
1

ABSTRACT

Virtual memory is a staple in modern systems, though there is little
agreement on how its functionality is to be implemented on either the
hardware or software side of the interface. The myriad of design
choices and incompatible hardware mechanisms suggests potential
performance problems, especially since increasing numbers of sys-
tems (even embedded systems) are using memory management. A
comparative study of the implementation choices in virtual memory
should therefore aid system-level designers.

This paper compares several virtual memory designs, including
combinations of hierarchical and inverted page tables on hardware-
managed and software-managed translation lookaside buffers (TLBs).
The simulations show that systems are fairly sensitive to TLB size;
that interrupts already account for a large portion of memory-manage-
ment overhead and can become a significant factor as processors exe-
cute more concurrent instructions; and that if one includes the cache
misses inflicted on applications by the VM system, the total VM over-
head is roughly twice what was thought (10-20% rather than 5-10%).

1 INTRODUCTION

Virtual memory (VM) is one of the few interfaces through which the
architecture and operating system interact directly. It was developed
to automate the movement of program code and data between main
memory and secondary storage to give the appearance of a single
large store. This greatly simplified the job of the programmer, particu-
larly when program code and data exceeded the size of main memory.
The basic idea proved readily adaptable to additional requirements
including address space protection, the execution of a process as soon
as a single page is in memory, and a user-friendly programming para-
digm such as the virtual machine environment in which a process may
assume that it owns all available hardware resources. Consequently,
virtual memory has become widely used and most modern processors
have hardware to support it.

However, there has been little agreement on how virtual mem-
ory’s functionality is to be implemented on either the hardware or
software side of the interface [15, 14]. One need only look at the
memory-management units of today’s processors to see the variation
in hardware designs [14]; the software side of the interface sports
numerous page table organizations [12, 18, 30], different hardware
abstraction layers[23, 8], and significant variations in performance

[22, 21, 4]. While this may pose little problem to applications design-
ers, it is an important issue for systems designers—memory manage-
ment is playing an increasingly significant role as systems engineers
port popular system code to different platforms with varying degrees
of memory-management support, as more embedded designers take
advantage of low-overhead embedded operating systems that provide
virtual memory, and as more designers choose object-oriented sys-
tems in which run-time garbage collection is pervasive. An under-
standing of VM’s performance issues is therefore in order.

We present a trace-based simulation study of several different vir-
tual memory designs, including combinations of hierarchical and
inverted page tables on hardware-managed and software-managed
translation lookaside buffers (TLBs). To our knowledge, this is the
first study of its kind, simulating several different software systems
(Ultrix, Mach, BSD, Windows NT, PA-RISC) against multiple hard-
ware configurations (software-managed TLB, hardware-managed
TLB, no TLB). The primary goal of the study is to determine and
understand the fundamental differences between virtual memory
implementations: those differences due to one’s choice of memory
management unit and page table organization. A secondary issue is to
distinguish between the performance impact due to VM organization
and the impact due to the implementation of that organization. For
example, the virtual memory systems of different operating systems
can have significantly different performance [22, 4]; is this due to
implementation, or is it inherent in the system design?

Our simulation study produces several interesting results:

• The x86 memory-management organization (a hierarchical page
table walked from the root to the leaves, with a hardware-
managed TLB) outperforms other schemes, even with the
handicap that every page table lookup needs two memory
references. One reason is that the scheme does not use the precise
interrupt mechanism and so avoids the overhead of taking an
interrupt every TLB miss. Also, the scheme requires no I-cache
and so avoids any memory overhead for fetching instructions.

• Inverted tables can impact the data caches less than hierarchical
page tables, even when their page table entries (PTEs) are four
times as large as those of hierarchical tables and therefore should
impact the data caches four times as much. This is due to the
densely-packed nature of PTEs in an inverted table, as compared
to the relatively sparsely-packed PTEs of a hierarchical table.

• When one includes the overhead of cache misses inflicted on the
application as a result of the VM system displacing user-level
code and data, the overhead of the virtual memory system is
roughly twice what was previously thought (10-20% rather than
5-10%). These numbers are normally not included in VM studies
because, to make a comparison, one must execute the application
without any virtual memory system. In addition, when one
includes the overhead of handling VM-related interrupts, the total
increases to three times what was previously thought: 10-30%.

