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A LOOK AT PROXIMINAL AND CHEBYSHEV SETS
IN BANACH SPACES

A. ASSADI - H. HAGHSHENAS - T. D. NARANG

The main aim of this survey is to present some classical as well as
recent characterizations involving the notion of proximinal and Cheby-
shev sets in Banach spaces. In particular, we discuss the convexity of
Chebyshev sets.

1. Introduction

One of the basic question in Approximation Theory concerns the existence of
best approximations. Due to its applications, such as:

1. Solution to an over-determined system of equations.

2. Best least squares polynomial approximation to a function.

3. Some control problems,

the problem of best approximation has a long history and gives rise to a lot of
notions and techniques useful in functional analysis. In fact: Since 1970, when
[2] has gone to print, the theory of best approximation in Banach spaces has de-
veloped rapidly and the number of papers in this field is growing continuously.
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The structure of the paper is as follows. In section 2, after stating the main def-
initions, we gather some well-known facts which have been obtained by many
authors concerning proximinal and Chebyshev sets, until now. In the last part
of section 2, we provide some conditions under which a metric projection is
continuous. In section 3, we discuss some results about the convexity of Cheby-
shev sets. All undefined terms and notation are standard and can be found, for
example, in [1, 2, 6, 13, 23, 62].

2. Proximinal and Chebyshev sets; continuity of metric projections

Let K be a non-empty subset of a Banach space (X ,‖.‖) and let x ∈ X . The
(possibly empty) set of best approximations to x from K is defined by:

PK(x) = {y ∈ K : ‖x− y‖= dK(x)},

where dK(x) = in f{‖x− y‖ : y ∈ K}. The set K is called proximinal (resp.
Chebyshev) if PK(x) contains at least (resp. exactly) one point for every x ∈ X .
The term proximinal set was proposed by Killgrove and used first by Phelps
[35]. Also, the concept of Chebyshev sets was introduced by Stechkin in honor
of the founder of best approximation theory, Chebyshev (1821-1894). The map-
ping PK : X→ 2K ≡ the set of all subsets of K, which associates with each x∈ X ,
the set PK(x), is called the metric projection of X onto K. As addressed above,
for any Chebyshev set K, the map PK is single-valued. We have in the following
list some examples and non-examples of proximinal and Chebyshev sets.

1. If X = Rn with its usual norm ‖(xk)
n
k=1‖2 =

(
∑

n
k=1 |xk|2

) 1
2 , any closed

convex set K in X is Chebyshev.

2. If X =R2 under the norm ‖(a,b)‖∞ = max{|a|, |b|} and K = {(0,b) : b ∈
R}, then K is not a Chebyshev set. In fact PK(x) = {(0,b) : |b| ≤ 1}, for
x = (1,0) ∈ R2.

3. If X =R2 equipped with the l1-norm ‖(a,b)‖= |a|+ |b| and K = {(a,b) :
b =±a}, then PK(x) = {(a, |a|) : |a| ≤ 1}, for x = (0,1) ∈R2 and so K is
not Chebyshev.

4. Let X = R2 equipped with the norm

‖(x,y)‖= |x− y|+(x2 + y2)
1
2 ,

and K = {(x,0) : |x| ≤ 1}. Then K is a Chebyshev set in X .
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5. In the middle of 19th century, Chebyshev proved that in the space C[0,1]
the subspace of all polynomials of degree ≤ n and the subset Rnm of all
rational functions a0+a1x+...+anxn

b0+b1x+...+bmxm with fixed n,m ∈ N are Chebyshev sub-
sets.

6. The reader can find some examples of Chebyshev sets in matrix spaces in
[58].

7. It is known that if Y is either a reflexive or a separable proximinal sub-
space of a Banach space X then Lp(I,Y ) is proximinal in Lp(I,X) for
0≤ p < ∞, where I is the unit interval with the Lebesgue measure. How-
ever there is an example of a proximinal subspace Y in X for which
Lp(I,Y ) is not proximinal in Lp(I,X). Recently, Khalil in [60] presented
a class of proximinal subspaces Y in a Banach space X (which includes
reflexive subspaces properly) such that Lp(I,Y ) is proximinal in Lp(I,X),
for all 0≤ p < ∞.

