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A longitudinal multi-scanner 
multimodal human neuroimaging 
dataset
Colin Hawco1,2 ✉, Erin W. Dickie1,2, Gabrielle Herman1, Jessica A. Turner   3, Miklos Argyelan4, 
Anil K. Malhotra4, Robert W. Buchanan5 & Aristotle N. Voineskos1,2

Human neuroimaging has led to an overwhelming amount of research into brain function in healthy and 
clinical populations. However, a better appreciation of the limitations of small sample studies has led 
to an increased number of multi-site, multi-scanner protocols to understand human brain function. As 
part of a multi-site project examining social cognition in schizophrenia, a group of “travelling human 
phantoms” had structural T1, diffusion, and resting-state functional MRIs obtained annually at each 
of three sites. Scan protocols were carefully harmonized across sites prior to the study. Due to scanner 
upgrades at each site (all sites acquired PRISMA MRIs during the study) and one participant being 
replaced, the end result was 30 MRI scans across 4 people, 6 MRIs, and 4 years. This dataset includes 
multiple neuroimaging modalities and repeated scans across six MRIs. It can be used to evaluate 
differences across scanners, consistency of pipeline outputs, or test multi-scanner harmonization 
approaches.

Background & Summary
Multi-site study designs are highly beneficial in combining resources across centers to maximize research par-
ticipant recruitment. Such approaches have proven powerful for acquiring the large samples needed for trans-
formative research. Multi-site collaboration is vital in the context of techniques such as neuroimaging, where 
data acquisition is both expensive and time-consuming, and in psychiatric research, where the available patient 
population at any given center is limited. However, multi-site neuroimaging research also suffers from some 
inherent challenges. Differences in signal characteristics across scanners, including scanners of the same man-
ufacturer and model, can pose a challenge when combining data collected across multiple sites1,2. Furthermore, 
even within a single-site study, scanner upgrades and related changes can have impacts on data3; this problem is 
magnified when several sites are contributing data and potentially undergoing upgrades during the course of a 
study. Evaluating approaches to harmonize data across sites is essential as an increasing number of neuroimag-
ing datasets include data collected across different scanners. One tool for validating harmonization approaches 
is to examine data from the same individuals collected across multiple scanners.

Another issue that has been rising to the forefront in neuroimaging research is low replicability4–6. Substantial 
efforts have been devoted to using neuroimaging approaches to develop ‘biomarkers’ of illness7–10. This has led 
to a proliferation of large scale, multi site neuroimaging studies, such as the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI)11, the Canadian Dementia Imaging Protocol (CDIP)12, and the UK Biobank13. However, any 
such neuroimaging biomarkers are only clinically useful if they are stable/reliable measures. The stability of 
neuroimaging measures can be assessed via scan-rescan approaches. While some structural MRI measures 
such as cortical thickness seem to have high stability14–16, functional measures, such as task activity or func-
tional connectivity, typically show low reliability when repeated in the same individual14,17. Measures such as 
functional connectivity between two specific brain regions are statistical values of inherently noisy signals; it 
may not be expected that such measures would show high stability. But despite poor scan-rescan reliability, 
functional connectivity patterns are individually identifying14,18. This demonstrates that useful signal is present 
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amongst the noise, and within-subject scan-rescan variability may be lower than between-subject variability. 
Establishing useful neuroimaging biomarkers requires establishing the stability/reliability of such measures, 
as well as accounting for non-biological factors such as different signal characteristics across scanners. This is 
especially critical given the growth of large sample multi-site neuroimaging datasets.

We have been exploring biomarkers of social cognitive dysfunction in schizophrenia through the NIMH 
RDoC study ‘Social Processes Initiative in the Neurobiology of the Schizophrenias’ (SPINS)19–21. The SPINS 
study sample included neuroimaging data collected across three sites to maximize the available number of par-
ticipants. To examine signal differences across MRIs, three “human phantoms” travelled to each of the three 
sites and underwent the imaging protocol. This process was repeated on an annual basis, during which one new 
“human phantom” was added and three new (PRISMA) scanners were introduced. We previously used a subset 
of this data to assess neuroimaging metrics across individuals and scanners14. Using a clustering approach, we 
noted that, with minimal correction for different scanners, an individual’s repeated scans are reliably clustered 
together. However, essential sources of MRI scanner variability were also present; particularly, the PRISMA 
scanners had substantial differences in diffusion metrics compared to the non-PRISMA scanners.

