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Introduction: Drug discovery is a challenging endeavor requiring the interplay of many 

different research areas. Gathering information on ligand binding thermodynamics 

may help considerably in reducing the risk within a high uncertainty scenario, allowing 

early rejection of flawed compounds and pushing forward optimal candidates. In 

particular, the free energy, the enthalpy, and the entropy of binding provide 

fundamental information on the intermolecular forces driving such interaction. 

Areas covered: The authors review the current status and recent developments in the 

application of ligand binding thermodynamics in drug discovery. The thermodynamic 

binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead 

selection and optimization (binding enthalpy, selectivity, and adaptability). 

Expert opinion: Binding thermodynamics provides fundamental information on the 

forces driving the formation of the drug-target complex. It has been widely accepted 

that binding thermodynamics may be used as a decision criterion along the ligand 

optimization process in drug discovery and development. In particular, the binding 

enthalpy may be used as a guide when selecting and optimizing compounds over a set 

of potential candidates. However, this has been recently called into question by 

arguing certain difficulties and in the light of certain experimental examples. 

 

 

 

Keywords: binding adaptability, binding affinity, binding selectivity, enthalpy, entropy, 

Gibbs energy, isothermal titration calorimetry, ligand binding, ligand optimization, 

lipophilic efficiency, thermodynamics 

  



3 
 

1. Introduction 

The usual work-flow in drug discovery starts from either computational or 

experimental high-throughput screening programs, and progressing promising 

compounds from in vitro testing to assessing ADMET (absorption, distribution, 

metabolism, excretion and toxicity) properties and efficacy in preclinical animal 

models. The final goal in drug discovery is the identification of a chemical compound 

that, by interacting with a certain target, triggers a physiological response that results 

in the reversion of a pathological scenario caused by an aberrant activity of the target. 

The chemical compound must fulfil rigorous constraints: good pharmacokinetic 

properties (suitable distribution through the body, as well as appropriate metabolic 

modification and clearance) and low toxicity (low level of interaction with unwanted 

secondary targets). Improving binding affinity while improving or maintaining drug-like 

properties is not an easy task. 

According to Paul Ehrlich’s statement “corpora non agunt nisi fixata” (a substance is 

not effective unless it is bound to another), the pharmacological action of a drug relies 

primarily on its interaction with the key target. Gathering the necessary information 

through the discovery process on ligand binding, in addition to information on 

pharmacokinetics and toxicity, and applying stringent filters in a rational way is 

instrumental for making appropriate decisions regarding ligand optimization. This will 

considerably reduce the attrition rate in the drug discovery process, allowing early 

rejection of flawed compounds and pushing forward optimal candidates. In order to 

increase the rate of success in the hit generation process, as well as in the hit-to-lead-

to-drug process, preclinical research in target validation and characterization, target 

selection, and, very importantly, integrated drug discovery strategies are crucial. Those 

integrated strategies involve applying multiple orthogonal approaches for obtaining 

valuable information and employing multifaceted decision criteria, where ligand 

binding thermodynamics may play a key role. Biophysical data, in particular 

thermodynamic binding information, provide information complementary to 

biochemical or cellular data, contributing to improve compound prioritization and 

decision-making in early stages in drug discovery. Importantly, biophysical techniques 

are key instruments for target characterization, screening design, and hit validation. 
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From a basic perspective, the drug-target interaction may be modeled as a simple 

equilibrium that can be characterized using binding equilibrium parameters and kinetic 

parameters. Although the kinetic information, epitomized by the recently established 

concept of residence time [1,2], represents an interesting approach for ligand 

optimization [3], obtaining precise information on the equilibrium thermodynamics of 

the interaction is a crucial stage in drug discovery. 

Traditionally, the main focus when quantifying binding affinity in drug discovery was 

set on determining binding parameters such as equilibrium constants (e.g., association, 

dissociation, and inhibition constants) and operational parameters (e.g., EC50 or IC50). 

While the former parameters are true equilibrium constants, the latter operational 

parameters must be taken with caution since they do not represent true equilibrium 

constants, they are assay-specific and strongly dependent on experimental set-up and 

conditions, and they can very often lead to misinterpretations and considerable error 

when used for ranking compound affinities. 

Besides binding affinity, the “reduced” set of thermodynamic ligand binding 

parameters (Gibbs energy, enthalpy, entropy and heat capacity) provides fundamental 

information on the interaction event and the intermolecular forces driving such 

interaction. These binding parameters can be measured directly (by isothermal 

titration calorimetry) or indirectly (e.g., by spectroscopy, surface plasmon resonance, 

or differential scanning calorimetry/fluorometry). Because we are interested in high 

quality information and the direct determination of binding parameters, avoiding if 

possible the estimation of binding parameters through secondary relationships (e.g., 

estimation of the binding enthalpy and the binding heat capacity through the van ‘t 

Hoff relationship in spectroscopic techniques), we will restrict this review to isothermal 

titration calorimetry (ITC). ITC is a technique especially suited for determining 

experimentally the “reduced” set of thermodynamic ligand binding parameters, as well 

as the “extended” set of thermodynamic ligand binding parameters (including linkage 

parameters associated with additional equilibria coupled to the ligand binding) [4-7]. 

Nowadays, the widespread availability of high-precision ITC instrumentation makes 

possible including binding thermodynamics into the drug discovery process. 

As it will be explained below, the utility of the ligand binding thermodynamic profile 

(Gibbs energy, enthalpy, and entropy) in the drug discovery and ligand optimization 
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process is based on the fact that it reflects and summarizes the interplay between 

numerous intermolecular interactions implicated in the formation of the drug-target 

complex: creation of the network of interactions between the drug and target, and 

rupture of interactions with the solvent, including the contribution of potential 

conformational and allosteric effects and additional equilibria coupled to the binding. 

Intermolecular interactions of different nature (hydrogen bonds, van der Waals 

interactions, ionic pairs, hydrophobic interactions…) contribute differently to the 

binding affinity and, most importantly, to the binding enthalpy and entropy. 

Incidentally, all intra- and intermolecular interactions are of electrostatic nature. However, 

traditionally, some special types of interactions have been named with specific terms: 

hydrogen bond (a special type of ionic interaction), van der Waals interaction (the interaction 

between different combinations of instantaneous and permanent dipoles), ionic pair (purely 

electrostatic interaction between charged groups), hydrophobic interaction (the combination 

of van der Waals interactions between nonpolar groups and hydrogen bonds between 

surrounding water molecules), etc. The partition of the binding Gibbs energy into its 

enthalpic and entropic contributions reflects the mode of interaction between drug 

and target, i.e., intermolecular interactions responsible for the formation of the drug-

target complex, and molecular-scale phenomena taking place during the complex 

formation. This reveals an existing link between structural and functional features 

involved in the formation of the drug-target complex and the energetics of such 

process. 

During lead optimization the binding affinity can be optimized by making the enthalpy 

of binding more favorable, the entropy of binding more favorable, or by a combination 

of both. Even though many combinations of enthalpy and entropy values will elicit the 

same binding affinity (i.e. the same Gibbs energy of binding and the same association 

constant), the properties and the response of the optimized compounds to changes in 

the environment or in the protein target are not the same. Besides, as we will discuss 

below, there are three main factors responsible for improving binding affinity from a 

thermodynamic point of view: 1) improving ligand-macromolecule interactions over 

those with the solvent in order to get a more favorable binding enthalpy; 2) making 

the ligand more hydrophobic in order to get a more favorable solvation entropy; and, 

3) pre-shaping the ligand to the geometry of the binding site in order to minimize the 
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loss of conformational entropy upon binding. On this basis, it was established that: 1) 

different optimization strategies based on chemically modifying the drug molecule 

would affect in a different extent the enthalpy and the entropy of binding (and, 

consequently, the Gibbs energy of binding); 2) the binding thermodynamic profile or 

signature of the drug molecule provides information on and conditions its optimization 

potential; and 3) enthalpic and entropic contributions to the Gibbs energy of binding 

reflect intermolecular interactions and molecular phenomena of different nature. 

Consequently, the following hypotheses were made fifteen years ago: 1) an enthalpic 

optimization (improving the enthalpy of binding) of drug candidates is preferred over 

an entropic optimization (improving the entropy of binding); and 2) drug candidates 

with an enthalpically dominated thermodynamic binding profile represent the most 

promising compounds towards optimization regarding binding affinity, binding 

selectivity, and susceptibility to mutations in the target [8-11]. 