It is not hard to show that proximinal sets (and so, Chebyshev sets) are closed.
For the converse, every non-empty closed set in a Minkowski space (a finite-
dimensional Banach space) is proximinal [2]. Also, each non-empty compact
subset of a Banach space is proximinal [2]. The following list of examples
is intended to be a representative sampling of some of the more useful known
proximinal sets.

1. Any reflexive subspace, e.g., a finite-dimensional subspace [3].

2. Any weakly closed subset of a reflexive Banach space [2].

3. Any closed convex subset of a reflexive Banach space [3, 31]. Note that
a closed convex set is not proximinal, in general. Let X = l1. For any
n ∈ N, let en ∈ X be such that its nth entry is n+1

n and all other entries are
0. Let K = co{e1,e2, · · ·}. Then K is a closed convex subset of X and is
not proximinal.

4. Any weak∗ closed subset of a dual Banach space [4].

5. Any linear subspace G of a Banach space (X ,‖.‖) such that {g∈G : ‖g‖≤
1} is sequentially compact for the weak topology σ(X ,X∗) [2, page 708].

It is also a well-known classical result that: A Banach space X is reflexive if and
only if every closed convex non-empty subset of X is proximinal if and only if
for every non-empty closed convex subset K of X , PK(x) 6= φ for at least one
x 6∈ K [61, page 188].
Concerning Chebyshevity, we have the following theorem [55, page 33].
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Theorem 2.1. Any finite-dimensional subspace Y in a strictly convex Banach
space X is Chebyshev.

Proof. At first Y is proximinal in X . Now, suppose y1,y2 ∈ PY (x) for some
x ∈ X . Hence, ‖y1− x‖= ‖y2− x‖= dY (x) and so,

‖1
2
(y1 + y2)− x‖ ≤ 1

2
‖y1− x‖+ 1

2
‖y2− x‖= dY (x).

Since Y is a linear subspace, 1
2(y1 + y2) ∈ Y ; ‖1

2(y1 + y2)− x‖ ≥ dY (x). Now if
dY (x) = 0, it is clear that y1 = x = y2. If dY (x) 6= 0, then the vectors y1−x

dY (x)
, y2−x

dY (x)
,

and the midpoint are all of norm 1, and so by the strict convexity, y1 = y2.

Here we state some facts under which closed sets are Chebyshev:
In 1961, Efimov and Stechkin, proved that any weak∗ closed convex set in a
locally uniformly convex dual Banach space is Chebyshev [5]. Also, it was
shown by Day [6] that every closed convex set in a reflexive strictly convex Ba-
nach space (e.g., a uniformly convex Banach space) is Chebyshev. For example,
any closed subspace of a Hilbert space is Chebyshev. In fact, Day improved a
result obtained by Efimov and Stechkin which state: Any closed convex set in a
reflexive locally uniformly convex Banach space is Chebyshev [5].
Next we provide a condition under which a proximinal set is Chebyshev.
Let K be a non-empty set in a Banach space (X ,‖.‖) and K̂ = {x ∈ X : ‖x‖ =
dK(x)}. Some authors call the set K̂ the metric complement of K. For example,
let X = R2 equipped with the l1-norm and K = {(x,y) : y = x}. Then

K̂ = {(x,y) : (x≥ 0 and y≤ 0), or (x≤ 0 and y≥ 0)}.

Let X be a Banach space, and K is a subspace of X . We have the following facts
about K̂ [36].
(i) K

⋂
K̂ = {0}.

(ii) The set K̂ is closed.
(iii) K is Chebyshev if and only if X = K⊕ K̂ (where ⊕ means that the sum
decomposition of each element x ∈ X is unique).
We have the following characterization of Chebyshev sets in terms of metric
complement.

Theorem 2.2. ([37]) Let X be a Banach space, and K a proximinal subspace of
X for which K̂ is convex. Then K is Chebyshev.