In total, this dataset consists of 30 scanning sessions across four individuals on six MRIs across four years. 
It provides a valuable resource for considering the MRI scanner’s effects on functional and structural neuro-
imaging metrics. While other datasets are available with larger numbers of participants or a greater number of 
scans17,22, this dataset has a relatively unique combination of the inclusion of functional, structural, and diffu-
sion data collected across several MRI models over time. This provides an opportunity to examine site effects 
in a more naturalistic way, in a dataset that emerged from a multi-site study rather than being systematically 
designed and controlled for site effects. In this way, this dataset represents a ‘real world’ example of the chal-
lenges of integrating data across sites.

Methods
Data collection.  MRI scans were collected annually across three participating sites starting in 2014 and 
ending in 2018. Participants traveled to each site and performed an MRI scan. At all three sites, Siemens Prisma 
MRIs were made available part way through the study. As a result, data from six MRIs is included in the dataset; 
each site changed MRI scanners mid-study. Each MRI is identified via a three-letter identifier in the file names 
(see below and Table 1). The three study sites were the Center for Addiction and Mental Health, affiliated with 
the University of Toronto, the Maryland Psychiatric Research Center (MPRC) affiliated with the University of 
Maryland School of Medicine, and Zucker Hillside Hospital, affiliated with the Zucker School of Medicine at 
Hofstra/Northwell. The original MRI at the Center for Addiction and Mental Health was a General Electric 750w 
Discovery 3 T, referred to as CMH; a Siemens Prisma (referred to as CMP) was made available in year four at the 
Toronto Neuroimaging Facility (ToNI) of the University of Toronto, Department of Psychology. The original MRI 
model at the Maryland Psychiatric Research Center was a Siemens Tim Trio 3 T (referred to as MRC); they later 
upgraded to a Siemens Prisma (referred to as MRP) for year three. Zucker Hillside had a General Electric 750 
Signa 3 T (refer to a ZHH) at study start and upgraded to a Siemens Prisma (referred to as ZHP) for year three. 
Scans were performed annually, though in 2018 (year 4) scans were only performed on CMP (to collect data from 
the newly available Prisma scanner). Scan sites, scanner model and years at which scans were performed on each 
MRI are presented in Table 1.

Participants.  Data are available from four healthy male participants, aged 34 to 59 during study start (aged 38 
to 63 at study end). Participants had no history of psychiatric, neurological, or major chronic illness. Participants 
sub-01, sub-02, and sub-03 were collected at year one (study start) and during year two on scanners CMH, MRC, 
and ZHH. However, sub-03 was not available in year three and was thus replaced with sub-04. In year three, 
sub-01, sub-02, and sub-04 were scanned on CMH, MRP, and ZHP. In year four, participants sub-01, sub-02, and 
sub-04 were scanned at CMP only to provide data on an additional PRISMA scanner. A total of 30 MRI sessions 
were completed across the study. A schematic of the participant’s scanner schedule by year is presented in Fig. 1. 
All participants signed informed consent, including explicit consent to share data on a public repository, and the 
study had IRB approval at all sites.

Prospective data harmonization.  Data were prospectively harmonized to the limits of available hardware 
at each site by matching scan parameters. When exact parameters were unable to be matched due to hardware 
capabilities or limitations, the closest appropriate value was selected. As the Siemens Prisma scanners were iden-
tical models, it was possible to perfectly match scan parameters across sites.