From this study, we make three observations regarding memory man-
agement. First, interrupts already account for a large portion of mem-

This work was supported by Defense Advanced Research Projects Agency
under DARPA/ARO Contract Number DAAH04-94-G-0327.

A Look at Several Memory Management Units,
TLB-Refill Mechanisms, and Page Table Organizations

Bruce L. Jacob Trevor N. Mudge
Dept. of Electrical & Computer Engineering Dept. of Electrical Engineering & Computer Science

University of Maryland, College Park University of Michigan, Ann Arbor
blj@eng.umd.edu tnm@eecs.umich.edu

This work appears in the Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), San Jose CA, Oct. 3-7, 1998.
Permission to make digital/hard copy of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of
the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.

ASPLOS-VIII 10/98 CA, USA
© 1998 ACM

2

ory-management overhead, and they can become a significant factor
in overall performance as processors execute larger numbers of con-
current instructions. We conclude that more attention should be paid
to improving the handling of precise interrupts (e.g., [10, 31]). If
interrupts were infrequent, they would be less of a concern. However,
the general-purpose interrupt mechanism is being used increasingly
often to support “normal” (or, at least, relatively frequent) processing
events such as TLB misses [26, 22], cache misses [6, 13],and sys-
tem-level functions from copy-on-write to garbage collection to
distributed shared virtual memory [2]. Since the precise handling of
an interrupt results in the flushing of potentially dozens of instruc-
tions from the pipeline and reorder buffer [34], interrupt overhead
can become a significant factor as processors execute increasing
numbers of concurrent instructions (thereby requiring increasingly
large reorder buffers) and as we reduce other sources of perfor-
mance overhead (e.g., cache misses, layers of system software,
serial instruction execution).

Second, finite state machines are the best candidate for walking
one’s page table, even though they offer limited flexibility—a finite
state machine does not impact the instruction cache, incurs no inter-
rupt penalty, and can even operate in parallel with normal instruction
execution. A likely future memory-management design would use a
programmable finite state machine that walks the page table in a user-
defined manner; this would offer the flexibility of alternate page table
organizations and yet would incur no interrupt or I-cache overhead.

Third, the performance of software-managed caches is still rea-
sonable [6], which is particularly interesting given the amount of
recent activity in alternative mechanisms for determining cacheability
of program data [32, 24, 16]. A software-managed cache allows the
operating system to determine cacheability of instructions and data on
a line-by-line basis; this decision can be made either statically at pro-
gram compile time or dynamically at program run time. This would
enable a designer to define a different cache-fill algorithm on a per-
application basis; cache-fill could conceivably be part of the user-
level executable itself—similar in concept to the Exokernel notion of
application-level virtual memory [9].

2 BACKGROUND

To give the illusion of a large translation table held entirely in hard-
ware, early systems provided a hardware state machine to refill the
TLB. In the event of a TLB miss, the state machine would walk the
page table, locate the mapping, insert it into the TLB, and restart the
computation. This is known as ahardware-managed TLB. It is an effi-
cient design choice as it disturbs the processor pipeline only slightly.
When the state machine handles a TLB miss, the processor effectively
freezes. Compared to taking an interrupt, the contents of the pipeline
are unaffected, and the reorder buffer need not be flushed. The I-cache
is not used and the D-cache is only used if the page table is in cache-
able space. At the very worst, the execution of the state machine will
replace a few lines in the D-cache. Many designs do not even freeze
the pipeline; for instance, the Intel Pentium Pro allows instructions
that are independent of the faulting instruction to continue processing
while the TLB miss is serviced [33]. The primary disadvantage of the
state machine is that the page table organization is effectively etched
in stone; the operating system has no flexibility in choosing a design.

