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Abstract

With the deployment of automatic face recognition sys-

tems for many large-scale applications, it is crucial that we

gain a thorough understanding of how facial aging affects

the recognition performance, particularly across a large

population. Because aging is a complex process involving

genetic and environmental factors, some faces “age well”

while the appearance of others changes drastically over

time. This heterogeneity (inter-subject variability) suggests

the need for a subject-specific aging analysis. In this paper,

we conduct such an analysis using a longitudinal database

of 147,784 operational mug shots of 18,007 repeat crimi-

nal offenders, where each subject has at least five face im-

ages acquired over a minimum of five years. By fitting mul-

tilevel statistical models to genuine similarity scores from

two commercial-off-the-shelf (COTS) matchers, we quantify

(i) the population average rate of change in genuine scores

with respect to the elapsed time between two face images,

and (ii) how closely the subject-specific rates of change fol-

low the population average. Longitudinal analysis of the

scores from the more accurate COTS matcher shows that

despite decreasing genuine scores over time, the average

subject can still be correctly verified at a false accept rate

(FAR) of 0.01% across all 16 years of elapsed time in our

database. We also investigate (i) the effects of several other

covariates (gender, race, face quality), and (ii) the proba-

bility of true acceptance over time.

1. Introduction

Studies on the persistence of face recognition perfor-

mance across large time lapse will be extremely valuable to

law enforcement, homeland security, as well as other agen-

cies that use face images for de-duplication or person iden-

tification. One notable example of the strength of COTS

face matchers is the case of Neil Stammer, a fugitive who

who was first arrested in 1999. In January of 2014, facial

recognition software returned a match between Stammer’s

photo on the FBI’s most wanted list (his mug shot from

(a) (b) (c)

Figure 1. In July of 2014, automatic face recognition matched Neil

Stammer’s (a) FBI’s most wanted photo (mugshot from 1999) to

(b) his fraudulent passport photo from 2011. He was then (c) cap-

tured after almost 15 years as a fugitive.

(a) (b) (c)

Figure 2. Aging influences facial appearance: (a) Identical twins at

age 61 appear to age differently due to smoking and sun exposure.

Drastic changes in facial appearance of two individuals after (b)

eight months and (c) four years of methamphetamine use.

1999, Fig. 1(a)) and the photo from a 2011 passport with

a different name (Fig. 1(b)); Stammer had been living in

Nepal under a stolen identity.1 While Stammer’s capture is

a successful example of face recognition across large time

lapse (12 years), we need to determine whether this capa-

bility holds across a large population of subjects.

Aging of the human body naturally causes changes in

facial appearance over time. During years of adolescence,

facial changes are predominantly due to the maturation of

the shape of the head; whereas in later stages of life, an

adult face may experience additional changes affecting skin

texture and elasticity. In addition to anatomical factors, en-

vironmental and/or lifestyle factors also have a significant

impact on facial appearance over time. Smoking, sun ex-

posure, and stress levels have been claimed to be plausi-

ble explanations for different aging patterns in the faces of

1http://www.fbi.gov/news/stories/2014/august/long-time-fugitive-neil-

stammer-captured
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(a) Ages 30.5 and 39.6

(0.4231)

(b) Ages 32.2 and 40.3

(0.4325)

(c) Ages 39.2 and 48.7

(0.4666)

(d) Ages 29.5 and 38.3

(0.4984)

(e) Ages 39.2 and 48.6

(0.5002)

Figure 3. Genuine face image pairs separated by eight to ten years in the PCSO LS database. COTS-A similarity scores for each pair

are shown in parentheses. The thresholds for COTS-A at 0.01%, and 0.1% FAR are 0.5331 and 0.4542, respectively. Hence, all of these

genuine pairs would be falsely rejected at 0.01% FAR, while the two female subjects would also be rejected at 0.1% FAR.

identical twins (Fig. 2(a)).2 Figures 2(b) and (c), show how

the use of methamphetamine can drastically alter a person’s

face over just a short period of time.3 Due to the cumulative

effects of both biological and environmental factors, facial

aging affects each individual differently.

Because the appearance of the face changes throughout

a person’s life, most identity documents containing face im-

ages expire after a designated period of time; U.S. passports

are only valid for 5 years for minors and 10 years for adults,

while U.S. driver’s licenses typically require renewal every

5 years. Figure 3 shows that elapsed time of eight to ten

years between two face images can cause a false non-match.