Site MRI Scanner Years Scanner ID

Toronto General Electric 750w Discovery 3 T 1,2,3 CMH

Toronto Siemens Prisma 3 T 4 CMP

Maryland Siemens Tim Trio 3 T 1,2 MRC

Maryland Siemens Prisma 3 T 3 MRP

New York General Electric 750 Signa 3 T 1,2 ZHH

New York Siemens Prisma 3 T 3 ZHP

Table 1.  Scanners by site.
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MRI scans.  Each participant underwent MRI scans consisting of a T1-weighted (T1w) anatomical MRI, a 
diffusion-weighted MRI, and a 7-minute resting state functional MRI. The parameters for all sequences across 
all scanners were matched as closely as possible given the available hardware and specifics of each scanner. T1w 
anatomical scans used the manufacturer-specific fast gradient echo sequences (Siemens MRIs MRC, MRP, ZHP, 
and CMP: MPRAGE; GE MRIs CMH, ZHH: BRAVO). T1w scan parameters were TR = 2300 ms, 0.9 mm iso-
tropic voxel size with no gap, interleaved ascending acquisition order, with TE from 2.78–3 ms, as determined by 
the scanner-specific hardware). As is standard practice to increase scan SNR at the MPRC site (Kochunov et al., 
2006), three T1w scans were acquired and subsequently averaged into a single image prior to any preprocessing 
for the MRC and MRP scanners.

Diffusion weighted scans used an axial EPI dual spin echo sequence, with 60 gradient directions, b = 1000, 
five baseline scans with b = 0 (or six in the case of the PRISMA scanners), TR = 8800 ms, with the exception of 
ZHH where TR = 17700 ms; TE = 85 ms; FOV = 256 mm; in-plane matrix size was 128 × 128, 2.0 mm isotropic 
voxels with no gap). Resting fMRI scans lasted 7 minutes, with participants instructed to remain awake, eyes 
closed, and let their mind wander. The resting state fMRI was an EPI sequence of 212 volumes, TR = 2000 ms, 
TE = 30.0ms, FOV = 20 cm, 64 × 64 acquisition matrix, 40 slices of 4 mm thickness, interleaved ascending acqui-
sition order. Relevant scan parameters are included in json files provided with each data record, and are pre-
sented in detail in Supplementary Table 1.

BIDS derivatives (BIDS details).  All data are organized according to the brain imaging data structure 
(BIDS) formatting23. BIDS provides a standardized naming specification and folder structure to allow for easy 
reference and standardized pipelines. In the BIDs specification, a folder for each participant exists at the top level 
of the folder hierarchy, with scans/sessions embedded within. Each session folder then has a sub-folder for each 
scan type acquired.

Following data acquisition, DICOM files were exported from each site to a common XNAT repository, and 
visual QC was performed. DICOM images were then converted to nifti format via dcm2niix v1.0.20190410, and 
renamed/organized according to the current BIDS standards. The integrity of the BIDS formatting was then 
checked via the BIDS validator (https://bids-standard.github.io/bids-validator/). To preserve participant ano-
nymity, T1 scans were defaced using pydeface 2.0.0 (https://github.com/poldracklab/pydeface).

Data Records
Raw data has been uploaded to https://openneuro.org, in a repository entitled “Social Processes Initiative in 
Neurobiology of the Schizophrenia(s) Traveling Human Phantoms”24, accession number ds003011. The full link 
is https://openneuro.org/datasets/ds003011.

Following BIDS, data from each participant is stored within a separate folder, labeled by subject ID (sub-01, 
sub-02, sub-03, and sub-04). Within participant folders, separate folders exist for each session which that par-
ticipant completed. Session folders are labeled in the form ses-[Year][Scanner], with year indicated by Y1, Y2, 
Y3, or Y4 (for years 1–4 respectively) and scanner as indicated on Table 2. Each session folder in turn includes 
folders for anat (T1), func (resting state fMRI), and dwi (diffusion MRI scan). Within each of these folders 
exists a nifti (.nii.gz) file for the image, and a.json file containing scan parameters (generated by dcm2niix). For 
the dwi folder, bvec and bval files are also included, containing the gradient directions and diffusion weighting 
respectively.