Enthalpic optimization relies on a rather simple idea: a large negative binding enthalpy 

is advantageous regarding binding affinity, target selectivity and ADME properties, 

because it reflects specific, direct, polar interactions between compound and target; 

on the other hand, large negative entropic contribution is disadvantageous, because it 

reflects mainly non-specific desolvation and van der Waals interactions [12-15]. 

Although different targets have been described to comply with these hypotheses (e.g., 

HIV-1 protease [11,16], plasmepsin II from P. falciparum [17], HMG-CoA reductase 

[18], this new paradigm for drug design and optimization based on integrating 

thermodynamic binding data and implementing an enthalpic optimization is not 

straightforward, requiring a carefully planned experimental strategy and a close data 

examination and analysis [19]. 

Along recent years, it has been realized that reality could be not as simple as it was 

initially thought: enthalpic and entropic contributions integrate multiple contributions 

to the ligand-target complex formation (with a dominant role of water molecules), 

they are extremely sensitive to experimental conditions, and they are affected by 

enthalpy-entropy compensation [20,21]. Therefore, the prospective use of 

thermodynamics in drug discovery (lead prioritization and optimization) could be 

somewhat intricate. In fact, it has been called into question very recently because of: 

1) its apparent limited applicability to some “well-behaved” protein targets; 2) the 
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retrospective nature of the underlying rationale and the apparent need of structural 

information; 3) a not so straightforward connection between structural/functional and 

energetic features associated to the drug-target interaction due to the multifactorial 

character of the enthalpic and the entropic of binding; and 4) the lack of guidance on 

how to prospectively use the thermodynamic profile in lead generation and 

optimization programs [22]. Thus, it seems that some of the expectations raised on the 

prospective application of binding thermodynamics in the selection and optimization 

of leads, in particular the improved success rate of preclinical drug discovery, have not 

been met. One of the purposes of this review is to draw the attention into this issue, 

and show how some weaknesses may be reverted into strengths. 

It is obvious that, in principle, studying the binding thermodynamics of the drug-target 

interaction is an important but limited part of the drug discovery process; many other 

aspects (basically, those associated with pharmacokinetics and ADME properties) are 

apparently not related. However, as it will be commented below, valuable information 

on selectivity, adaptability and potential toxicity of a given drug can be linked to some 

ligand binding thermodynamics features. Besides, the biophysical techniques 

employed for providing information on the binding thermodynamics of the drug-target 

(mainly, ITC, but also many other experimental techniques) can be of help in designing 

and validating the experimental screening procedure, in establishing target 

engagement of potential lead compounds and performing secondary screenings, and 

in assessing selectivity and specificity of the interaction with the target by testing the 

interaction of lead compounds with potential secondary targets. The selection of a 

given experimental technique will depend on the information content, its throughput, 

its requirements for assay development, and its reagent consumption. ITC possesses 

several important advantages: direct determination of the thermodynamic binding 

profile in a single experiment, monitoring the interaction in solution, and universality 

of detection system based on reaction heat with no need for reactant modification. On 

the other hand, it has some considerable disadvantages: reagent consumption, and 

low throughput. 

Over the past years biophysical techniques have been integrated as key components of 

drug discovery platforms. The use of biophysical techniques in drug discovery, the 

current status and the long term expectations, has been reviewed comprehensively 
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[23-25]. In this review, we will go first through the foundations of the thermodynamic 

description of ligand binding. Then, we will discuss: 1) what valuable information can 

be extracted from the ligand binding thermodynamic profile, 2) how this information 

can be used within a drug discovery program, and 3) what precautions and caveats 

must be taken into consideration when including that information within a drug 

discovery program. 

 

 

2. Thermodynamics of ligand binding 

2.1. The equilibrium constant 

The reversible equilibrium between the free species of reactants, ligand L and 

macromolecule M, and the macromolecule-ligand complex, ML, is governed by the 

equilibrium association or dissociation constants, Ka or Kd: 

𝐾𝑎 = [𝑀𝐿]
[𝑀][𝐿] = 1

𝐾𝑑
         (1) 

Therefore, the ratio between the ligand-bound macromolecule and the ligand-free 

macromolecule and the ratio between the ligand-bound macromolecule and the total 

macromolecule are determined by the association constant and the concentration of 

ligand: 
[𝑀𝐿]
[𝑀] = 𝐾𝑎[𝐿]

[𝑀𝐿]
[𝑀]𝑇

= 𝐾𝑎[𝐿]
1+𝐾𝑎[𝐿]

          (2) 

The equilibrium association constant is directly connected to the Gibbs energy of 

binding, the main thermodynamic potential at constant temperature and pressure: 

∆𝐺 = −𝑅𝑇 ln𝐾𝑎         (3) 

where R is the ideal gas constant, and T is the absolute temperature. The required 

superscript “o” indicating standard conditions (1 mol/L, 298.15 K, 1 atm) has been 

omitted in Equation 3 and subsequent ones for the sake of clarity. 

Additional thermodynamic potentials, the enthalpy and the entropy of binding, derive 

directly from the equilibrium constant or the Gibbs energy by introducing the 

temperature derivative: 
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∆𝐻 = −𝑇2 �𝜕∆𝐺 𝑇⁄
𝜕𝑇

�
𝑃,…

= 𝑅𝑇2 �𝜕 ln𝐾𝑎
𝜕𝑇

�
𝑃,…

∆𝑆 = −�𝜕∆𝐺
𝜕𝑇
�
𝑃,…

= 𝑅 ln𝐾𝑎 + 𝑅𝑇 �𝜕 ln𝐾𝑎
𝜕𝑇

�
𝑃,…

     (4) 

which are the two additive terms making up the Gibbs energy: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆         (5) 

These equations provide the formalism for determining the binding parameters (∆G, 

∆H and ∆S) using spectroscopic techniques by performing titrations at different 

temperatures. Fortunately, because ITC measures directly the reaction heat, it is the 

only technique that allows determining with high precision the three binding 

parameters from a single experiment. Moreover, contrary to non-calorimetric 

techniques, it is possible to estimate the heat capacity of binding, ∆CP, with reasonable 

precision by performing ITC experiments at different temperatures: 

∆𝐶𝑃 = �𝜕∆𝐻
𝜕𝑇
�
𝑃,…

= 𝑇 �𝜕∆𝑆
𝜕𝑇
�
𝑃,…

       (6) 

from the slope of the enthalpy vs. temperature plot. 

When describing and comparing ligand binding profiles it is convenient to consider the 

entropic contribution to the Gibbs energy (-T∆S), instead of the entropy of binding 

(∆S). The reason behind that is to compare Gibbs energy, enthalpy and entropy on a 

common basis: with the same units (kcal/mol) and with the same criterion regarding 

spontaneity of the thermodynamic process (negative enthalpy and entropy 

contributions contribute favorably to the binding, while positive contributions oppose 

the binding). Thus, from now on whenever we refer to the entropy, we are actually 

referring to the “entropic contribution” (-T∆S). 

If the ligand binding equilibrium is coupled to a conformational equilibrium, the 

apparent (or observed) association constant for the binding, Ka
app, is given by: 

𝐾𝑎
𝑎𝑝𝑝 = 𝐾𝑎

1+𝐾
          (7) 

where K is the equilibrium constant corresponding to the conformational equilibrium 

between a non-binding competent conformation M* and the binding competent 

conformation M (i.e., K = [M*]/[M]). The apparent (or observed) binding parameters 

(∆Gapp, ∆Happ, ∆Sapp and ∆CP
app) can be calculated applying Equations 3-6 [26-28]. 