Many prior studies have claimed that face recognition

performance decreases as the time interval4 between two

acquisitions of a person’s face image increases [8]. How-

ever, these studies did not (i) conduct any formal tests of

hypotheses, (ii) make any distinction between population

trends and subject-specific variations in these trends, and

(iii) quantify how much of the change in accuracy is due to

other confounding factors such as face quality (e.g. facial

pose, ambient illumination), gender, age, and race.

In this paper, we apply multilevel statistical models to a

large-scale longitudinal database of 147,784 face images of

18,007 subjects. To study the effect of elapsed time, we

use two state-of-the-art commercial off-the-shelf (COTS)

face matchers to obtain genuine and impostor comparison

scores.5 The contributions of this study are: (i) Provides the

largest (to date) statistical analysis of longitudinal effects on

face recognition. (ii) Use of statistical models to determine

temporal trends in genuine scores and probability of true ac-

ceptance with respect to different covariates. (iii) The first

study to quantify the variance in subject-specific temporal

trends in genuine scores. (iv) Conclusion that false rejec-

tion rates at 0.01% FAR of one of the COTS matchers re-

main below 2% up to approximately 10 years time interval

for the longitudinal face database used here.

2http://www.nbcnews.com/id/33385839/ns/health-skin and beauty/t/

twin-study-reveals-secrets-looking-younger/
3http://www.facesofmeth.us/main.htm
4The terms time interval, time lapse, elapsed time, and age gap are used

interchangeably in this paper.
5COTS-A was ranked among the top three performers in the FRVT

2014 face recognition evaluation [5], and COTS-B is PittPatt v5.2.2.

2. Related Work

The facial aging process has received a considerable

amount of attention with respect to automatic methods

for age estimation, age simulation/progression, and age-

invariant face recognition (see [9] for a survey). In this

work, we are primarily concerned with how facial aging,

namely elapsed time, affects the performance of face recog-

nition systems. All of the previous studies on this topic fol-

low a similar approach: (i) partition the database (face pairs)

depending on age group or time lapse, (ii) report summary

performance measures (e.g. TAR at fixed FAR) for each par-

tition independently, and then (iii) draw conclusions from

the differences in performance across the partitions. Based

on this procedure, the following conclusions have been re-

ported [8]: (i) Face recognition performance decreases as

the time elapsed between two images of the same person

increases. For example, Klare and Jain report a decrease in

TAR @ 1% FAR of 7.7% and 14.3% from 0-1 to 5-10 years

time lapse for two COTS matchers on a database of mug

shot images [6]. (ii) Faces of younger individuals are more

difficult to recognize than faces of older individuals. See,

for example, the NIST FRVT 2014 evaluation [5] on seven

age groups (baby, kid, pre-teen, teen, young, parents, older)

in a visa database of 19,972 subjects.

In these cohort-based approaches, which age group or

time lapse partitions are evaluated is often arbitrary and

varies from one study to another, thereby, making compar-

isons between studies difficult [2]. Furthermore, cohort-

based analysis with summary statistics does not investigate

whether age-related performance trends are due to adverse

effects on the genuine distribution, the impostor distribu-

tion, or both.

Multilevel (hierarchical or mixed-effects) statistical

models have been used for determining important factors to

explain the performance of face recognition systems. Bev-

eridge et al. [1] apply generalized linear mixed models to

verification decisions made by three algorithms from the

FRGC Exp. 4. In addition to eight levels of FAR as a covari-

ate, they analyze gender, race, image focus, eye distances,

age, and elapsed time, but the maximum elapsed time is less

than one year, and the study only involves 351 subjects.

The use of multilevel statistical models for large-scale
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Figure 4. Statistics of the longitudinal database of face images (mug shots) used in this study: (a) number of face images per subject, (b)

elapsed time between the first and last image of each subject, and (c) gender (male or female) and race (white or black) distribution. In

total, there are 147,784 images of 18,007 subjects in the database (PCSO LS).

longitudinal studies has been advocated by [4] for iris and

[12] for fingerprint. Grother et al. utilized 715,612 Ham-

ming distances from 7,876 subjects enrolled in an opera-

tional border crossing system over 4 to 9 years; they esti-

mated that the increase in genuine Hamming distances due

to time lapse has no effect on iris recognition failures over

a subject’s lifetime [4]. Grother et al. further identified that

the aging effects on iris scores from a prior study [3] on a

smaller database were in fact due to changes in pupil di-

lation. For fingerprint, Yoon and Jain report a decreasing

trend in genuine similarity scores from a longitudinal fin-

gerprint database of 15,597 subjects; however, they further

determine that fingerprint image quality better explains the

variance in match scores, and that the decreasing trend in

genuine scores did not indicate a decrease in recognition

accuracy over time [12]. The longitudinal study on face

recognition in this paper follows the methodologies outlined

in [4] and [12].

