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rigid-bunch (dipole) and higher bunch-shape cscillations
of the individual bunches (individual-bunch modes), plus
perhaps coupled motion of the different bunches
(coupled-bunch modes). Stability is achieved either by
decoupling the bunches or by a spread in synchrotron
frequencies within a bunch. A stability criterion ana-
logous to the Keil-Schrell criterion’ for coasting beams
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Introduction
Most previous work has concentrated on rigid—bunch
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motiodn, aGriveén DY resomnant €iementis 1In tne vVacuum Cnam
ber, cavities, or the wall resistance.®”® However, the
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hlgher modes can also be excited. For example, a
resonator of sufficiently high frequency that one or
more oscillations ocecur during the passage of a bunch
will excite primarily the higher modes. Also, the
space-charge force depends on the variation of the line
density within a bunch, and therefore increases with
mode number. On the other hand e~wall wak

a
moge number. un the they nana, wall waxKe

decays relatively little over one bunch and is insensi-
tive to the density variations of the higher modes; it
drives mostly the rigid-bunch mode, as in the transverse

case.

This paper presents a general and hopefully easy to
use stability criterion for the higher modes of oscilla~
tio i

ion as well as the rigid-bunch mode. Four ingredients
are necessary:
i) oscillation modes
i1) coherent frequency shifts Aw
iii) decoupling criterion
) cfahility critarian
iv) stability criterion.
The derivations are given in another paper,’® and
only the results are presented here.
Classification of modes
For bunched beams, the dominate force 1s the exter-
nal synchrotron force, and the particle motion is
approximately circular in the normalized z - 3/wg phase

plane (Fig. 1). An exactly circular distribution go(r)
is statiocnary, while small oscillations about the
stationary distribution have the form

oly 4 £y = R_(r) o—imd . —iuwt 13
1= [RE R Spaly < N+
and oscillate with the frequency
w o= mwg t L (2)
where wg is the synchrotron frequency, and m = 1 for di~-
pole modes, m = 2 for quadrupole modes, etc. If Eq. (1)
is inserted Inte the linearized Vlasov cquatiocn, an in-
uation results for the radial mode patterns
the coherent frequency shifts Awgp. For the
idered here, and probably in general, the
have the form
R (r) - m-1 98¢ o)
b dr
srovided freauency spreads are neglected. A fow of the
provided frequency spreads are neglected A few of th
low-order oscillation modes are sketched in Fig. 1.

In addition, coupled motion of the different bun-—
ches occurs 1f their oscillation frequencies are nearly
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bunch modes of oscillation. These are designated by the
index n, which specifies the phase difference 2mn/M

between adjacent bunches.

Notice that two indices are necessary to describe
the complete oscillation: m specifies the type of
oscillation the individual bunches are undergoing, while
how these indivi

larger coupled-bunch pattern. This con-
indices m and n will be observed in the
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Given the shape of the modes and the beam—equipment
coupling impedance Z“(m), a straightforward procedure
exists for computlng Awg . Results for perfectly con—
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in the next sectlon.

. | , A
F4
St tionary m=1 m=2 m=3 m=4
Nic tribotior Dinole Qundriinala Sextunole Qctunole
Distribution Dipole Quadrupole Sextypole Qctupole
(Rigid -bunch)
Fig. 1
Fig.
Nyvnratl ot oa 1m +tha ahoomes of Frooiiamey anveoade
Growth-rates in the absence of frequency spreads
The growth-rate is
L Y (%)
T m

and the motion is unstable if Im Awy is positive. It is
~onvenient to write the expressions for the frequency
=hifts in the form
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action in question; V
per turn; g is the synchronous phase, with the con—
ventlion that V cos ¢g 1s positive below transition and
negative above.

Perfectly conducting walls
For a bunch with approximately parabolic line
r a bunch with approximately parabolic line
density,
A = VM A (6)
m sc )
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and

g. =1 + 2 ln (vacuum chamber radius/beam radius).
Zge 1s the usual longitudinal coupling impedance for
mode k; Zg = 377 ohm; I is the total current in M
bunches; h is the RF harmonic number (usually equal to
M); B is the bunching factor (bunch length/bunch
separation).