On the other hand, if the ligand binding equilibrium is coupled to another binding 

equilibrium (that is, there is another ligand, X, binding to the macromolecule, and the 
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two ligands, L and X, bind in a cooperative, negative or positive, fashion), the apparent 

association constant for the binding, Ka
app is given by: 

𝐾𝑎
𝑎𝑝𝑝 = 𝐾𝑎

∏ �1+𝐾𝑗
′[𝑋]�𝑚

𝑗

∏ �1+𝐾𝑗[𝑋]�𝑚
𝑗

        (8) 

where m is the number of binding sites for ligand X, Kj is the association constant for 

ligand X to binding site j when ligand L is not bound to the macromolecule, and K’j is 

the association constant for ligand X to binding site j when ligand L is bound. The 

apparent binding parameters (∆Gapp, ∆Happ, ∆Sapp and ∆CP
app) can be calculated 

applying Equations 3-6 [26,27,29]. If K’j=Kj for every j, there is no cooperativity 

between the binding of both ligands (ligand L binding is not influenced by ligand X 

binding) and the apparent binding parameters are equal to the intrinsic binding 

parameters; otherwise, there is cooperativity between the binding of both ligands 

(ligand L binding is influenced by ligand X binding) and the apparent binding 

parameters are different from the intrinsic binding parameters and contain 

contributions from ligand X binding parameters. The situation represented by Equation 

8 is very common. For example, X may represent protons that associate or dissociate 

from ionizable groups (m sites located in the macromolecule or in the ligand) 

depending on whether L binds or not to the protein; in that case, the apparent 

association constant (and the apparent binding parameters) for ligand L exhibits a 

dependency on the pH (that is, the free concentration of ligand X): 

𝐾𝑎
𝑎𝑝𝑝 = 𝐾𝑎

∏ �1+10𝑝𝐾𝑎,𝑗
′ −𝑝𝐻�𝑚

𝑗

∏ �1+10𝑝𝐾𝑎,𝑗−𝑝𝐻�𝑚
𝑗

        (9) 

where pKa,j is the acid dissociation constant for the protonation site j when ligand L is 

not bound to the macromolecule, and pK’a,j is the acid dissociation constant for the 

protonation site j when ligand L is bound. As another example, X may represent a 

competitive ligand for ligand L binding to the same site in the macromolecule; in that 

case, the apparent association constant (and the apparent binding parameters) for 

ligand L exhibits a dependency on the concentration of ligand X: 

𝐾𝑎
𝑎𝑝𝑝 = 𝐾𝑎

1
1+𝐾𝑋[𝑋]         (10) 

where KX is the association constant for ligand X (when ligand L is not bound to the 

macromolecule). 
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Though, in general, equation 8 may seem difficult to be used in practical terms, an 

interesting and very useful linkage relationship can be obtained by calculating the 

derivative of the apparent association constant for ligand L respect to the ligand X 

concentration [27,30]: 

�𝜕 ln𝐾𝑎
𝑎𝑝𝑝

𝜕 ln[𝑋] �𝑇,𝑃,…
= ∑ �

𝐾𝑗
′[𝑋]

1+𝐾𝑗
′[𝑋] −

𝐾𝑗[𝑋]

1+𝐾𝑗[𝑋]�
𝑚
𝑗 = ∆𝑛𝑋     (11) 

where ∆nX is the net variation in the number of ligand X molecules bound to the 

macromolecule when ligand L binds to the macromolecule. Therefore, if ∆nX is equal to 

zero, ligand L and ligand X bind independently to the macromolecule, and the apparent 

binding parameters for ligand L will be independent of the ligand X concentration; 

otherwise, ligand L and ligand X bind cooperatively, and the apparent binding 

parameters for ligand L will be dependent on the ligand X concentration. Thus, 

performing titrations with ligand L at different concentrations of ligand X it is possible 

to estimate ∆nX and assess such potential cooperativity between ligand L and ligand X, 

and, in principle, it would be possible to estimate the intrinsic binding parameters by 

removing the contributions of ligand X binding to the apparent binding parameters. It 

is important to stress that ∆nX is not necessarily an integer number, since it is the 

difference in the occupancy of ligand X between the L-bound macromolecule and the 

L-free macromolecule. Following the previous example regarding proton 

association/dissociation coupled to the binding of ligand L: 

�𝜕 log𝐾𝑎
𝑎𝑝𝑝

𝜕𝑝𝐻
�
𝑇,𝑃,…

= −∆𝑛𝐻        (12) 

which indicates that if the association constant for ligand L depends on the pH, the 

slope in the plot logKa
app vs. pH is equal to the opposite of the net number of protons 

exchanged between the ML complex and the bulk solution; if ∆nH is positive, the 

formation of the complex ML is coupled to a net protonation of ionizable groups 

(positive cooperativity between ligand L and protons), and if ∆nH is negative, the 

formation of the complex ML is coupled to a net deprotonation of ionizable groups 

(negative cooperativity between ligand L and protons). Thus, performing titrations at 

different pH’s it is possible to estimate ∆nH. Another version of Equation 11 results in 

the following relationship [31]: 

� 𝜕 log𝐾𝑎
𝑎𝑝𝑝

𝜕𝑜𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦
�
𝑇,𝑃,…

= −∆𝑛𝑊
55.6

        (13) 
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which indicates that performing titrations under different osmotic stress conditions 

(e.g., different concentrations of osmolytes) it is possible to estimate the approximate 

number of water molecules, ∆nW, sequestered or released (mainly at the binding 

interface) upon formation of the ML complex. 

It is then obvious that in general the observed binding parameters determined from a 

given titration under certain experimental conditions must be considered as apparent 

binding parameters, since, in principle, many additional equilibria (e.g., exchange of 

protons and other ions, binding of co-solutes, solvent release or sequestering, 

oligomerization/dissociation equilibrium, buffer de/ionization…) may be taking place 

coupled to the binding of ligand L. And even slight changes in the experimental 

conditions may result in considerable changes in the apparent binding parameters for 

the ligand. The contributions to the apparent binding parameters from certain extrinsic 

coupled equilibria should be eliminated (e.g., removing the influence of the buffer by 

using buffers with zero ionization enthalpy or extrapolating appropriately, removing 

the influence of ionic strength by extrapolating at zero ionic strength or at 1 M ionic 

concentration), however, some coupled equilibria may be considered as inherent and 

essential events within the overall ligand binding process (e.g., protonation of a certain 

functional group in the macromolecule, oligomerization induced by ligand binding) 

and/or it might be difficult to dissect and remove their contributions to the overall 

apparent binding parameters. In any case, careful reporting of the experimental 

conditions and the characterization of reactants (M and L) is compulsory for avoiding 

misinterpretations and mistakes when considering the thermodynamic binding 

information for ligand optimization. 

 

2.2. The Gibbs energy change 

The Gibbs energy is the main thermodynamic potential in processes occurring at 

constant temperature and pressure, and it arises in a natural way when the second law 

of thermodynamics is applied to a closed system in thermal and mechanical 

equilibrium with its environment (at constant T and P). The Gibbs energy change in a 

process is the maximum reversible non-expansion work that may be performed by a 

given closed system in thermal and mechanical equilibrium with its environment, and 

is related to the change in total entropy (system plus environment). For a process to 
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occur spontaneously the Gibbs energy difference between the final and initial states 

must be negative; in particular, for binding processes the Gibbs energy change is the 

difference in chemical potential between the complex and the free species: 

∆𝐺 = 𝜇(𝑀𝐿) − 𝜇(𝑀) − 𝜇(𝐿)       (14) 

where µ is the chemical potential of a given type of molecule. 

Because in any spontaneous binding process the Gibbs energy change is negative (the 

more negative ∆G, the higher the binding affinity), there is more interest in focusing 

on and discuss the thermodynamics of binding in terms of its partition into the 

enthalpic and the entropic contributions, which may show positive or negative changes 

and exhibit higher susceptibility to changes in intrinsic and extrinsic factors (e.g., 

structural/functional alterations in the binding partners, changes in experimental 

conditions) than the Gibbs energy [32], providing another layer of information on the 

binding process. 

 

2.3. The enthalpy change 

The enthalpy is a measure of the total energy in a system. At constant pressure, the 

enthalpy change in a system equals the energy exchanged with the environment 

through heat or non-expansion work; that is, the heat exchanged by the system a 

chemical reaction or by external heat transfer. 