3. Longitudinal Face Database

While the FG-NET [7] and MORPH6 databases have

contributed to studies on face aging, they are not suitable

for longitudinal study. FG-NET has only 82 subjects in to-

tal with rather large variations in pose, expression, and im-

age quality, and half of the face images are younger than 13

years old. While MORPH is a much larger database, there

are still only 317 subjects with at least 5 images acquired

over at least 5 years elapsed time. For these reasons, we

compiled a new longitudinal database of face images, de-

noted PCSO LS.

The PCSO LS database consists of 147,784 operational

mug shots of 18,007 repeat criminal offenders booked by

the Pinellas County Sheriff’s Office (PCSO) from 1994 to

2010.7 This subset of images was selected from a larger

6http://www.faceaginggroup.com/morph/
7Those interested in obtaining this data can contact PCSO:

http://www.pcsoweb.com

41.9 43.5 44.9 45.7 46.3

34.6 37.5 42.8 44.7 48.8

Figure 5. Face images and corresponding ages (in years) of two

subjects in the PCSO LS database.

database using the following criteria. Each subject has at

least 5 face images that were collected over at least a 5 year

time span, where each pair of consecutive images is age-

separated by at least one month. The database statistics are

shown in Fig. 4. PCSO LS has an average of eight (maxi-

mum of 60) images per subject that were acquired over an

average of 8.5 years (maximum of 16). The average age

of the youngest image of a subject is 31 years old; all ages

range from 18 to 83 years old. Examples of the booking

records for two subjects are shown in Fig. 5. Each booking

record (i.e. face image) also includes ancillary information

(e.g. gender, race, date of birth, date of arrest). We only

include white and black race subjects in this study because

there are too few subjects of other races. Figure 4(c) shows

the number of subjects in each demographic group.

Human labeling errors of demographic attributes, as well

as subject ID, are typical of large-scale legacy databases.

Identifying all such errors in PCSO LS is not feasible due

to the large size of the database. To ensure consistent labels

within each subject’s record, we determine the gender, race,

and date of birth of a subject as the majority vote from all

of their images. A cursory examination of the PCSO LS



(a) (b) (c)

Figure 6. Three examples of labeling errors in the PCSO LS

database. All pairs show different subjects who are labeled with

the same subject ID.

Figure 7. Examples of facial occlusions in the PCSO LS database.

database revealed 134 subject records that contained mul-

tiple identities (see Fig. 6). These subjects were removed

from our study. PCSO LS is relatively constrained which

facilitates longitudinal study, but some confounding issues

are still present (e.g. sunglasses and facial injury shown in

Fig. 7). We have retained these images in this study.

4. Multilevel Statistical Model

A longitudinal database of face images consists of re-

peated observations on subjects over time. Face comparison

scores generated from such a database can be grouped by

subject. To address this hierarchical structure of data, mul-

tilevel statistical models have been widely used to properly

handle the correlation between intra-subject scores across

time.8 Multilevel models are also appropriate for two prop-

erties typical of longitudinal data: time-unstructured and

unbalanced (i.e. image acquisition schedules and number of

face images vary for each subject). The multilevel model in

this work consists of two levels:

• Level-1 Model (intra-subject variability)

yijk = ϕ0i + ϕ1ixijk + εijk, εijk ∼ N(0, σ2

ε) (1)

• Level-2 Model (inter-subject variability)

ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,
[

b0i
b1i

]

= N

([

0
0

]

,

[

σ2

0
σ01

σ10 σ2

1

])

.
(2)

The level-1 model describes intra-subject variation in a

response variable yijk as a linear function of a covariate

xijk, while level-2 explains inter-subject variation by mod-

eling each subject’s true parameters, ϕ0i and ϕ1i, as a com-

bination of fixed and random effects. Fixed effects, β00

8This is in contrast to cross-sectional studies which compare partitions

of age groups or time intervals at a single point in time.

and β10, are the grand means of the population slopes and

intercepts and define the population-mean trend; random

effects, b0i and b1i, are each subject’s deviations from the

population-mean parameters.