Responding to this disadvantage, recent memory-management
units have used asoftware-managed TLB, in which there is no hard-
ware state machine to handle TLB misses. In a software-managed
TLB miss, the hardware interrupts the operating system and vectors
to a software routine that walks the page table and refills the TLB.
The page table can thus be defined entirely by the operating system,
since hardware never directly manages the table. The flexibility of the
software-managed mechanism does come at a performance cost. The
TLB miss handler that walks the page table is an operating system

primitive usually 10 to 100 instructions long; if the handler code is not
in the instruction cache at the time of the TLB miss exception, the
time to handle the miss can be much longer than in the hardware-
walked scheme. In addition, the use of the precise interrupt mecha-
nism adds to the cost by flushing the pipeline, removing a possibly
large number of instructions from the reorder buffer. This can add
hundreds of cycles to the overhead of walking the page table. None-
theless, the flexibility of the software-managed scheme can outweigh
the potentially higher per-miss cost of the design [22].

Typical studies put TLB handling at 5-10% of a normal system’s
run time [7, 22, 25]. However, there can be worst-case scenarios:
studies have shown that significant overhead can be spent servicing
TLB misses [3, 5, 22, 29]. In particular, Anderson [1] shows TLB
miss handlers to be among the most commonly executed primitives,
Huck and Hays [12] show that TLB miss handling can account for
40% of total run time, and Rosenblum [25] shows that TLB miss han-
dling can account for 80% of the kernel’s computation time.

Note that a TLB is not necessary if one uses virtual caches. For
example,softvm [13] is a scheme in which the processor uses a virtual
cache hierarchy and receives an interrupt on every level-2 cache miss.
On a miss, the operating system performs the page table lookup and
cache fill in software. This is similar to thesoftware-managed caches
of the VMP multiprocessor [6], which even performed cache-consis-
tency management in software, invalidating stale copies of data in the
caches of other processors. Virtual caches do have drawbacks, includ-
ing the need to maintain ASIDs and protection information with the
cache tags, and the synonym problem of virtual-address aliasing [35].
Usually, the OS must be aware of a virtual cache, whereas a physical
cache is transparent to software. While there are solutions for these
problems, virtual caches are often avoided because of them.

Support for precise interrupts traditionally requires that at the
time the interrupt is handled, the state of the machine reflect what the
state would have been had the machine executed instructions one at a
time. This is theprecise state and reflects a sequential model of exe-
cution. Several hardware mechanisms support this in pipelined and
out-of-order execution engines (e.g. the reorder buffer, history buffer,
future file [27], and register update unit [28]), and many processors
achieve a precise state by waiting until the exception-causing instruc-
tion is at the head of the reorder buffer and then flushing the contents
of the buffer [20, 34]. Henry addresses the issue by tagging each indi-
vidual instruction with its execution permissions so that user-level and
supervisor-level instructions can co-exist in the pipeline simulta-
neously [10]. However, one still must ensure that before the exception
is handled, there are no partially-completed instructions that might yet
cause exceptions out-of-order (which is why many implementations
wait until the instruction in question is at the head of the reorder
buffer). One possible solution is to speculatively handle the exception
immediately, and back out only if there are problems.

3 EXPERIMENTAL METHODOLOGY

We are interested in the performance issues associated with different
page table organizations, page table lookup schemes, and TLB archi-
tectures. We are less interested in knowing what the actual perfor-
mance is; we are more interested in understanding the performance
behavior. We performed trace-driven simulations of five memory-
management organizations on three TLB configurations, using the
SPEC ’95 integer suite for our benchmarks. To avoid obscuring per-
formance differences, we simulated split, direct-mapped caches at
both the L1 and L2 levels (set associative or unified caches, while giv-
ing better performance, would add too many variables for us to inter-
pret behavior). For the same reason, we simulated blocking caches at
both levels and looked at individual benchmark results rather than
averages. The following sections discuss the simulated hardware/soft-
ware systems and the statistics taken by our simulator.