In binding process the enthalpy change reflects the net formation and disruption of 

many non-covalent interactions (hydrogen bonds, van der Waals and electrostatic 

interactions) between the two binding partners and the solvent, with the latter playing 

a key role establishing specific interactions and unspecific interactions. As indicated 

above, the overall enthalpy change (apparent or observed enthalpy of binding) can be 

split into the intrinsic enthalpy change plus the contributions from all possible coupled 

equilibria: 

∆𝐻𝑎𝑝𝑝 = ∆𝐻𝑖𝑛𝑡 + ∆𝐻𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑎      (15) 

and, in a more specific way: 

∆𝐻𝑎𝑝𝑝 = ∆𝐻𝑖𝑛𝑡 + ∆𝐻𝑑𝑒𝑠𝑜𝑙𝑣 + ∆𝐻𝑐𝑜𝑛𝑓 + ∆𝐻𝑒𝑥 + ⋯    (16) 

where ∆Hint is the intrinsic enthalpy (enthalpy change associated with the formation of 

non-covalent interactions between ligand and macromolecule), ∆Hdesolv is the 

desolvation enthalpy (enthalpy change associated with the disruption of non-covalent 
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interactions between the binding partners and hydration water molecules), ∆Hconf is 

the conformational enthalpy (enthalpy change associated with the conformational 

changes, in the ligand and the macromolecule, coupled to ligand binding; these 

conformational changes comprise large backbone rearrangements involving tertiary 

and secondary structure reorganization in the macromolecule, but also changes in 

flexibility of both the ligand and the side-chains of the macromolecule), and ∆Hex is the 

ligand-exchange enthalpy (enthalpy change associated with the exchange, association 

or dissociation, of other additional ligands upon ligand binding, such as ions, protons, 

small molecules…). Some of these additional contributions to the enthalpy may be 

regarded as an inherent part of the binding process (e.g., ∆Hdesolv, ∆Hconf), while others 

are extrinsic contributions that, if possible, should be removed (e.g., ∆Hex). 

Structurally different ligands will exhibit different contributions to the enthalpy 

change, making difficult the assessment and comparison of their binding 

thermodynamics based on the binding enthalpy (although, this also occurs with the 

Gibbs energy). Extensive experimental work may be required for quantifying individual 

enthalpic contributions. However, comparison of congeneric compounds obtained 

through bioisosteric substitutions may be considerably easier since those compounds 

may share common values for most of extrinsic contributions to the binding enthalpy 

(e.g., ∆Hconf, ∆Hex), and, therefore, differences observed between similar compounds 

may reflect specific changes in the contributions that can be engineered during the 

ligand optimization procedure. It is usual to group the intrinsic enthalpy and the 

desolvation enthalpy (and even the conformational enthalpy) into an “effective” 

binding enthalpy when approaching ligand optimization; being the other contributions 

important, they may be similar for the series of compounds or they may not be 

amenable to be engineered. Thus, the binding enthalpy can be considered a direct 

reflection of the interactions established between the binding partners to form the 

complex, the interactions broken with the solvent during desolvation (and the 

intramolecular interactions related to conformational changes). 

Especial mention merits the coupling of proton exchange upon macromolecule-ligand 

complex. Because the experimental assay is performed with a buffered solution, the 

buffer molecule will be involved in any proton exchange in order to maintain constant 

the pH. The apparent association constant and the apparent Gibbs energy of the ligand 
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will not be affected by the ionization properties of the buffer as long as its pKa is close 

enough to the experimental pH. But there will be a contribution to the binding 

enthalpy from the de/protonation of the buffer, which is an extrinsic contribution to 

the binding and could even dominate the apparent binding enthalpy [26,33]: 

∆𝐻𝑎𝑝𝑝 = ∆𝐻0 + ∆𝑛𝐻∆𝐻𝑏𝑢𝑓𝑓𝑒𝑟       (17) 

where ∆Hbuffer is the ionization enthalpy of the buffer, and ∆H0 is the buffer-

independent binding enthalpy (all other contributions). Thus, it is possible to remove 

the contribution from the buffer de/protonation by performing titrations with buffers 

with different ionization enthalpies. Very importantly, the factor ∆nH is the same as 

that appearing in Equation 12. Then, Equation 17 represents another method to 

determine the net number of protons exchanged by the macromolecule-ligand 

complex upon ligand binding, and the potential weakness is transformed into an 

advantage, since, in principle it is possible to determine the functional residues in the 

macromolecule and/or the ligand responsible for the proton exchange and their 

proton ionization properties (in particular, pKa values, which may be important 

regarding bioavailability of compounds) [34-37]. 

 

2.4. The entropy change 

The entropy is a measure of the distribution of energy over the different energy levels 

and degrees of freedom in a given system. It is also considered a measure of the 

randomness or disorder within the system. As it occurs with the enthalpy change, the 

entropy change can be factorized into different contributions: 

−𝑇∆𝑆𝑎𝑝𝑝 = −𝑇∆𝑆𝑑𝑒𝑠𝑜𝑙𝑣 − 𝑇∆𝑆𝑐𝑜𝑛𝑓 − 𝑇∆𝑆𝑒𝑥 − 𝑇∆𝑆𝑟𝑡 − 𝑇∆𝑆𝑣𝑖𝑏 − ⋯…  (18) 

where -T∆Sdesolv is the desolvation entropy (entropy change associated with the 

disruption of non-covalent interactions between the binding partners and hydration 

water molecules), -T∆Sconf is the conformational entropy (entropy change associated 

with the conformational changes, in the ligand and the macromolecule, coupled to 

ligand binding), -T∆Sex is the ligand exchange entropy (entropy change associated with 

the exchange, association or dissociation, of other additional ligands upon ligand 

binding, such as ions, protons, small molecules…), -T∆Srt is the roto-translational 

entropy (entropy change associated with the formation of a complex from two 
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molecules with independent translational and rotational degrees of freedom), and -

T∆Svib is the vibrational entropy (entropy change associated with vibrational mobility in 

covalent bonds in both binding partners). 

Similar to the binding enthalpy, differences observed between congeneric compounds 

may reflect specific changes in the contributions that can be engineered during the 

ligand optimization procedure. It is usual to mainly focus on the desolvation entropy 

and the conformational entropy when approaching ligand optimization. 

 

2.5. The heat capacity change 

The heat capacity change is a measure of the ability to store thermal energy in a given 

system. It is also considered a measure of the fluctuations in the enthalpy of the 

system. As it occurs with the other parameters, the heat capacity change can be 

factorized into different contributions: 

∆𝐶𝑃
𝑎𝑝𝑝 = ∆𝐶𝑃,𝑑𝑒𝑠𝑜𝑙𝑣 + ∆𝐶𝑃,𝑐𝑜𝑛𝑓 + ∆𝐶𝑃,𝑒𝑥 + ∆𝐶𝑃,𝑟𝑡 + ∆𝐶𝑃,𝑣𝑖𝑏 …   (19) 

where ∆CP,desolv is the desolvation heat capacity, ∆CP,conf is the conformational heat 

capacity, ∆CP,ex is the ligand exchange heat capacity, ∆CP,rt is the roto-translational heat 

capacity, and ∆CP,vib is the vibrational heat capacity (heat capacity associated with 

covalent bond vibrational modes in the interacting molecules). 

Although the heat capacity of macromolecules is dominated by the vibrational 

contribution, the change in the heat capacity upon ligand binding is usually dominated 

by the desolvation contribution [38-40], with a significant but small contribution 

originated from electrostatic interactions [41]. This binding parameter is extremely 

useful for assessing conformational changes coupled to ligand binding or 

characterizing the role of water molecules incorporated into the binding interface. 

However, in this review we will focus on the Gibbs energy, the enthalpy and the 

entropy of ligand binding. 

 

3. Thermodynamics in Drug Discovery: Binding 

3.1. The thermodynamic binding profile: Basics 

The measured binding parameters are apparent parameters containing contributions 

from any possible equilibrium coupled to ligand binding. Moreover, the 

thermodynamic binding parameters are very sensitive to changes in the interacting 
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molecules (intrinsic factors) and changes in the experimental conditions (extrinsic 

factors). Controlling and describing in detail the experimental conditions is extremely 

important when reporting assay results. Additionally, it is also important to perform 

appropriate control assays, as well as to remove contributions from extrinsic factors 

when possible (e.g., contribution of the buffer de/protonation to the overall binding 

enthalpy). Dissecting the apparent binding parameters into individual contributions 

may be interesting, but for the purpose of using thermodynamic data in lead selection 

and optimization it may be not necessary. For example, the unfavorable roto-

translational entropy is considerable, but it cannot be modulated and it will be the 

same for any 1:1 drug-target interaction. 

The sensitivity of the apparent binding parameters to intrinsic and extrinsic factors is 

an indication of the wealth of valuable information on ligand binding (protonation, 

hydration, conformational changes, cooperativity…) that might be available with an 

adequately designed experimental strategy. Access to that information in early stages 

in the drug discovery process is critical towards selecting the best candidates and 

employing rational procedures in their optimization. For example, by performing 

structural or functional modifications in the ligand and assessing the effect observed in 

the apparent binding parameters it is possible to identify key functional groups in the 

interaction process (regarding binding affinity, binding enthalpy conformational 

change, cooperative effects…). 