In this study, the primary response variable (yijk) is

s̃i,jk =
si,jk−µ

σ
, where si,jk is the genuine score between

the j-th and k-th face images of subject i output by one of

the two COTS face matchers, and µ and σ are the mean and

standard deviation of {si,jk}, respectively. We investigate

the effects of the following covariates (xijk) to explain vari-

ations in genuine scores:

• △Ti,jk: Time interval between the j-th and k-th face

acquisitions of subject i.
• Qipd

i,jk: One minus the ratio of the smallest to largest

inter-pupillary distances of the j-th and k-th face im-

ages of subject i. Each COTS algorithm outputs esti-

mated eye locations.

• Qyaw

i,jk: The absolute value of the difference between

the two yaw values of the j-th and k-th face images of

subject i. Each COTS algorithm outputs an estimate of

the face yaw angle.

• Mi: A binary indicator of gender of subject i (1 for

male, 0 for female).

• Wi: A binary indicator of race of subject i (1 for white,

0 for black).

Table 1 details the multilevel models used in our study that

include the above covariates. Note that time-varying covari-

ates (△Ti,jk, Q*
i,jk) affect the level-1, while time-invariant

covariates (Mi, Wi) affect the level-2 model specification.

5. Experimental Results

Face comparison scores were obtained by two COTS

matchers. For genuine scores, we include all pairwise com-

parisons between a subject’s images (i.e. if a subject has ni

images, there are
(

ni

2

)

genuine scores). For the PCSO LS

database, the total number of genuine and impostor scores

are 639,531and 11.1 billion, respectively. We compute all

impostor scores and calculate thresholds for different FARs

to evaluate longitudinal effects on accuracies of the two

COTS matchers. Results are presented following a com-

mon approach to statistical modeling: we fit increasingly

complex models (Table 1) to evaluate the impacts of addi-

tional covariates [10]. All models were fit with the LME4

package (v1.1-7)9 for R (v3.1.1) using full maximum like-

lihood estimation.

5.1. Model Assumptions

Multilevel models assume normality of the residuals (Eq.

(1)) and random effects (Eq. (2)). Figure 8 shows nor-

mal probability plots of the residuals, εi,jk, from fitting

9http://cran.r-project.org/package=lme4



Table 1. Multilevel models with different covariates used in this study

Model Level-1 Model Level-2 Model Covariates

Model A yijk = ϕ0i + εijk ϕ0i = β00 + b0i None (null model)

Model BT yijk = ϕ0i + ϕ1i△Tijk + εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i Time interval

Model BQ yijk = ϕ0i + ϕ1iQ
ipd

ijk
+ ϕ2iQ

yaw

ijk
+ εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,

ϕ2i = β20 + b2i

Ratio of eye distances

and facial pose

Model CGR yijk = ϕ0i + ϕ1i△Tijk + εijk ϕ0i = β00 + β01Mi + β02Wi + b0i,

ϕ1i = β10 + β11Mi + β12Wi + b1i

Time interval, gender,

and race

Model D yijk = ϕ0i+ϕ1i△Tijk+ϕ2iQ
ipd

ijk
+ϕ3iQ

yaw

ijk
+εijk ϕ0i = β00 + b0i, ϕ1i = β10 + b1i,

ϕ2i = β20 + b2i, ϕ3i = β30 + b3i

Time interval, ratio of eye

distances, and facial pose

(a) COTS-A (b) COTS-B

Figure 8. Normal probability plots of level-1 residuals εijk from

Model BT fit to (a) COTS-A and (b) COTS-B genuine scores.

Model BT to genuine scores. Departure from linearity is

observed at the tails, particularly for COTS-A, so we can

not verify that the model assumptions hold; normal proba-

bility plots of random effects b0i and b1i also departed from

linearity. This behavior was observed for other models as

well, precluding formal hypothesis tests parameters [11].