Technical Validation
After MRI images were acquired, the scans were reviewed visually for artefacts and to ensure the diffusion 
scan directions were correct. To extract standardized image quality metrics (IQMs), the T1 and fMRI images 
were run through mriqc (version 0.14.2)25. IQMs were extracted from diffusion scans using FSL EDDY QUAD 
(Quality Assessment for DMRI)26. Data quality metrics are shown in Fig. 2. CNR (contrast-to-noise ratio) is an 
extension of signal to noise ratio (SNR), which evaluates the separation between gray and white matter tissue 
distributions. SNR was not used as a metric in this case as the bias field within the PRISMA scans distorts the 
SNR calculation. Mean framewise displacement (FD) is reported for DWI and fMRI. FD reflects head motion 

Fig. 1  Schematic of participants scanned at each MRI by year. Prisma scanners are shown in gray.
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from frame-to-frame in an image that is acquired across time (i.e., fMRI or DWI). We report the mean of this 
framewise displacement for each scan. tSNR (time signal to noise ratio) is an extension of SNR over time. It is 
calculated as the bold signal across time divided by the temporal standard deviation.

Of the 30 scans included in this data set, 27 were part of a previously published paper examining differences 
between scanner and participants14. In that analysis, we performed hierarchical clustering on cortical thick-
ness derived from the T1, basic diffusion metrics (white matter skeleton fractional anisotropy, FA), and resting 
state connectivity. In an initial clustering solution, diffusion data showed scanner specific clustering, with the 
PRISMA scan separating into a distinct cluster. However, when a simple correction for scanner was incorpo-
rated, all three modalities clustered by participant but not scanner, with the exception of two high motion resting 
state scans. This demonstrates that the data from all three scans was of sufficient quality to distinguish scans 
from different participants scanned repeatedly.

Usage Notes
Given ongoing concerns over reliability and sample size in neuroimaging, multi-site studies have become a 
critical tool for advancing research. This can be especially true in research on clinical populations, which has 
resulted in tremendous growth of multi-site neuroimaging samples11–13,20,27, as well as in the identification of 
treatment relevant biomarkers or biotypes28,29. While the protocol used in the current dataset uses older imag-
ing sequences, which are not in alignment with state of the art public data sets, such as human connectome or 
adolescence brain cognitive development27,30, clinical datasets, such as ADNI, more commonly have scanning 
parameters closer to those in the current protocol11,12. Large scale projects such as the ENIGMA consortium 
have demonstrated the power of building large samples from combining previously collected data31,32, often 
featuring older sequences such as those in the current data.One challenge of working on neuroimaging data 
collected across multiple sites can be differences in signal across MRIs, even from the same vendor or the same 
model3,14,15,33–35. For example, within this data set our previous work noted a large difference in diffusion metrics 
in the Prisma as compared to non-Prisma scanners14. Repeated scanning data sets, such as the one presented 
here, can be useful to validate approaches intended to minimize MRI specific signal differences while retaining 
individually unique variance. While there has been a growing number of scan-rescan data sets at a single site36 