The formation of the drug-target complex recapitulates these contributions and can be 

conceptually split into three steps: 1) desolvation of the binding partners, 2) 

conformational adaptation of binding partners, and 3) formation of drug-target 

interactions. 

The desolvation of binding partners involves the disruption of interactions between 

water molecules and polar groups from the target and the drug, and also water-water 

hydrogen bonds in molecules surrounding nonpolar groups. The desolvation is 

accompanied by an unfavorable enthalpy (a larger enthalpic penalty in polar groups, 

∼8 kcal/mol, compared to nonpolar groups, ∼0.7 kcal/mol, due to disruption of 

interactions [42]), and a favorable entropy arising from the increased translational and 

vibrational mobility in the released water molecules. Interestingly, the desolvation 

entropy for polar groups is more favorable than that for nonpolar groups [42]. Of 
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course, in the case some water molecules may become trapped into the binding 

interface, these will contribute with a favorable enthalpy and an unfavorable entropy. 

The conformational adaptation of the binding partners may range from loop 

reorganization in the macromolecule or rotatable bond restraint in the drug, to 

complete refolding of the macromolecule binding domain. While the enthalpy 

associated to the conformational change may be favorable or unfavorable, the entropy 

associated is usually unfavorable (although some individual contributions to the 

conformational entropy might be favorable [43], e.g., increase in flexibility in a certain 

region in the macromolecule upon ligand binding). 

Finally, the formation of drug-target interactions relies on establishing hydrogen bonds 

and van der Waals and electrostatic interactions between drug and target. This is 

accompanied by a favorable enthalpy and an unfavorable entropy. 

Summarizing, the overall binding entropy is dominated mainly by the large and 

favorable desolvation entropy associated with release of water molecules, and the 

unfavorable conformational entropy associated with the reduction in mobility of drug 

and target. On the other hand, the overall binding enthalpy is dominated by the large 

and unfavorable desolvation enthalpy (disruption of interactions with water) and the 

favorable interaction enthalpy (formation of drug-target interactions) (Figure 1). 

 

3.2. The thermodynamic binding profile: Interpretation 

From this basic description it is obvious that the enthalpy and entropy of binding 

reflect intermolecular interactions and phenomena of different nature: enthalpy 

mainly reflects specific (drug-target, drug-water and target-water) interactions, 

whereas entropy reflects unspecific interactions (hydrophobicity, shape 

complementarity, and conformational flexibility). Thus, the thermodynamic profile for 

a drug-target interaction reveals the mode of ligand interaction and the nature of the 

main intermolecular phenomena driving the interaction: 1) an enthalpically driven 

binding (unfavorable or small favorable binding entropy) indicates that the drug 

establishes better interactions with the target compared to those with water, and that 

the desolvation entropy hardly compensates the conformational entropy loss; and 2) 

an entropically driven binding (unfavorable or small favorable binding enthalpy) 

indicates unproductive interactions with the target that cannot compensate the 
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disruption of interactions with water, and that the desolvation entropy largely 

compensates the conformational entropy loss. Therefore, in the absence of significant 

contributions from other coupled equilibria (conformational changes, protonation, 

etc.) or comparing leads affected by them in the same extent, scenario 1 may 

correspond to a flexible ligand with numerous polar groups establishing strong 

interactions with the target, whereas scenario 2 may correspond to a rigid ligand with 

numerous nonpolar groups establishing unspecific weak interactions with the target. 

Obviously, the two scenarios are completely different and the two ligands will differ in 

optimization potential, in binding selectivity and adaptability and drug-like quality. 

Thermodynamic profiles may be used to reveal different, alternative binding modes 

(outliers from the expected profile). 

 

3.3. The thermodynamic binding profile: Optimization 

From a thermodynamic point of view, the contributions to the Gibbs energy of binding 

that are more informative regarding the mode of interaction of the ligand, as well as 

more susceptible to be engineered during ligand optimization are (Figure 1): the 

effective binding enthalpy (intrinsic binding enthalpy and desolvation enthalpy), 

desolvation entropy, and conformational entropy. Drawing the attention to the 

binding entropy, the lead binding affinity can be improved by increasing the 

desolvation entropy (more hydrophobic by adding nonpolar groups; however, as 

commented before, the desolvation entropy of polar groups is more favorable [42]) 

and reducing the conformational entropy (pre-shaped to the binding site); additionally, 

the enthalpic penalty due to desolvation of nonpolar groups is reasonable small 

[42,44]. This has been the dominant optimization paradigm during the last decades, 

and, consequently, there is a tendency of new drug candidates to be excessively 

hydrophobic [45]; however, as explained below, this may have important drawbacks 

regarding solubility, bioavailability, and binding selectivity, diminishing the quality of 

the drug candidate. The question is: why has this happened? The answer is: because 

adding hydrophobic groups and structurally rigidifying the ligand molecule (entropic 

optimization) is much easier than adding polar groups for establishing distance- and 

orientation-dependent strong interactions with the target (enthalpic optimization). In 

principle, many combinations of binding enthalpy and entropy give rise to the same 
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certain value of the binding affinity, however, an enthalpic ligand does not interact 

with the target in the same way as an entropic ligand does, even if they exhibit the 

same affinity: the former is attracted towards the target that provides an appropriate 

environment for satisfying energetic and functional constraints, whereas the latter just 

hides from water. Some drug-related properties, besides binding affinity, are directly 

linked to the enthalpy/entropy partition of the binding Gibbs energy. In addition, when 

optimizing leads already in the high affinity range, the possibility to optimize binding 

affinity with any combination of enthalpy and entropy is limited considering the 

constraints in the finite ensemble of chemical functionalities in small molecules, the 

different origin of enthalpic and entropic contributions, and the additional limitations 

imposed for maintaining or improving drug-like properties. Hence, when working at 

the high affinity range, it is desirable to avoid or minimize unfavorable contributions to 

the Gibbs energy and some degree of correlation between binding affinity and binding 

enthalpy arises. 

As a conclusion, because the thermodynamic profile conditions the compound 

properties and the enthalpic optimization is difficult, starting from enthalpic hits or 

leads may seem advantageous and advisable; moreover, employing an enthalpic 

optimization strategy may be beneficial in early-medium stages in the drug discovery 

process because it will determine the drug quality of the compound, and entropic 

optimization can be performed in late-stage optimization [15]. The development of 

inhibitors against HIV-1 protease is an example of the expected benefits from using 

thermodynamics in drug design. The first HIV-1 protease inhibitors for clinical therapy 

were approved between 1995 and 1997. However, it took 12 years to develop second-

generation inhibitors with improved binding affinity, binding selectivity, adaptability to 

drug-resistance associated mutations, and lower toxicity. One of the most striking 

conclusions from this study is the gradual, but dramatic, improvement in enthalpy: 

“first-in-class” inhibitors exhibit an unfavorable or small favorable enthalpy 

(entropically driven binding), while “best-in-class” inhibitors exhibit a large and 

favorable binding enthalpy (enthalpically driven binding) [46], a result also found for 

other targets like HMG-CoA reductase [18] and farnesyl pyrophosphate synthase [47]. 

Figure 2 shows the structures of the HIV-1 protease complexes for indinavir, KNI-764 

and TMC-126. The binding Gibbs energies span a 3 kcal/mol range, but the binding 
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enthalpy shows a 14 kcal/mol variation. Very importantly, binding enthalpy emerged 

as a major factor for affinity improvement (in addition to improvements in selectivity, 

adaptability, and side-effects), but it was not employed as a guiding criterion. What if 

binding enthalpy would have been integrated into the battery of decision-making tools 

in the drug discovery process? Other interesting conclusions can be extracted from the 

retrospective study on HIV-1 protease and other targets [48,49]: 1) the enthalpic 

character for the binding does not depend on the target; it is possible to develop 

enthalpically-driven and entropically-driven ligands for a given target; 2) there appear 

to be a certain optimal combination of enthalpy/entropy of binding; and 3) there is no 

correlation between the enthalpic character of a ligand and the structural/functional 

descriptors in the ligand. For example, the number of donors and acceptors of 

hydrogen bonds is not correlated with the enthalpic nature of their binding. Thus, the 

key point is not the number but the quality of the newly formed interactions between 

drug and target. Just adding polar groups to the ligand may result in an unfavorable 

binding enthalpy if they are not correctly positioned, because the enthalpic penalty 

from desolvation would not be compensated by sufficient enthalpic gain from new 

interactions. Therefore, unless a polar group establishes strong interactions with the 

target, it will contribute unfavorably or very low to the binding affinity, and it should 

be removed or modified during affinity optimization. This calls into question the utility 

of some cheminformatic filters, like the Lipinski’s Rule of Five, in drug discovery and 

development. 