In situations where parametric model assumptions are

violated, it is common to resort to non-parametric boot-

strap to establish confidence intervals for the parameter es-

timates. Hence, we conduct a non-parametric bootstrap by

case resampling [11]; 1,000 bootstrap replicates are gener-

ated by sampling 18,007 subjects with replacement. Mul-

tilevel models are fit to each bootstrap replicate, and the

mean parameter estimates over all 1,000 bootstraps are re-

ported; single parameter tests for fixed-effects and variance

components can be conducted by examining the bootstrap

confidence intervals. Table 3 gives the bootstrap param-

eter estimates, variance components, and 95% confidence

intervals for the multilevel models in Table 1. Due to space

limitations, results are only shown for COTS-A.

Table 2. Fitting results for unconditional means model (Model A)

COTS-A COTS-B

β00

0.0609

(0.0534, 0.0682)

0.0265

(0.0182, 0.0346)

σ2

ε

0.6894

(0.6741, 0.7065)

0.7235

(0.7167, 0.7299)

σ2

0

0.2418

(0.2338, 0.2501)

0.2850

(0.2780, 0.2915)

5.2. Unconditional Means Model

The unconditional means model, Model A, is a multi-

level model with subject ID as a random effect but no other

covariates. Model A partitions the total variation in genuine

scores by subject; each subject’s estimated trajectory is the

mean of his/her genuine scores (i.e. a flat line). Similar to

analysis of variance, b0i is the subject-specific mean and β00

is the grand mean. The purpose for fitting the unconditional

means model is to obtain initial estimates of the random ef-

fects which will serve as a baseline for subsequent mod-

els. Table 2 gives the estimated intra-subject variance σ2

ε

(i.e. deviations around each subject’s own mean) and inter-

subject variance σ2

0
(i.e. deviations of subject means around

the population mean). Estimates of the intra-subject cor-

relation coefficient, ρ = σ2

0
/(σ2

0
+ σ2

ε), for COTS-A and

COTS-B are 0.2597 and 0.2826 which indicate that approx-

imately a quarter of the total variation in genuine scores is

due to differences between subjects.

5.3. Unconditional Growth Model

The next model of interest is the unconditional growth

model, Model BT, which groups match scores by sub-

ject and includes time interval △Ti,jk as covariate. The

level-1 residuals εijk now quantify the variance of each sub-

ject’s genuine scores around his/her linear trajectory (ϕ0i +
ϕ1i△Tijk), rather than around his/her subject-specific mean

as in Model A. The random effects in Model BT allow the

estimated slope and intercept to vary for each subject.

Our first observation is that the population-mean trend

for Model BT, given by fixed-effects β00 and β01 in Ta-

ble 3, estimates that COTS-A (COTS-B) genuine scores de-

crease by 0.1253 (0.1178) standard deviations10 per year;

the null hypothesis of β10 = 0 is rejected at significance

level of 0.05 since the 95% bootstrap confidence intervals

do not contain zero for both COTS face matchers. Com-

paring Model A with Model BT using a pseudo-R2 statistic,

{σ2

ε(A)−σ2

ε(BT)}/σ
2

ε(A), we can conclude that about 24%

10Interpretation of the aging rate w.r.t. standard deviations is made pos-

sible by the standardization of genuine scores in Sec. 4.
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Figure 9. Population-mean trends in genuine scores estimated by Model CGR for (a) COTS-A and (b) COTS-B. Thresholds at different

FARs are overlaid on the plots to indicate implications on recognition accuracy. (c) Population-mean trends in binary verification decisions

estimated by Model BT for COTS-A show that false rejection rates remain below 2% up to 10 years time interval at 0.01% FAR.

Table 3. Bootstrap estimates of fixed-effects parameters with 95%

confidence intervals and variance components for COTS-A

Model BT Model CGR Model BQ Model D

F
ix

ed
E

ff
ec

ts

β00

0.5184

(0.5103, 0.5263)

0.2871

(0.2644, 0.3085)

0.4443

(0.4361, 0.4521)

0.6696

(0.6619, 0.6776)

β10

-0.1253

(-0.1265, -0.1240)

-0.1108

(-0.1143, -0.1072)

-2.1639

(-2.2016, -2.1272)

-0.1161

(-0.1174, -0.1147)

β20

-0.0680

(-0.0701, -0.0658)

-0.6256

(-0.6648, -0.5891)

β30

-0.0607

(-0.0625, -0.0588)

β01

0.3093

(0.2880, 0.3318)

β11

-0.0030*

(-0.0064, 0.0005)