Note that the frequency shift fAwy is real, depends
strongly on the bunching factor, and increases with the
square root of the mode number m. (The analogous fre-
crency shift for coasting beams Increases linearly with
mode number.) The square-root dependence on mode number
is characteristic for bunched beams, and 1s apparently
due to the r™ factor in the radial distribution (3),
which constrains the motion more and more tc the beam
edge.

Resistive walls

The effect of a smooth round vacuum chamber on the
dipole mode is

| %,
Hiss iz . ltu Q.+
2 g.o13s KR T gls (8)
Wg V cos $g h M

where
1 g
| = — p 2
iZskin‘ /2 e b Ze s

and ¢/b is the ratio of skin depth at the revolution
frequency wp to the vacuum chamber radius; Qg is the
number of synchrotron cscillations per revolution,

Jg = wg/wgs; ané G is a bunch function analogous to the
one defined by Courant and Sessler for transverse
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Tts maximum real or imaginary part is about unity, and
Im C is positive if its argument is less than one-half
(Fig. 2). Thus for single-bunch motion (M = 1, n =0,
and I - I/M), the bunches are unstable below transition
and stable above, assuming that Qg < % . For coupled
motion, about half the modes are unstable in all cases.
Fobinson® has found a similar result, except with s72
instead of s72 in Eq. (9). 1 think Eq. (9) is correct,
but in any case the difference is negligible.

The frequency shifts for the higher modes are
cstimated to be about

Moy v BT Awy

where B is the bunching factor.
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Resonator

We assume a cavity or resonant element character-
ized by a shunt or parallel resistance Ry, resonant
frequency fypeg (or radian frequency wyeg), and quality

factor Q. Transit time factors are ignored. Then
Lo R, I M
D = 0,159 —2—— — D F_(&4) . (10)
V cos ¢g Bh hust

s

Fn is a form factor that specifies the efficiency
with which the resonator can drive a given mode. It
depends on the phase change Ad that occurs during the
passage of a bunch (see Fig. 3):

&5 = 27f..¢ X bunch length in seconds.
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The maximum value of F; for the dipole mode occurs when
Ad = m so that an approximately linear waveform acts on
the bunch. Similarly, the quadrupole cor breathing mode
is most efficiently driven when A¢ is near 27, and so
on for the higher modes. 1In general, mode m 1s most
efficiently driven when the resonator frequency is

fres = m f.pig, where

ferie =73 D0

is the most efficient frequency for driving dipole
modes (fy is the revolution frequency in Hz). For
these frequencies, the maximum value of F, is approxi-
mately 1/v/m.

The factor D in Eq.
tion ™ of

(10) depends on the attenua-
the induced signal betweeu buuches, where
o = 27 Sf % time between bunch centres
- b
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and ¢f = f,..4/2Q is the bandwidth of the resonator.
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The maximum value of |D| is about unity for narrow-band
resonators, with little attenuation between bunches,
and approaches zero for wide-band resonators (Fig. 4).

Narrow band, o << I

). 5
" fies - integer x fp — 1 of

(11)

and the coupled-bunch mode n is excited when

fres * integer x Mfy + nfy .

Wide band, a >> 1:

- 2min/M
e

D~ -20e sin (27freg/Mfo) , (12)

and coupled-bunch medes near n = +M/4 (phase difference
between bunches of *T7/2) are most strongly excited.

Gereral case, any ol

(13)
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p = arbitrary integer

—————— wide-Rand resonance with attenuation ¢ * between bunches

—  —  w—.— intermediate case with attenuation e”! between bunches
narrow-band resonance with nc attenuation between bunches

Fig. & Im D versus frequency for the hypothetical

case of 10 bunches (M = 10)

Tn 21l cases, modes n = 0 and n = M/2 (if M is
even) are not cxcited. Alsgo, if the bunches are de-
coupled from one anothier, the motion is stable because
n =0 for a single bunch. (Actually, the swmall phase
change per revolution due to the synchrotron oscilla-
tion results in a weak instability for mede n = 0, but
this is negligible compared with the other modes and
has been neglected here.)