Proof. Suppose g1,g2 ∈ PK(x) for some x ∈ X . Then ĝ1 = x−g1 ∈ K̂ and ĝ2 =
x−g2 ∈ K̂. Since 1

2(ĝ1− ĝ2) ∈ K̂, we have (g1−g2) ∈ K
⋂

K̂ = {0}; it follows
that g1 = g2.
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Let K be a non-empty subset of a Banach space (X ,‖.‖) and let x ∈ X\K.
The sequence (yn)

∞
n=1⊆K is called minimizing for x if limn→∞‖x−yn‖= dK(x).

A non-empty subset K of a Banach space X is said to be (weakly) approxi-
matively compact if for any x ∈ X\K, all minimizing sequences for x have a
(weakly convergent subsequence) Cauchy subsequence. A Banach space X is
called (weakly) approximatively compact if any non-empty closed and convex
subset of X is (weakly) approximatively compact. A Banach space X is weakly
approximatively compact if and only if it is reflexive [39]. Also, a Banach space
X is approximatively compact if and only if X is reflexive and X has the Kadec-
Klee property [38].
In 1970, Singer [2] proved that every approximatively compact set in a Banach
space is proximinal. For the converse: Let X = l∞, Y = c0. Then Y is proxim-
inal in X . For x0 = (1,1,1, · · ·) ∈ X , the sequence yn = (1,1, · · · ,1,0,0, · · ·) is
minimizing. But (yn)

∞
n=1 has no convergent subsequence. Thus proximinality

does not imply approximative compactness [32].

Theorem 2.3. ([50]) Let K be a closed convex set of a nearly strongly convex
Banach space X. The following are equivalent:
(i) K is proximinal.
(ii) K is weakly approximatively compact.
(iii) K is approximatively compact.

In 1998, it was proved that in approximatively compact Banach spaces, any
closed convex set is Chebyshev [7]. A non-empty subset K of a Banach space X
is boundedly compact provided that K∩BX [0;r] is compact in X for every r≥ 0
(in this definition BX [0;r] ≡ {y ∈ X : ‖y‖ ≤ r}). Every boundedly compact set
is approximatively compact although the converse is not true, in general. Thus,
every boundedly compact set is proximinal.
An essential notion among Approximation Theory is the continuity of metric
projection (the reader is referred to [57] and [59] for two brief surveys). The
continuity property of the metric projections is a natural object of study in un-
derstanding the nature of some problems in Approximation Theory. If K is a
non-empty subset of a Banach space X and x ∈ X\K, then PK is said to be con-
tinuous at x if limn→∞yn = y ∈ PK(x) whenever yn ∈ PK(xn) and limn→∞xn = x
[26]. It is clear that PK is continuous at x if every minimizing sequence for x
converges; the converse is not valid in general. In the following we list some
sets, which all of them have the continuous metric projection.

1. Any finite-dimensional Chebyshev subspace of a Banach space [2, page
744].

2. Any weakly closed Chebyshev subset of a reflexive Banach space with the



76 AMANOLLAH ASSADI - HADI HAGHSHENAS - TULSI D. NARANG

Kadec-Klee property (e.g., a uniformly convex Banach space) [61, page
190].

3. Any closed convex set in a strictly convex reflexive space with the Kadec-
Klee property [33].
Brown [34] has shown that there exists a separable strictly convex and
reflexive (real) Banach space X and a closed subspace Y such that PY is
not continuous.

4. Any closed convex set in a reflexive locally uniformly convex Banach
space (e.g., a uniformly convex Banach space) [5].