β02

-0.0400

(-0.0548, -0.0248)

β12

-0.0200

(-0.0224, -0.0173)

V
ar

ia
n
ce

σ2

ε 0.5237 0.5238 0.5432 0.4424

σ2

0
0.2294 0.2152 0.2195 0.2077

σ2

1
0.0038 0.0037 4.1159 0.0041

σ2

2
0.0063 2.9934

σ2

3
0.0053

σ01 -0.0061 -0.0062 ** **

*The null hypothesis that the parameter is equal to zero cannot be rejected because

the 95% confidence interval contains zero.
**Covariance components have been omitted due to space limitations.

and 19% of the intra-subject variation can be explained by a

linear relationship between genuine scores and time interval

for COTS-A and COTS-B, respectively.

5.4. Other Covariates

Goodness-of-fit measures are used to compare different

models. Deviance can only be used to compare the fit of

nested models (e.g. model pairs (BT, CGR) or (BT, D)).

While AIC and BIC allow comparison of non-nested mod-

els (e.g. models BT and BQ), the magnitude has little mean-

ing [10]. Table 4 shows reductions in goodness-of-fit for

each additional covariate (i.e. every covariate considered

explains some of the variation in genuine scores). Pseudo-

R2 statistics are also used to measure the proportional re-

duction in level-2 variance (σ2

∗
) and level-1 residual vari-

Table 4. Goodness-of-fit for multilevel models in Table 1
(a) COTS-A

Model AIC BIC Deviance

A 1,665,285 1,665,320 1,665,279

BT 1,508,569 1,508,638 1,508,557

CGR 1,507,242 1,507,355 1,507,222

BQ 1,540,801 1,540,915 1,540,781

D 1,425,416 1,425,586 1,425,386

(b) COTS-B

Model AIC BIC Deviance

A 1,651,355 1,651,389 1,651,349

BT 1,531,939 1,532,008 1,531,927

CGR 1,527,868 1,527,982 1,527,848

BQ 1,560,491 1,560,605 1,560,471

D 1,477,954 1,478,124 1,477,924

ance (σ2

ε ) attributable to inclusion of time-invariant and

time-variant covariates, respectively.

Gender and Race: Comparing Model BT with

Model CGR, pseudo-R2 statistics measure that 6.2%

(17.1%) of the variation in intercept and 2.6% (5.7%) of

the variation in slope parameters is explained by gender and

race covariates for COTS-A (COTS-B). Population-mean

trends for each demographic plotted in Figs. 9(a) and (b),

along with the 95% bootstrap confidence intervals, suggest

that males are easier to recognize than females and black

subjects are easier to recognize than white subjects [1, 8].

The 1,928 white females have the lowest and the 5,808

black males have the highest average intercepts. Note that

gender has no effect on differences in slope for COTS-A

(null hypothesis of β11 = 0 cannot be rejected); the effect of

gender on differences in slope is significant for COTS-B.

Verification thresholds at different FARs are overlaid on

the plots in Figs. 9(a) and (b) to show how these trends

relate to verification accuracy; COTS-A correctly verifies

the average individual, regardless of demographic, across

16 years time interval at 0.01% FAR, while this only holds

up to 6 years time interval for COTS-B.

Face Quality: Overall, the model with the lowest (i.e.

best) goodness-of-fit was Model D which includes covari-

ates of △Tijk, Qyaw

ijk , Qipd

ijk. Compared with Model BT,

inclusion of the face quality covariates reduces the level-

1 residual variation by 15.5%. The intercept of Model D

refers to the score when all covariates are zero. Because of

how we defined the quality covariates, the intercept corre-

sponds to the highest quality images (pairs) when △Tijk =
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(c) Trends of average subjects
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Figure 10. Parameter estimates for Model BT fit to COTS-A genuine scores; (a) subject-specific and population-mean parameter estimates

are marked with blue dots and green triangle, respectively, and six examples of deviant subjects are shown as red squares. Subject-specific

growth plots of the (b) six deviant subjects and (c) three average subjects. Population-mean and subject-specific trajectories, estimated

from Model BT, are overlaid in solid red and dotted black lines, respectively. Subject IDs are shown above each plot and correspond to

face images of the (d) six deviant subjects and (e) three average subjects, which were all aligned and cropped using COTS-A eye locations.