Decoupling criterion

The basic mechanism for decoupling the bunches is
a upread in the frequercies of the individual bunches.
A rule-~of-thumb for decoupling is that the r.m.s.
spread in iadividual bunch frequencies should exceed
the frequency shift Awy due to the coupling force:!®

spread > shift (14)

If a beam control system is acting, somewhat larger
spreads are required.8 The spread may be induced ex-—
ternally by modulating the RF voltage, or may arise
naturally from a difference AN in bunch populations.

In the last case, a convenient criterion for decoupling

is
, AN
]m ALUSC [ {-N—]
rms

> \Amél . (15)

where the prime indicates that the space-charge shift
(6) should be omitted (it does not contribute to the
coupling). Since (AN/N)yps is usually less than 57 (ox
a full spread of 207), large space-charge shifts are
required for decoupling.

Stability criterion

If within-bunch frequency spreads are taken into
account, the following dispersion relation can be de-
rived for the different modes:

Ay 2m
_ " m T dgo
1'w Iw—mm(r) drdr’ (16)
m s
0
where
om 48
W= 2222 ar ,
m dr
0

and Awpy is the sum from all interactions, space charge,
resistive wall, resonators, etc. We define S as the
spread in wg between centre and edge of the bunch (full
spread) due to the non-linearity of the synchrotron

force; it is plotted in Fig. 6 as a function of the
bunching factor and the parameter !' = sin ¢g.
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Equation (16) specifies the stable regions in the
complex fuy,/S plane, and these are plotted in Fig. 7
for the smooth distribution

el
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with zero slepe ab the beam edge. TFollowing the example
of Xeil and Schnell! for coasting beams, we can approxi-
mate the stability boundary »y semicircles to give

S| (13)
Vi

for stability. This is analogous to the cvasting-beam

criterion

(full spread at bhase) = % L@k;

for mode k. Jhe criterion (18) has been derived pre-—
viously!? for the rigid-bunch mode (m = 1).
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For space charge, Auwy increases as vm and there-
fore the threshold is the same for all modes, just as
for_coasting beams. For a resonator, Awy decreases as
1/Vm and therefore the higher modes require less fre-
quency spread. Stated differently, m times more shunt
resistance is required to excite mode m at its critical
frequency mf. it than is necessary to excite the dipole
mode at its critical frequency. However, once the
threshold is exceeded, either by the action of space
charge or the resonator itself, the growth rates for
the higher modes decrease only as 1/vm.
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Stability diagram. Regions to the left of
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mode, regions to the right are unstable.

Fig. 7

Examples

Some examples for the CERN machines are given in
Table 1, including resonator shunt impedances necessary
to drive dipole modes, namely

R, to reach threshold
Rsg for 50 msec growth time
Ryp for 10 msec growth time.

These are computed assuming that the quality factor is

larger than 1/(bunching factor) and that frog = forjic,

so that the form factors D and F in Eq. (10) are about
unity. R is determined by
‘Nu I+ 'Amy due to resonater! = %»S ,
sc’ : ! 4
and Rsy by
Rso = R_ + (R required to give lAwy| = 20 rad/sec

The resistive-wall growth rates
%), and are not includ-

and similarly for Ryg.
are negligible (Zg;, ~ 1 to 10
ed.
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PSB (Booster): Because of the large space-charge
force, all modes are well outside the stable region
during most of the acceleration cycle. Also, only small
shunt resistances are required to drive dipole modes,

70 2 for 50 msec e-folding time and 350 {I for 10 msec.
On the other hand, it is unlikely that elements exist

in the machine with such small resonant frequencies.

One expects frequencies of 30 MHz and above, which will
drive the dipole modes with reduced efficiency, or drive
higher modes. To drive mode m = 4 with an e-folding
time of 10 msec requires vin x 350 = 700 Q. Also the
revolution frequency changes by a factor of 2% durlng
the cycle so that many resonance regions

fres/fo = integer are swept through.

In fact, dipole and higher bunch-shape oscillations
occur, but it is too early to decide if they are due to
bugs in the RF system or to beam-equipment interactions.