5. Any weak∗ closed convex set in a locally uniformly convex dual Banach
space [5].

6. Any boundedly compact Chebyshev set [9].

In 1972, Oshman [40] discussed the relationship between approximative com-
pactness of a non-empty subset K of a Banach space X and continuity of the
PK . In [42] the authors have provided a counterexample: There exists a mid-
point locally uniformly convex Banach space X and a non-empty closed convex
Chebyshev subset K of X such that PK is continuous and K is not approxima-
tively compact. In [39] it was proved that: Let X be a strongly convex Banach
space and K be a non-empty closed and convex subset in X . Then K is a Cheby-
shev set and PK is continuous if and only if K is approximatively compact in X .
It is not known even in a Hilbert space whether for a Chebyshev set the asso-
ciated metric projection is continuous or does there exist a Chebyshev set in a
Hilbert space supporting a discontinuous metric projection? Brown [Abstract
Approximation Theorem, Seminar in Analysis, 1969-70, Matscience, Madras
(India)] gave an example supporting that even in a Hilbert space the metric pro-
jection on a Chebyshev set may fail to be weakly continuous.
In the end of this section, we introduce some sufficient conditions under which
the metric projection PK of a Banach space X onto a non-empty closed subset
K of X , is continuous. We do it in terms of differentiability of distance function
dK on X which associates with each x ∈ X , the non-negative real number dK(x).

Lemma 2.4. Suppose that K is a non-empty closed set in a Banach space
(X ,‖.‖) and x∈ X\K. If dK is Gateaux differentiable at x, then d′K(x)

(
x−y
‖x−y‖

)
=

1, for all y ∈ PK(x).

Proof. At first, from Gateaux differentiability of dK , the limit

liminf
t→0+

dK(x+ tz)−dK(x)
t

,
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exists for every z ∈ X . But for each t > 0

dK(x+ t(x− y))−dK(x)≤ tdK(x).

Hence, in particular, for z = x− y

liminf
t→0+

dK(x+ tz)−dK(x)
t

= dK(x).

Now if t ′ = t
dK(x)

(notice that dK(x)> 0 ) then

liminf
t ′→0+

dK(x+ t ′(x− y))−dK(x)
t ′

= dK(x),

and consequently

liminf
t→0+

dK(x+ t x−y
‖x−y‖)−dK(x)

t
= 1.

On the other hand, since distance functions are Lipschitz (with constant 1) we
have

limsup
t→0+

dK(x+ t x−y
‖x−y‖)−dK(x)

t
≤ 1,

as required.

Let X be a Banach space. We say that a non-zero element x∗ ∈ X∗ strongly
exposes a subset C of X at a point x of C provided a sequence (zn)

∞
n=1 in C

converges to x whenever (x∗(zn))
∞
n=1 converges to x∗(x).

The next theorem is proved by Fitzpatrick in [8], but with some manipulation.

Theorem 2.5. Suppose that K is a non-empty closed set in a Banach space
(X ,‖.‖) and dK is Fréchet differentiable at x ∈ X\K. Moreover y ∈ PK(x) and
d′K(x) strongly exposes the closed unit ball B(X) at ‖x−y‖−1(x−y). Then every
minimizing sequence (yn)

∞
n=1 in K for x converges to y.

Proof. Choose a sequence (an)
∞
n=1 of positive numbers such that lim

n→∞
an = 0 and

a2
n > ‖x− yn‖−dK(x), n ∈ N.

Hence, if 0 < t < 1 then for each n ∈ N

dK(x+ t(yn− x)) ≤ ‖x+ t(yn− x)− yn‖
= (1− t)‖x− yn‖
< (1− t)(a2

n +dK(x)).
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Therefore
dK(x)−dK(x+ t(yn− x))≥ tdK(x)−2a2

n.

Fix ε > 0. By Fréchet differentiability of dK , there is δ > 0 such that if ‖y‖< δ

then

|dK(x+ y)−dK(x)−d′K(x)(y)| ≤ ε‖y‖ (1)

Let tn = an
‖x−yn‖ and an < δ for large n. Replacing y by tn(yn−x) in 1 we get

εtn‖x− yn‖−d′K(x)
(

tn(yn− x)
)
≥ dK(x)−dK(x+ tn(yn− x))

≥ tndK(x)−2a2
n,

whence
d′K(x)

(
tn(x− yn)

)
≥−εan−2a2

n + tndK(x),

therefore

d′K(x)
(
‖x− yn‖−1(x− yn)

)
≥−ε−2an +

dK(x)
‖x− yn‖

.