0; hence, β00 increases compared to Model BT. Note also

that β10 is the expected change in the score w.r.t. time inter-

val when face quality covariates are held constant; β10 for

Model D has decreased compared to Model BT.

5.5. Subject-Specific Trends

In addition to estimated population-mean trends, we

are also interested in the overall behavior of the popula-

tion. The distribution of the subject-specific parameters

around the population-mean parameters (β00, β10) is given

for Model BT in Fig. 9(a) for COTS-A. The parameter

estimates for the majority of subjects are symmetrically

distributed around the population-mean trend; the genuine

scores of almost all of the 18,007 subjects in PCSO LS

decrease with elapsed time. Figures 10(c) and (e) show

three examples of subjects who exhibit the population-mean

trend. However, Figs. 10(b) and (d), provide six exam-

ples of subjects whose estimated parameters deviate signif-

icantly from the population-mean trend. As demonstrated

by the face images of subject IDs 13392 and 861198 in

Fig. 10(e), deviations can be due to aging more or less than

average. However, we found that most of the significant

deviations are due to occlusions, incorrect eye locations, fa-

cial injury, etc. (i.e. confounding issues that are difficult to

model.) Note that in preliminary results, examining deviant

subjects in this manner helped to identify some of the sub-

ject ID labeling errors mentioned in Sec. 3.

5.6. Probability of True Acceptance

We also fit Model BT to binary verification decisions on

COTS-A genuine scores at different FARs to study proba-

bility of true acceptance over time. Thresholds were calcu-

lated from the distribution of 11.1 billion impostor scores.

Binary response variables can be viewed as Bernoulli trials

with probability of success (i.e. true acceptance), πijk. The

multilevel model is then specified as:

Level 1: g(πijk) = ϕ0i + ϕ1i△Tijk + εijk (3)

Level 2: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i (4)



where g(πijk) = log(πijk/(1− πijk)).
Figure 9(c) shows the bootstrap estimated population-

mean trends of probability of false rejection (1 − true ac-

ceptance) with respect to time interval and corresponding

95% bootstrap confidence intervals. At 0.01% FAR, the

probability of false rejection for COTS-A remains below

2% until approximately 10 years; at 16 years, it is estimated

to increase to 10%. However, at 0.001% FAR, the probabil-

ity of false rejection begins to increase almost immediately,

dropping to about 20% for 10 years.

6. Summary and Conclusions

We presented a longitudinal study on face recognition,

utilizing a database (PCSO LS) of 147,784 face images of

18,007 subjects. Each subject has at least 5 images which

were acquired over at least a 5 year time interval. Multi-

level statistical models were used to estimate population-

mean trends in genuine scores, particularly with respect to

increasing elapsed time between two face images. Based

on the results of our longitudinal analysis, our findings are

summarized as follows:

1. Significantly decreasing trends in genuine scores over

time were observed for the two state-of-the-art COTS

face matchers, with COTS-A showing overall better

performance than COTS-B.

2. Despite decreasing genuine scores, population-mean

trends of COTS-A genuine scores from all demo-

graphic groups remained above the threshold at 0.01%

FAR for time intervals up to 16 years (the maximum in

the PCSO LS database);

3. The probability of false rejection by COTS-A was sta-

ble (at less than 2%) across time intervals up to ap-

proximately 10 years for 0.01% FAR.

4. Some of the variation in subject-specific estimated pa-

rameters was explained by gender, race, and face qual-

ity covariates. Face quality measures did not explain

the variation in genuine scores as well as time interval

alone, but improved the model fit when included with

time interval.

We stress that most prior studies evaluated aging effects

on performance of face matchers at 1% FAR (e.g. [6]). Our

results indicate that it is important to utilize state-of-the-

art matchers and large operational databases. This study in

no way claims to have reached a “final model.” Additional

covariates and interactions are likely needed; statistically

significant non-zero intra-subject and inter-subject variance

exists in our models that could be further reduced.

Future work will include: (i) Studying the stability of the

impostor distribution over time; recognition errors can also

manifest in increased impostor similarity scores. (ii) Miti-

gate the correlation that exists between all pair-wise genuine

comparisons. (iii) Investigate non-linear models and in-

clude absolute age and other quality measures as covariates.

(iv) While large-scale longitudinal databases of face images

are not easy to obtain, it would be desirable to repeat this

study on a database with different demographic makeup,

particularly a database of civilians rather than criminals.
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