P3 (1970): We concentrate on the region after
transition when the revolution frequency is approxima-
tely constant. With a constant accelerating voltage of
115 kV, the RF bucket is large compared with the bunch,
and the frequency spreads are insufficient to maintain
stability. A strong dipole instability with growth time
of 10 msec was observed when electrostatic septum tanks
(2) were installed. One was measured (by H.H. Umstitter)
and found to have Rg=18 k@, freg =~ 60 to 90 MHz depend-
ing on the position of the septa, and Q = 700. This was
cured by means of damping resistors, but a slower dipole
1nstab111ty remained with growth times of about 50 msec.
This is probably due to a parasitic resonance in the
14 RF cavities with Rg = 14 X 800 = 11.2 kQ, f,¢ spread
between 46 and 51 MHz, and Q = The computed e-
folding time of 28 msec using Eq. (10) and assuming a
single resonant frequency of 48 MHz is in reasonable
agreement with observation. More exact computations
using the measured impedance curves and including the
effect of the beam control system are reported in
Refs. 6, 8, and 9. The present cure is to reduce the
size of the bucket by voltage reduction.

PS (1972): The threshold impedance increases from
zero to 10 kI when the voltage is reduced until 85% of
the bucket is filled. At present, no instabilities are
observed.

Future PS: At 10'? particles, voltage reduction
may not be sufficient, even allowing for a 507 increase
in longitudinal emittance. A feedback system is being
considered.?

ISR: At present, the bucket is very large com-
pared with the bunch, so frequency spreads are small and
space charge is sufficient to move all modes cutside the
stable region. A relatively large impedance of 15 k is
required for a 50 msec growth time, but when this is
divided by the coasting~beam mode number
k = foq/f0 = 97, we find

Rso/k = 155 O ,
which is in the range of possible impedances. This
ratio is even smaller for the higher modes since Ry
scales as /m while k scales as m:

Rso/k = 155 {i/vm .

are chscrved

Tn fact, higher bunch-shape oscillations
and lead to a doubling of the longitudinal emittance.

Voltage reduction should cure this,

SPS: A threshold impedance of about 1 M) is
required for instability.



Table 1: Computed parameters for dipole modes of instability
Machine E v sin ¢ fg 4 B 5/4w Aw  fw fcrit R Rso Rio
(GeV)  (kV) o) ¢ S S (mz) (k2) (k) (k)
0.05 12 0.086 5470 2.3  0.78 0.102 0.041 1.9 15.0 15.0 15.0
PSB 0.45 12 0.086 3190 3.5 0.51 0.044 0.113 6.9 0 0.068 0.34
0.80 12 0.086 2200 3.9 0.41 0.028 0.150 9.8 0 0.069 0.35
PS 1.0 115 0.73 2500 3.7 0.46 0,117 0.007 9.0 250 250 270
(1970) 10.0 115 0.73 318 5.5 0.13 0,009 0.017 37.6 0 5.5 27
24.0 115 0.73 237 6.4 0.11 0.006 0.005 43.8 0.51 6.9 32
PS 10 91.5 0.91 218 5.5 0.16 0.049 0.017 29.4 10 15 35
(1972) 24 89.9 0.93 156 - 6.4 0.14 0.048 0.006 33.0 11 16 38
Future 10 94,7 0.88 239 5.5 0.19 0.048 0.069 25.1 0 0.93 4.6
PS 24 92.4 0.91 170 6.4 0.17 0.048 0.020 28.1 1.5 2.6 6.7
1SR 10 16 0.05 65 4.8 0.16 0.004 0.011 30.7 0 15 75
24 16 0.05 58 5.2 0.15 0.004 0.006 32.4 0 16 79
50 3380 0.77 287 4.6 0.31 0.063 - 321 4200 5000 8000
SPS 200 3380 0.77 160 6.0 0.21 0.029 - 472 1300 2200 6000
300 3380 0.77 131 6.4 0.19 0.023 - 526 960 2000 6000
400 3380 0.77 114 6.7 0.18 0.020 - 567 770 1870 6000
7 A R
/‘..

(1
Table 2: Fixed parameters used for computing Table 1

Machine No. of particles Bunch area B
x 102 eVesec mrad Tesla/sec
PSB 2.5 per ring 0.156 10 0.80
PS 1.5 0.156 10 1.9
Future PS 10.0 0.234 15 1.9
ISR 1.5 0.156 10 0.01
SPS 10.0 0.100 130 0.75
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