Since ε > 0, lim
n→∞

an = 0, lim
n→∞
‖x− yn‖= dK(x), we have

1≥ liminf
n→∞

d′K(x)
(
‖x− yn‖−1(x− yn)

)
≥ liminf

n→∞

dK(x)
‖x− yn‖

= 1,

therefore by Lemma 2.4

lim
n→∞

d′K(x)
(
‖x− yn‖−1(x− yn)

)
= 1 = d′K(x)

(
‖x− y‖−1(x− y)

)
.

Since d′K(x) strongly exposes B(X) at ‖x− y‖−1(x− y), we deduce that

lim
n→∞
‖x− yn‖−1(x− yn) = ‖x− y‖−1(x− y),

which yields lim
n→∞

yn = y.

Theorem 2.6. ([8]) Let X be a Banach space and x∗ ∈ X∗. The dual norm of X∗

is Fréchet differentiable at x∗ if and only if x∗ strongly exposes B(X).

Combining Theorems 2.5 and 2.6, we get the following corollaries by using
the result that the dual norm of X∗ is Fréchet differentiable if X is a uniformly
convex Banach space.
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Corollary 2.7. Let K be a non-empty closed set in a Banach space X and x ∈
X\K. If dK is Fréchet differentiable at x and the dual norm of X∗ is Fréchet
differentiable, then PK is continuous at x.

Corollary 2.8. Suppose that K is a non-empty closed set in an uniformly convex
Banach space X, x ∈ X\K and dK is Fréchet differentiable at x. Then PK is
continuous at x.

In [8] Fitzpatrick proved the following relations between properties of the
metric projection and the distance function.

Theorem 2.9. Suppose that K is a non-empty closed subset of a Banach space
X such that the norm of X is both Fréchet differentiable and uniformly Gateaux
differentiable and the dual norm of X∗ is Fréchet differentiable. The following
are equivalent for x ∈ X\K:
(i) dK is Fréchet differentiable at x.
(ii) PK is continuous at x.
(iii) Every minimizing sequence in K for x converges.

3. Convexity of Chebyshev sets

In finite-dimensional Hilbert spaces, we have the following theorem of Bunt
[27].

Theorem 3.1. Every Chebyshev subset of a finite-dimensional Hilbert space is
convex.

One of the most outstanding open problem of Approximation Theory is:
Whether every Chebyshev set in an (infinite-dimensional) Hilbert space is con-
vex? This problem was proposed by Klee in 1961 [9]. Klee conjectured that the
answer is negative and proved that in every Hilbert space there exist non-convex
closed semi-Chebyshev sets. In [16] Johnson gave an example: Let E denote
the real inner product space that is the union of all finite-dimensional Euclidean
spaces. There exists a bounded non-convex Chebyshev set S in E (Jiang com-
pleted the proof in 1993 [17]). Also, in [56], the question is raised: If H is the
completion of E, then will the closure of E remain a Chebyshev set in H? A par-
tial answer is given in the form of a sufficient condition for a point in H to have
a unique best approximation in the closure of S. Recently, a conjecture aim-
ing for the construction of a non-convex Chebyshev set in a Hilbert space was
proposed in [43] by Faraci and Iannizzotto. On the other hand, much work has
been done towards a positive answer. In 1951, Ficken showed that in a Hilbert
space, every compact Chebyshev set is convex. Several partial answers to this
problem are known in the literature [2, 9, 11–15, 18, 45, 52] but the problem
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is still unsolved. The characterization of those Banach spaces in which every
Chebyshev set is convex is another open problem, and many sufficient condi-
tions for a Chebyshev set to be convex have been obtained, until now. An old
result of Motzkin [28] states that in a smooth and strictly convex Banach space
X of finite-dimension, the class of closed convex sets coincides with the class of
Chebyshev sets. Notice that, there are still some open problems in this subject,
for instance: Is every Chebyshev set in a strictly convex reflexive Banach space
convex [53]? All of the Chebyshev sets given in the following list are convex.