 

4. Thermodynamics in Drug Discovery: Drug-like Properties 

4.1. LipE 

Among the many parameters employed as efficiency metrics to describe and rank 

ligand binding, lipophilic efficiency, LipE, is attracting much attention nowadays [50]: 

𝐿𝑖𝑝𝐸 = 𝑝𝐾𝑑 − 𝑙𝑜𝑔𝑃         (20) 

where P is the octanol/water partition coefficient. Thus, LipE links binding affinity and 

hydrophobicity (or lipophilicity) in a single parameter and it is used in drug design and 

drug discovery to evaluate the quality of compounds and druglikeness. LipE quantifies 

the proportion of binding affinity that cannot be attributed to hydrophobicity (i.e., 

originated from polar groups). In practice, pKd can be substituted by pIC50 or pEC50, 
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but, as commented above, IC50 and EC50 suffer from severe drawbacks. Similarly, logP 

can be substituted by logD (considering neutral and ionized species), and in practice 

they can be substituted by their computational estimations ClogP or ClogD. On one 

hand, high potency is a desirable attribute in drug candidates. On the other hand, 

hydrophobicity is linked to reduced solubility, bioavailability, and binding selectivity, as 

well as increased toxicity, thus increasing the risk of ADMET-related attrition [51-54]. 

Increasing LipE results in improved binding affinity and ADMET properties [55,56]. 

Theoretically, because: 1) polar groups contributing to the binding affinity also 

contribute to the binding enthalpy, and 2) polar groups exhibit low hydrophobicity, it is 

reasonable to expect a correlation between LipE and binding enthalpy. Interestingly, it 

has been shown experimentally that LipE correlates with binding enthalpy in many 

targets [57-59]. Thus, high LipE compounds exhibit the characteristic behavior 

associated with enthalpically driven binding (high selectivity, favorable ADMET 

properties), whereas low LipE compounds exhibit the characteristic behavior 

associated with entropically driven binding (low selectivity and impaired ADMET 

properties). That correlation may be founded on reasonable theoretical grounds [57], 

considering some assumptions (e.g., the binding entropy is dominated by the solvation 

entropy or the conformational entropy is similar for a given set of compounds); 

however, this connection has been questioned recently [22]. 

 

4.2. Binding selectivity 

Binding selectivity is instrumental for avoiding drug binding to unwanted targets. Off-

target binding results in side-effects and toxicity. As indicated above, high 

hydrophobicity in leads may be linked to selectivity loss and high binding promiscuity. 

On the contrary, an enthalpic ligand will show considerable binding selectivity, because 

its binding is driven by polar, specific interactions [60]. Experimental examples have 

been found for the correlation between binding selectivity and binding enthalpy: 

compounds stabilizing the transthyretin tetramer [61], second-generation HIV-1 

protease inhibitors [48], MMP12 inhibitors [62], and cannabinoid receptor ligands [63]. 

It has been found experimentally that, during the lead optimization process, the 

addition of a polar group establishing strong hydrogen bonds usually result in a small 

or negligible binding affinity improvement (large enthalpy gain is compensated by 
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large entropy loss), an example of the enthalpy-entropy compensation phenomenon in 

drug discovery [64]. On the contrary, the addition of a nonpolar group very often 

results in a moderate binding affinity improvement (small enthalpy change is largely 

compensated by a large entropy gain). As indicated above, these two facts summarize 

the empirical foundations for the traditional lead optimization strategy based on the 

entropic optimization: use of nonpolar groups and conformational rigidification of 

ligand structures as main engineering tools. Non-polar functionalities are easier to 

engineer and result in moderate affinity improvements, but at the cost of diminishing 

the quality of the drug regarding solubility, bioavailability and selectivity. While polar 

functionalities are much more difficult to engineer (although their desolvation entropy 

is more favorable than that of nonpolar groups, there is a need to compensate the 

desolvation enthalpy penalty and overcome the enthalpy-entropy compensation), they 

increase the quality of the drug, being those functionalities the dominant driving force 

in second-generation or best-in-class drugs [46]. 

Enthalpy-entropy compensation is one of the main obstacles in drug discovery and 

development, and in the implementation of the enthalpic optimization of leads. The 

most difficult task is the introduction of polar groups (which ones? where?). After 

binding, polar groups may become: 1) exposed to the solvent and act as solubilizing 

elements of hydrophobic compounds; 2) desolvated, but not establishing strong 

interactions with the target; 3) desolvated establishing strong interactions with the 

target, but not contributing to binding affinity (due to enthalpy-entropy 

compensation); and 4) desolvated establishing strong interactions with the target and 

contributing to binding affinity (overcoming enthalpy-entropy compensation) [65]. 

Polar groups from category 2 should be eliminated immediately in the optimization 

process. Polar groups from category 4 must be directed towards structured, low 

mobility regions in the target, in order to avoid a conformational entropy loss upon 

binding and overcome the enthalpy-entropy barrier. Interestingly, polar groups from 

category 3 and 4 may contribute to binding selectivity, independently of their 

contribution to binding affinity [65]. The reasoning behind this fact relies on: 1) the 

large desolvation enthalpy penalty from polar groups; and 2) the specific differences in 

the location of key functional groups in the binding site of similar targets. Thus, an 

enthalpically optimized compound possesses carefully positioned polar groups, 
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specifically mapping complementary groups in the target to achieve large favorable 

binding enthalpy. In a secondary target with a slightly distinct binding site, suboptimal 

match between certain complementary groups will result in unproductive desolvation 

and a less favorable, or even unfavorable, binding enthalpy, severely diminishing the 

binding affinity. On the other hand, an entropically optimized compound has fewer 

configurational constraints and a lower dependence from its environment (the 

compound is pushed towards the binding site by water). Kawasaki and Freire have 

delineated a strategy to improve binding selectivity through structural/functional 

modification of the lead: if binding selectivity is to be improved by increasing the 

binding affinity for the primary target more than that for secondary targets, nonpolar 

functionalities must be incorporated into the lead; on the contrary, if binding 

selectivity is to be improved by decreasing the binding affinity for the secondary 

targets more than that for the primary target, polar functionalities must be 

incorporated into the lead [65]. It is obvious that these two alternatives will modify the 

thermodynamic binding profile of the lead in a different fashion. 

In general, selectivity does not require high affinity [23]. Binding affinity and binding 

selectivity are not correlated: binding affinity is related to the quality (strength, 

contribution to the overall Gibbs energy, as well as the partition into enthalpic and 

entropic terms) of polar interactions, while binding selectivity is related to the spatial 

configuration of polar interactions. Polar groups establishing good interactions in the 

binding interface will compensate their large desolvation enthalpic penalty with their 

intrinsic enthalpy and their desolvation entropy (high quality polar interactions), while 

polar groups establishing poor interactions in the binding interface will not 

compensate their large desolvation enthalpic penalty with their intrinsic enthalpy and 

their desolvation entropy (thus, not contributing to the binding or even decreasing the 

binding affinity). Therefore, a high affinity ligand may exhibit low binding selectivity, 

while a moderate affinity ligand may exhibit a high binding selectivity. In fact, given 

that the selectivity indexes for similar targets are usually not larger than 1000, an 

extremely large binding affinity for the primary target may be detrimental for binding 

selectivity, because the binding affinity towards off-targets will still be considerable at 

the typical therapeutic dose of the drug [60]. Therefore, the best drug is not the 

compound with higher binding affinity, but the compound with sufficient binding 
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affinity for eliciting the sought therapeutic effect, while exhibiting good 

pharmacokinetic and pharmacodynamic properties. 

