In addition, the McFIS-I scheme needs 

memory for storing the background model in the encoder but 

not in the decoder. However, the McFIS-D scheme needs the 

same amount of memory for storing the background model in 

both encoder and decoder. We need to store background model 

for each pixel. Each pixel may have maximum three models; 

however, for the most cases there is one (background) model, 

for some cases two (background and foreground), and for rare 

cases three (two background and one foreground or one 

background and two foreground). Each model has four fields 

(i) mean (0~255), (ii) variance (0~900), (iii) weight (0~1), and 

(iv) recent value (0~255). 

VII. CONCLUSIONS  

In this paper, we propose a new methodology for 

hierarchical bi-predictive picture-based video coding 

techniques using the dynamic background frame (i.e., McFIS) 

as the third reference frame to overcome multi-frame 

referencing difficulties in conventional techniques. The 

proposed techniques outperform the existing LTR frame 

techniques by better exploiting uncovered background through 

implicit background/foreground referencing, and can be 

regarded as a method for finding a so called golden frame. 

There are two approaches to generate the McFIS under the 

proposed methodology. In the first approach, we generate a 

McFIS using a number of frames of a scene in a video and then 

encode it as an I-frame with higher quality. For the rest of the 

scene that I-frame is used as a reference frame (i.e., an LTR 

frame). In the second approach, we generated McFIS from the 

decoded frames and then used it as an LTR frame, without the 

need to encode a McFIS (which therefore becomes a “hidden 

layer” in both an encoder and a decoder).  

The overall experimental results show that the proposed 

technique improves PSNR from 0.4 dB to 4.2dB in comparison 

with the relevant existing methods over a wide range of bit 

rates and for a large number of standard test videos (with 

different visual content/motion/resolution) and their 

combinations. At the same time, the experimental results 

indicate that the proposed techniques use 28% and 11% less 

computational time compared to the other relevant existing 

HBP techniques.  

The second proposed approach (i.e., McFIS constructed 

from decoded frames) is better in terms of RD performance 

because of its adaptability towards the end of a scene with 

background regions, but with higher computational complexity 

(nevertheless, still 11% more efficient than the relevant 

existing HBP schemes).    
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