1. Any weakly closed Chebyshev set in a smooth and uniformly convex Ba-
nach space (e.g., a Hilbert space) [5, 30].

2. Every boundedly compact Chebyshev set in a smooth Banach space [18,
19].

3. Any approximatively compact Chebyshev set in a uniformly smooth Ba-
nach space [20].

4. Any Chebyshev set with continuous metric projection in a Banach space
with strictly convex dual space (for example in a smooth reflexive Banach
space) [21].
For Hilbert spaces, Asplund [30] has shown that it is sufficient to assume
that the metric projection is continuous from the norm topology to the
weak topology. Also, Asplund [30] has proved: If K is a Chebyshev set
in a Hilbert space such that every closed half-space intersects K in a prox-
iminal set, then K is convex.
Notice that, in (4) above, the assumption of continuity of the metric pro-
jection can be replaced by much weaker conditions. For example, Bala-
ganskii proved that if K is a non-empty Chebyshev subset of a real Hilbert
space and the set of discontinuities of PK is countable, then K is convex
[51]. Any non-convex Chebyshev set in a Hilbert space has a badly dis-
continuous metric projection [54].

5. Any Chebyshev set having continuous metric projection in a strongly
smooth Banach space [21].
Every reflexive and smooth Banach space with the Kadec-Klee property is
strongly smooth. For example, each Hilbert space is strongly smooth. We
noted in Section 2 that any weakly closed set in a reflexive Banach space
with the Kadec-Klee property has continuous metric projection. Now, the
following result is obtained from (5).

6. Any weakly closed Chebyshev set in a strongly smooth Banach space.
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7. Any weakly closed Chebyshev set in a reflexive Banach space whose
norm is Gateaux differentiable and has the Kadec-Klee property [61, page
193].

8. Every weakly compact Chebyshev set in a smooth Banach space [19].

In 2000, Kanellopoulos [29] extended (8): If X is an almost smooth Banach
space then every weakly compact Chebyshev subset of X is convex. As an im-
mediate consequence, Kanellopoulos obtained that: If X is a finite dimensional
Banach space such that every exposed point of B(X) is a smooth point then ev-
ery bounded Chebyshev subset of X is convex.
The convexity of Chebyshev sets depends on the structural constraints imposed
on the set. For example, Tsarkov [46, 47] showed that the class of finite-
dimensional Banach spaces in which any Chebyshev set is convex differs from
the class of spaces in which any bounded Chebyshev set is convex. The next
theorem originates from results of Tsarkov [47], who constructed a norm on a
Banach space X with 3 ≤ dimX < ∞ such that any Chebyshev set in X which
is bounded with respect to this norm is convex, whereas unbounded Chebyshev
sets in X may be non-convex (for more results see [48, 49]).

Theorem 3.2. ([48]) Let X be a finite-dimensional Banach space and H ⊂ X is
a hyperplane in X with dimH ≥ 3. Then there exists a norm on X such that any
Chebyshev set M ⊂H in X which is bounded with respect to this norm is convex
and there is an unbounded non-convex Chebyshev set M1 ⊂ H in X.

Differentiability properties of the distance function have been of great inter-
est in Approximation Theory as it relates to the famous problem of convexity of
Chebyshev sets. It is not hard to show that for a non-empty closed subset K of a
Banach space X , dK is a convex function on X if and only if K is a convex set in
X . The following theorem give us sufficient conditions for the convexity of dK .

Theorem 3.3. ([22]) In a Banach space (X ,‖.‖) where X∗ has a strictly convex
dual norm, given a non-empty closed set K in X, if limsup‖y‖→0

dK(x+y)−dK(x)
‖y‖ = 1

for all x ∈ X\K, then dK is a convex function on X.

Let X be a Banach space, x ∈ X and x∗ ∈ X∗. Then x∗ is called the subdif-
ferential of a real-valued function f on X at x, if

x∗(y− x)≤ f (y)− f (x), y ∈ X .

The set of all subdifferentials of f at x is denoted by ∂ f (x).