 

4.3. Binding adaptability 

Binding adaptability is a concept apparently opposed to binding selectivity. Some 

targets require high target selectivity, while in other cases, because of natural/induced 

diversity or redundancy, adaptive drugs able to keep sufficient binding affinity for a set 

of homologous targets are required. For example, three of the most important adverse 

effects in HIV therapy based on protease inhibitors are: 1) side effects due to inhibition 

of secondary host targets, 2) the emergence of drug-resistant strains less susceptible 

to inhibitor action, and 3) the natural genetic diversity of HIV giving rise to coexisting 

multiple viral genotypes and subtypes. Then, adaptive drugs able to maintain enough 

binding affinity to distorted binding sites in the mutant or variant strains, but at the 

same time, able to maintain reduced binding affinity towards other host proteases are 

desirable. The proposed lead optimization strategy relies on the fact that mutations in 

the primary target occur at random only at certain residue locations, while key 

functional residues remain unchanged. Therefore, inhibitors must be engineered to 

establish strong interactions with conserved and more stable regions in the target and 

to find suboptimal complementarity in secondary targets providing binding selectivity, 

and to contain rotatable and asymmetric groups interacting with variable and less 

stable regions providing binding adaptability; entropic penalty associated with 

conformational flexibility in the ligand is compensated with the additional favorable 

binding enthalpy [11,16,48,66,67]. 

 

4.4. Allostery 

Ligand binding is very often coupled to considerable conformational changes. It is not 

that the binding triggers the conformational change, but, more appropriate, that the 

ligand binding shifts a pre-existing conformational equilibrium and changes the 

populations of conformational macrostates in a significant proportion. This is the 

molecular basis of allosteric control and allosteric phenomena in biomolecules: the 

modulation of a conformational equilibrium through ligand binding by stabilizing 

(populating) certain conformational states exhibiting specific biological activities. The 
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conformational equilibrium will be reflected in the apparent thermodynamic 

parameters as one of the many possible contributions. In the case of remarkable 

conformational changes occurring simultaneously to ligand binding, the binding 

enthalpy and entropy might exhibit very large, similar in magnitude, opposing values 

(very favorable binding enthalpy and very unfavorable binding entropy) [68-70]. The 

thermodynamic binding profile can be used to discriminate between ligands promoting 

the conformational change and ligands not eliciting such conformational change, 

which would correspond to discriminate between activators and inhibitors if the 

conformational change is required for activity. An example of this strategy is the 

identification of small drugs able to bind to gp120 from HIV-1, but not eliciting the 

conformational change in gp120 mediated by CD4 and required for subsequent 

interaction with the chemokine receptor CCR5 or CXCR4 involved in viral entry inside 

the cell [71,72]. 

 

5. Thermodynamics in Drug Discovery: Caveats 

The previous section is full of optimistic statements about the application of 

thermodynamics in lead selection and optimization. However, extreme care should be 

taken when using thermodynamic binding profiles. 

The binding process is a superposition of multiple microscale phenomena showing 

compensatory and cooperative effects, and binding enthalpy and entropy originate 

from multiplicity of intermolecular interactions [73]. Factorizing a thermodynamic 

binding profile into individual contributions is not trivial and rationalizing 

thermodynamic binding profiles may become a difficult task [74]. Careful reporting of 

experimental conditions in published work cannot be overemphasized. 

Enthalpy-entropy compensation and cooperative energetic coupling between water 

molecules, functional groups in the ligand and intrinsic dynamics in the macromolecule 

may render quite difficult the interpretation of a given thermodynamic profile [75]. In 

particular, it has been shown that water molecules may considerably alter the 

thermodynamic binding profile, even if the effect on the Gibbs energy is small [76]. 

Thus, interactions expected to be dominated by the hydrophobic effect show a large, 

favorable binding enthalpy: polyproline recognition by SH3 domains [77], 
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allophenylnorstatine-based inhibitors of the HIV-1 protease [36,67], and inhibitors of 

aldose reductase [78]. 

Although enthalpy-entropy compensation, a formidable barrier to overcome in drug 

discovery, is a pervasive phenomenon in ligand binding [79], the correlation between 

enthalpy and entropy can be artificially enhanced by an incorrect experimental 

strategy where additional extrinsic equilibria are not taken into account, bad quality 

experimental data, and a defective data analysis procedure [80,81]. 

In protein folding a good correlation between structural parameters (e.g., changes in 

solvent-accessible surface area) with energetic parameters has been established. 

However, this has been not the case in ligand binding, mainly due to the small size and 

wide structural diversity of ligands. Moreover, contrary to what happen in protein 

folding, the probability of establishing suboptimal interactions in ligand binding is high. 

Structural similarity in ligands (or in targets) does not necessarily result in similarity in 

binding energetics and allosteric effects, because intrinsic binding parameters may be 

differentially combined with contributions from coupled equilibria, water molecules, 

binding dynamics, or cooperativity between functional groups. Thus, the 

structural/functional determinants for binding affinity do not necessarily coincide with 

those required for eliciting cooperativity effects and allosteric responses: two similar 

ligands may exhibit different thermodynamic profiles and different allosteric and 

cooperativity effects with a given target [82-84], and a given ligand may exhibit 

different thermodynamic profiles and different allosteric and cooperativity effects with 

two homologous targets [85]. 

 

6. Conclusions 

Biophysical techniques, in particular calorimetry, are important in the preclinical stage 

in drug discovery. They can be used for target characterization, screening validation, 

target engagement, and ligand binding analysis and optimization. In general, ligand 

binding is coupled to multiple equilibria (mainly, conformational, oligomerization, and 

ligand-exchange equilibria). The thermodynamic binding profile provides rich and 

valuable information on the ligand-target interaction, and ITC is the appropriate 

technique for dissecting the multiple contributions to the enthalpy and entropy of 

binding stemming from the different coupled equilibria. It is extremely important to 
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always report the experimental conditions employed and the technical procedures 

employed for dissecting out the energetic contributions from the extrinsic factors 

regarding ligand binding, in order to be able to make appropriate use of the 

thermodynamic data when performing correlation analyses during quantitative 

energetics-structure-activity relationship (QESAR) studies. 

Traditionally, lead optimization has been performed by making compounds more 

hydrophobic and pre-shaping to the target binding site. This entropic optimization 

results in poorer drug-like (ADMET) properties. The alternative consists of performing 

an enthalpic optimization engineering strong polar interactions from the earlier stages 

in drug discovery and combining, if necessary, with entropic optimization in the final 

stages. This has been proven to be the optimal strategy for maintaining or improving 

ADMET properties during binding affinity optimization. Potency, the drug dose needed 

for a certain physiological effect, is not only direct consequence of affinity, but also 

ADMET properties). Therefore, drug potency is related to both binding affinity and 

binding enthalpy, but binding selectivity and ADMET properties are mainly related to 

binding enthalpy. 

We have reviewed the basis of ligand binding thermodynamics and the different 

contributions to the binding enthalpy and entropy. Then, we have discussed: 1) the 

consequences of implementing an enthalpic or entropic optimization of leads, 2) the 

empirical relation between binding enthalpy and drug-like properties and some 

optimization indexes, and 3) the rules for improving binding affinity while preserving or 

improving the quality of leads during optimization. 

 

7. Expert opinion 

How can we maximize likelihood of success and minimize risk in drug discovery? By 

integrating as much information as possible through orthogonal approaches: gathering 

biochemical, thermodynamic, kinetic, structural, and preclinical information alongside 

computational simulations. ITC is the gold-standard for characterizing biological 

interactions. Besides providing the “reduced” thermodynamic binding profile for a 

given drug-target interaction, ITC gives access to many energetic aspects (the 

“extended” thermodynamic binding profile), very often overlooked when attention is 

restricted to the Gibbs energy [86]. Additional equilibria coupled to ligand binding may 
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trigger changes in the Gibbs energy of binding, but much larger changes in its enthalpic 

and entropic contributions. This may be seen as a weakness or as an advantageous 

feature allowing extracting valuable information on the ligand binding. Nevertheless, 

enthalpy and entropy of binding should not be used as direct end-points during 

optimization, but as a complementary tool for comparing ligand binding modes and 

identifying differential energetic outcomes between ligands (and the underlying 

molecular events and structural features). 