3

3.1 Scope of study

The range of variables simulated is listed in Table 1; this paper evalu-
ates a space equal to their effective cross-product. We simulate oper-
ating system activity related to searching the page tables and
managing the TLB (if present). In particular, we measure the OS’s
effect on the cache hierarchy, including I-cache misses when execut-
ing handlers and D-cache misses when loading PTEs. The following
pseudocode illustrates the fundamental simulator algorithm:

while (i = get_next_instruction()) {
if (itlb_miss(i->pc)) {

walk_page_table(i->pc);
insert_itlb(i->pc);

}
icache_lookup(i->pc);
if (LOAD_OR_STORE(i)) {

if (dtlb_miss(i->daddr)) {
walk_page_table(i->daddr);
insert_dtlb(i->daddr);

}
dcache_lookup(i->daddr);

}
}

Depending on the page table organization being simulated, the func-
tion walk_page_table() may or may not access the I-cache and

instruction & data TLBs; it will always access the D-cache.
The systems simulated include the DEC Ultrix virtual memory

system as implemented on a software-managed TLB such as the
MIPS, Mach’s virtual memory system as implemented on MIPS, the
BSD virtual memory system as implemented on the Intel IA-32 archi-
tecture (which is similar to the Windows NT virtual memory system
on IA-32, except that we do not implement shared memory and hence
do not use Windows NT’sprototype PTE mechanism [8]), the PA-
RISC virtual memory system as described by Huck and Hays [12],
and a system with software-managed caches and no TLB, as in VMP
or softvm [6, 13]. The following sections describe each of the MMU
and page table organizations simulated.

ULTRIX. The Ultrix page table as implemented on MIPS is a two-
tiered table walked bottom-up [22], illustrated in Figure 1. The 2GB
user address space is mapped by a 2MB linear table in virtual space,
which is in turn mapped by a 2KB array of PTEs. It requires at most
two memory references to find the appropriate mapping information.

The caches in the simulation are all virtual. The TLB (256-entry,
split into 128-entry fully-associative I-TLB and 128-entry fully-asso-
ciative D-TLB; each TLB has 16 protected lower slots to hold kernel-
level mappings) is used to provide protection information; if the TLB
misses on a reference, the page table is walked before the cache
lookup can proceed. The TLB miss handler is comprised of two code
segments: one to handle user-level misses, one to handle kernel-level
misses. The first code segment is called when an application load,
store, or instruction-fetch causes a TLB miss; the second handles the
case when a PTE reference in the first handler causes a TLB miss.
The handlers are located in unmapped space, so executing them can-
not cause I-TLB misses. We choose handler lengths based on real-
world code, e.g., the MIPS TLB-miss handler (sans several NOPs):

mfc0 k0,tlbcxt # move context register to k0
mfc0 k1,epc # move PC of bad instr. to k1
lw k0,0(k0) # load mapping PTE
mtc0 k0,entry_lo # move PTE into EntryLo
tlbwr # write PTE into TLB
j k1 # jump to bad PC (to retry)
rfe # RESTORE FROM EXCEPTION

The user-level handler is ten instructions long; the kernel-level han-
dler is twenty. The start of the handler code is page-aligned. The fol-
lowing is pseudocode for the ULTRIXwalk_page_tablefunction:

tlbmiss_handler(UPT_HANDLER_BASE, 10);
if (dtlb_miss(UPT_BASE + uptidx(addr))) {

tlbmiss_handler(RPT_HANDLER_BASE, 20);
dcache_lookup(RPT_BASE + rptidx(addr));

}
dcache_lookup(UPT_BASE + uptidx(addr));

The variableaddr is passed in as an argument. Thetlbmiss_handler
function probes the I-caches for a number of instructions beginning at
a base address (simulates execution of handler). Theuptidx andrptidx
functions calculate indices into the user and root page tables, respec-
tively, which amounts to extracting and right-shifting a bitfield. The
code simulates the effect that walking the page table has on the data
TLB, I-cache, and D-cache. The other VM simulations are analogous.

MACH. The Mach page table as implemented on the MIPS processor
is a three-tiered table walked bottom-up [22, 3], illustrated in Figure
2. The 2MB user page tables are located in kernel space, the entire
4GB kernel space is mapped by a 4MB kernel structure, which is in
turn mapped by a 4KB kernel structure. It requires at most three
memory references to find the appropriate mapping information.