Record Participant Scanner Date Age

sub-01 Y1 CMH sub-01_ses-Y1CMH sub-01 CMH Fall 2014 52

sub-01 Y1 MRC sub-01_ses-Y1MRC sub-01 MRC Fall 2014 52

sub-01 Y1 ZHH sub-01_ses-Y1ZHH sub-01 ZHH Fall 2014 52

sub-01 Y2 CMH sub-01_ses-Y2CMH sub-01 CMH Fall 2015 53

sub-01 Y2 MRC sub-01_ses-Y2MRC sub-01 MRC Fall 2015 53

sub-01 Y2 ZHH sub-01_ses-Y2ZHH sub-01 ZHH Fall 2015 53

sub-02 Y3 CMH sub-02_ses-Y3CMH sub-02 CMH Fall 2016 39

sub-02 Y3 MRP sub-02_ses-Y3MRP sub-02 MRP Fall 2016 39

sub-02 Y3 ZHP sub-02_ses-Y3ZHP sub-02 ZHP Fall 2016 39

sub-02 Y4 CMP sub-02_ses-Y4CMP sub-02 CMP Fall 2017 40

sub-03 Y1 CMH sub-03_ses-Y1CMH sub-03 CMH Fall 2014 36

sub-03 Y1 MRC sub-03_ses-Y1MRC sub-03 MRC Fall 2014 36

sub-03 Y1 ZHH sub-03_ses-Y1ZHH sub-03 ZHH Fall 2014 36

sub-03 Y2 CMH sub-03_ses-Y2CMH sub-03 CMH Fall 2015 37

sub-03 Y2 MRC sub-03_ses-Y2MRC sub-03 MRC Fall 2015 37

sub-03 Y2 ZHH sub-03_ses-Y2ZHH sub-03 ZHH Fall 2015 37

sub-03 Y3 CMH sub-03_ses-Y3CMH sub-03 CMH Fall 2016 38

sub-03 Y3 MRP sub-03_ses-Y3MRP sub-03 MRP Fall 2016 38

sub-03 Y3 ZHP sub-03_ses-Y3ZHP sub-03 ZHP Fall 2016 38

sub-03 Y4 CMP sub-03_ses-Y4CMP sub-03 CMP Fall 2017 39

sub-04 Y1 CMH sub-04_ses-Y1CMH sub-04 CMH Fall 2014 59

sub-04 Y1 MRC sub-04_ses-Y1MRC sub-04 MRC Fall 2014 59

sub-04 Y1 ZHH sub-04_ses-Y1ZHH sub-04 ZHH Fall 2014 59

sub-04 Y2 CMH sub-04_ses-Y2CMH sub-04 CMH Fall 2015 60

sub-04 Y2 MRC sub-04_ses-Y2MRC sub-04 MRC Fall 2015 60

sub-04 Y2 ZHH sub-04_ses-Y2ZHH sub-04 ZHH Fall 2015 60

sub-04 Y3 CMH sub-04_ses-Y3CMH sub-04 CMH Fall 2016 61

sub-04 Y3 MRP sub-04_ses-Y3MRP sub-04 MRP Fall 2016 61

sub-04 Y3 ZHP sub-04_ses-Y3ZHP sub-04 ZHP Fall 2016 61

sub-04 Y4 CMP sub-04_ses-Y4CMP sub-04 CMP Fall 2017 62

sub-03 Y4 CMP

Table 2.  Demographic details for each scan included in the dataset.
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or incorporating data from multiple sites but rescanning on the same MRI37, there remains a relative paucity 
of openly available multi-site travelling human datasets17,38,39. This data adds an additional openly available 
resource for evaluating the effects of different scanners within the same individuals, including the combination 
of structural, functional, and diffusion metrics which are not generally present in a single travelling human 
sample.

Repeated multi-site data sets also have the potential to address issues around stability and reliability of neu-
roimaging metrics1,5,16,17. Whether considering clinical populations of typically developing individuals, valid 
measurements are essential to understanding the human brain. These challenges can be exacerbated in clinical 
populations or when scanning older or younger populations, who often show greater motion40,41. Moreover, 
signal quality issues and higher motion related to behavior variability of interest, such as impulsivity or other 
clinical scales, can influence the assessment of brain-behavior relationships42,43. However, despite challenges 
in reliability of measurements, especially in fMRI44,45, important and replicable individual variability can be 
observed within these data18,22. Repeat scanning data sets can be used to help evaluate analytical approaches 
designed to minimize noise signals (e.g. motion) or pull important individual sources of variability from differ-
ent MRI signals. For example, analytical frameworks which decrease within-subject variability (while account-
ing for potential within-subject noise sources) may represent more valid measures for individually meaningful 
brain signals.

This data set adds another resource to a growing list of publicly available rescan data sets. The novel features 
of this data set include the multi-modal data available and the fact that scans were collected across several years, 
MRIs, and across scanner upgrades (a common issue during longitudinal studies and long-term data collection).

Code availability
All tools used are open source and available at their respective references. The code for generating plots of quality 
control data (and the respective source data) can be found at https://github.com/TIGRLab/human_phantoms_plots.
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