In the past the thermodynamic binding profile has been employed retrospectively, 

together with structural information, as a guiding tool for lead optimization. Nowadays 

there is a quite strong foundation for using it prospectively in conjunction either with 

structural tools or within structure-activity relationship studies. Enthalpic ligand 

screenings can be routinely performed [87], and algorithms for implementing an 

enthalpic (or entropic) optimization are available [88]. Empirical rules for improving 

binding affinity, selectivity, and adaptability on an energetic basis have been 

established through experimental examples. However, the rather limited set of 

experimental systems employed to devise and formulate those rules has been 

appreciated as a strong limitation in their applicability. An extension to many other 

targets should be performed in order to test their validity, but also a closer look into 

those targets in which apparently they do not work would be convenient. 

The comparison of thermodynamic binding profiles corresponding to different 

compounds is better performed on congeneric series of compounds containing 

bioisosteric substitutions. Thus, additional equilibria coupled to binding (and their 

contributions to the apparent binding parameters) are rather similar and the focus is 

placed on ∆Hint, ∆Hdesolv, -T∆Sdesolv, and -T∆Sconf. 

Two key challenging phenomena must be solved in the short term in order to render 

thermodynamic binding profiles more informative and amenable to direct 

interpretation: energetic contribution of water molecules in the binding process, and 

cooperativity (non-additivity) of energetic contributions of ligand functional groups 

resulting in non-linear changes in the binding parameters. In the absence of structural 

information these two phenomena are quite difficult to unravel. 

Enthalpic optimization through computational strategies is challenging because of the 

high sensitivity of binding parameters to intrinsic (structural and functional properties 
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of interacting molecules) and extrinsic factors (experimental conditions and coupled 

equilibria), which exceeds the precision from current computational tools. Engineering 

polar interactions does not necessarily results in improved affinity, because of 

enthalpy-entropy compensation (compensation of desolvation enthalpy and 

conformational entropy penalties of polar groups with intrinsic enthalpy and 

desolvation entropic gains) and because of additional factors that are difficult to 

predict. Computational molecular design must be mainly directed to engineering polar 

groups, but, until computational tools for reliable prediction of the energetics of 

binding are available, the new thermodynamic binding profile after chemical 

modification of the lead must be obtained experimentally by ITC. Therefore, 

computational tools are very useful for molecular redesign and generation of sets of 

congeneric ligands, but we still must rely on experimental trial-and-error strategy. The 

comparison of the thermodynamic profile for a set of modified congeneric ligands 

regarding the parent unmodified lead will provide the information required for the 

next optimization steps. 

Enthalpic optimization has been shown to be better than entropic optimization 

regarding the maintenance or improvement of quality of drug (ADMET properties). 

Some indexes to quantify ligand efficiency, employed in lead selection and 

optimization, involving the binding enthalpy have been defined: enthalpic efficiency 

(EE = ∆H/Npol, Npol being the number of polar atoms in the ligand; or EE = ∆H/Nh, Nh 

being the number of non-hydrogen atoms in the ligand) and size-independent 

enthalpic efficiency (SIHE = 0.018×∆H×N0.3, N being the number of atoms in the ligand) 

[14,89]. However, lipophilic efficiency (LipE) has attracted much attention because it 

combines in a single number the enthalpic character of the ligand (key factor for 

binding affinity, selectivity and adaptability) and its hydrophobic nature (key factor for 

ADMET properties), and it has been proven to be associated with improved drug-like 

properties. The correlation between LipE and binding enthalpy, although not strictly 

rigorous, has been shown to occur experimentally for some targets and provides the 

basis for the enthalpic selection and optimization of leads in drug discovery. 

The enthalpic optimization methodology is rather simple: 1) select enthalpically-driven 

leads; 2) analyze structural and functional variability in the macromolecule binding 

site; 3) focus initially on engineering polar interactions against conserved/stable 
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subsites in the macromolecule binding site; 4) determine the new thermodynamic 

profile for modified ligands; 5) select new leads according to the improvement in 

binding enthalpy; and 6) engineer nonpolar interactions in late stages of ligand 

optimization. The correct application of the enthalpic optimization methodology 

requires: 1) following an appropriate experimental strategy (from the biophysical pre-

characterization of the binding partners to the selection of sets of experimental 

conditions) in order to identify extrinsic factors affecting the apparent binding 

parameters and eliminate their contributions, if possible, generating congeneric series 

of lead derivatives in a rational and smart way, and 2) obtaining high quality data and 

performing an adequate data analysis for minimizing experimental uncertainties and 

correlation between enthalpy and entropy. This statement, which in principle would 

be compulsory for any experimental technique, might represent a considerable barrier 

for the application of thermodynamic data in drug discovery. 

Nobody can deny the initial expectations on the application of thermodynamic 

methods in drug discovery have not been met. But we may wonder whether the 

methodology is flawed and inefficient because it is just based on a few anecdotal 

observations and our understanding of binding thermodynamics is not sufficiently 

advanced, or the methodology may seem quite complex and cumbersome resulting in 

considerable reluctance from researchers to integrate it within drug discovery 

programs. Although the throughput of ITC is not high, instrumentation for satisfying 

the needs at medium scale, for secondary screenings or for sets of lead derivatives, is 

available, methodologies for increasing the quality and the throughput of experimental 

data have been developed (e.g., single-injection titration [90]), and empirical rules with 

reasonably solid foundations have been established to be applied on any potential 

target. Of course, it is not a straightforward task, but nobody said it was easy. 

 

Article highlights box 

• The thermodynamic binding profile (Gibbs energy, enthalpy and entropy of binding) 

provides a wealth of information on the lead-target interaction due to the high 

sensitivity of the apparent binding parameters to intrinsic and extrinsic factors. 

• Thermodynamic ligand binding data seem to be underutilized in lead selection and 

optimization in drug discovery programs, and it may prove fundamental for the 
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discovery of new drugs and the reduction of attrition rates when used in 

combination with biochemical, kinetic, structural, preclinical, and computational 

data. 

• Traditionally lead optimization has been accomplished by optimizing binding 

entropy: increasing hydrophobicity and conformational rigidity in the ligand. This 

usually results in poor drug-like ADMET-related properties (e.g., solubility, 

bioavailability, toxicity). 

• Binding enthalpy is related to binding affinity, selectivity, adaptability and drug-like 

properties. In particular, binding enthalpy seems to be correlated with lipophilic 

efficiency, a commonly used index for lead optimization rewarding binding affinity 

and penalizing hydrophobicity. 

• Enthalpic optimization leads to better prioritization and optimization of leads, 

facilitating binding selectivity and adaptability, without compromising other drug-

like ADMET-related properties. 

• The use of thermodynamic binding profiles requires carefully planned experimental 

strategy, high-quality experimental data, and good data analysis procedures. 
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Figure legends 

Figure 1. Main enthalpic (green) and entropic (red) contributions to the Gibbs energy 

of binding (blue). The intrinsic enthalpy and the desolvation enthalpy are always 

favorable and unfavorable, respectively; however, other contributions such as the 

conformational enthalpy and the ligand-exchange enthalpy may favor or oppose 

binding (represented in attenuated color). On the other hand, the desolvation entropy 

is always favorable, while the conformational entropy and the roto-translational 

entropy are always unfavorable; however, other contributions such as the ligand-

exchange entropy may favor or oppose binding (represented in attenuated color). The 

sum of all contributions gives rise to the Gibbs energy of binding. 

 

Figure 2. Crystallographic structures of HIV-1 protease bound to indinavir (PDB code 

2bpx), KNI-764 (PDB code 1msm), and TMC-126 (PDB code 214u). The thermodynamic 

binding profile for the three inhibitors under identical experimental conditions is 
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shown. The binding of the three inhibitors is accompanied by a similar conformational 

change in the target, since the RMSD between two given structures is not larger than 

0.7 Å. The large differences in binding enthalpy (corrected for proton exchange 

processes) between the three ligands cannot be justified considering the polar groups 

in each molecule and the hydrogen bonds established between drug and target. 

Indinavir contains 9 polar groups: 3 groups are establishing 6 hydrogen bonds with the 

target, 4 groups are establishing 4 hydrogen bonds with water molecules, and 2 groups 

are not involved in hydrogen bonds formation. 

KNI-764 contains 9 polar groups: 4 groups are establishing 7 hydrogen bonds with the 

target, 4 groups are establishing 4 hydrogen bonds with water molecules, and 1 group 

is not involved in hydrogen bonds formation. 

TMC-126 contains 11 polar groups: 5 groups are establishing 7 hydrogen bonds with 

the target, 2 groups are establishing 2 hydrogen bonds with water molecules, and 4 

groups are not involved in hydrogen bonds formation. 
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