Theorem 3.4. ([23]) Let f be a real-valued convex function on X and continu-
ous at x ∈ X such that ∂ f (x) is a singleton. Then f is Gateaux differentiable at
x.
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In the theorem above notice that the continuity of f at x is an essential con-
dition. For example, if f (x) = 1+sin(1

x ) for all x 6= 0 and f (0) = 0, then f is not
continuous at x = 0. Also, ∂ f (0) = {0}, while f is not Gateaux differentiable
at x = 0.
The next theorem give us a condition for the convexity of Chebyshev sets.

Theorem 3.5. Let (X ,‖.‖) be a Banach space with a strictly convex dual norm,
K is a non-empty Chebyshev set in X, x ∈ X\K and ∂dK(x) is a singleton. The
following are equivalent:
(i) K is convex.
(ii) dK is Gateaux differentiable at x.
(iii) There is z ∈ X such that ‖z‖= 1 and limt→0+

dK(x+tz)−dK(x)
t = 1.

(iv) limsup‖y‖→0
dK(x+y)−dK(x)

‖y‖ = 1.

Proof. By Theorems 3.3 and 3.4, it suffices to show (ii⇒ iii) and (iii⇒ iv).
(ii⇒ iii) At first, by the Chebishevity of K there exists a unique element x ∈
K such that ‖x− x‖ = dK(x). It follows from Gateaux differentiability of dK

that liminft→0+
dK(x+ty)−dK(x)

t exists for every y ∈ X . For each t > 0 we have
dK(x+ t(x− x))−dK(x)≤ tdK(x). Hence if y = x− x then

liminf
t→0+

dK(x+ t(x− x))−dK(x)
t

= dK(x) (2)

Since x ∈ X\K, dK(x)> 0. Let t ′ =
t

dK(x)
. Then by 2 above

liminf
t ′→0+

dK(x+ t ′(x− x))−dK(x)
t ′

= dK(x).

If now z =
x− x
‖x− x‖

then ‖z‖= 1 and we have liminft→0+
dK(x+tz)−dK(x)

t = 1. On

the other hand, dK is a Lipschitz function and so limsupt→0+
dK(x+tz)−dK(x)

t ≤ 1.
(iii⇒ iv) Since dK is a Lipschitz function, limsup‖y‖→0

dK(x+y)−dK(x)
‖y‖ ≤ 1. On

the other hand, for each v ∈ X with ‖v‖= 1

lim
t→0+

dK(x+ tv)−dK(x)
t

≤ limsup
‖y‖→0

dK(x+ y)−dK(x)
‖y‖

.

In particular for v = z in (iii), we have 1≤ limsup‖y‖→0
dK(x+y)−dK(x)

‖y‖ .

We have the following theorems for the convexity of dK (equivalently, for
the convexity of K) if ∂dK(x) is not a singleton set:
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Theorem 3.6. ([22]) In a Banach space X with a strictly convex dual norm, if
dK , generated by a non-empty closed set K in X, is Gateaux differentiable on
X\K and ‖d′K(x)‖ = 1 (in the norm topology of X∗) for all x ∈ X\K then dK is
a convex function on X.

Theorem 3.7. ([25]) In a Banach space X with a strictly convex dual norm, if
for a given non-empty closed set K in X, dK is Fréchet differentiable at each
x ∈ X\K, then dK is a convex function on X.

Theorem 3.8. ([26]) Let K be a non-empty closed subset of a Banach space
(X ,‖.‖) such that for each x ∈ X\K there exists z ∈ X such that ‖z‖ = 1 and
limt→0

dK(x+tz)−dK(x)
t = 1. If the norms of X and X∗ are Fréchet differentiable,

then dK is a convex function on X.

Recently, the following nice characterizations have been obtained.

Theorem 3.9. ([24]) Suppose the norms on a Banach space X and its dual X∗

are locally uniformly convex. Then a non-empty Chebyshev set K is convex in X
if and only if ∂dK(x) is a singleton for all x ∈ X\K.

Theorem 3.10. ([61, page 190]) Let H be a Hilbert space and suppose K is a
non-empty weakly closed subset of H. The following are equivalent:
(i) K is convex.
(ii) K is a Chebyshev set.
(iii) d2

K is Fréchet differentiable.
(iv) d2

K is Gateaux differentiable.
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