The Mach TLB-miss handler on actual MIPS hardware uses two
main interrupt paths. There is a dedicated interrupt vector for user-

Table 1: Simulation details

Characteristic Range of values simulated

Benchmarks SPEC ’95 integer suite

Cache
organizations

Caches are split, direct-mapped, virtually-addressed
All caches are blocking, write-allocate, write-through

L1 cache size 1, 2, 4, 8, 16, 32, 64, 128KB (per side)

L2 cache size 512KB, 1MB, 2MB (per side)

Cache linesizes 16, 32, 64, 128 bytes

TLB
organizations

TLBs are fully associative with random replacement
(similar to MIPS). Some simulations (those that are
most MIPS-like: MACH and ULTRIX) reserve 16 slots
for “protected” entries containing root-level PTEs;
other simulations (INTEL, PA-RISC) do not.

TLB size 128-entry I-TLB/128-entry D-TLB

Page size 4 KB

Cost of interrupt 10, 50, 200 cycles

Architecture/
operating system
combinations

ULTRIX: Ultrix (BSD-like) on MIPS
MACH: Mach on MIPS
INTEL: BSD/Windows NT on Intel x86
PA-RISC: HP-UX hashed page table on PA-RISC
NOTLB : Software-managed caches and no TLB
BASE : Baseline cache performance without VM

Figure 1: The Ultrix/MIPS page table organization. The Ultrix page table
on MIPS is a simple two-tiered table. The user address space is the bottom
2GB of the hardware’s address space; the top 2GB belongs to the kernel. A
2KB table wired down in physical memory maps each user page table.

2GB User Virtual Address Space

2MB User Page Table

Unmapped Physical Memory

Mapped Virtual Memory

2KB Root Page Table

4

level misses (those in the bottom half of the 4GB address space), and
all other TLB misses go through the general interrupt mechanism.
This general-purpose vector contains a large amount of administrative
code that adds an enormous cost to interrupts that cannot be handled
by the dedicated vector. Measurements taken by Bala show that the
non-user-level TLB miss paths can be several hundred cycles long
[3]. However, to put our simulated VM systems on equal footing, we
include an additional interrupt vector for kernel-level misses. Doing
so should reduce the cost of many TLB misses by an order of magni-
tude [22]. Our simulated user-level TLB-miss handler is 10 instruc-
tions long, our kernel-level miss handler is 20 instructions long, and
to differentiate the MACH simulation, we make the cost of accessing
the root-level table extremely high. Root-level misses take a long path
of 500 instructions and perform a number of additional loads to simu-
late the effect of the administrative code. The handlers are located in
unmapped space (executing them cannot cause I-TLB misses). As
with the handler code of the other simulated systems, the beginning of
each section of handler code is aligned on a page boundary.

INTEL. An Intel x86-based page table is a two-tiered hierarchical
table, but unlike the MIPS-style page table, an Intel-style page table is
walked from the root level of the table down. Therefore on every TLB
miss the hardware makes exactly two memory references to find the
mapping information; one indexes the root table, the other indexes the
user-level table. The organization is illustrated in Figure 3. The
advantage of the Intel design is that the system does not take an inter-

rupt on a TLB miss (it uses a hardware-managed TLB), and the con-
tents of the instruction cache are unaffected. However, the contents of
the data cacheare affected; we assume in these simulations that the
page tables are cacheable. The simulated TLB-miss handler takes
seven cycles to execute, plus any stalls due to references to the page
table that miss the data cache; executing it cannot affect the I-caches
or cause any I-TLB misses. The table is walked in a top-down fashion
and uses physical addresses; therefore referencing entries in the table
cannot cause D-TLB misses. The number of cycles (7) is chosen to
represent the minimum amount of sequential work to be done:

cycle 1: shift+mask faulting virtual address

cycle 2: add to base address stored in register

cycle 3: load PTE at resulting physical address

cycle 4: shift+mask faulting virtual address

cycle 5: add to base address just loaded

cycle 6: load PTE at resulting physical address

cycle 7: insert mapping information into TLB,
return to instruction stream

The cache organization is identical to the other simulations. The root-
level PTEs are not cached in the TLB, thus the TLBs are not parti-
tioned as in the ULTRIX and MACH simulations. All 128 entries in
each TLB are available for user-level PTEs in the INTEL simulation.

PA-RISC. PA-RISC uses a variant of the inverted page table that is
more efficient in the number of memory references required to locate
mapping information, but which requires that the page table entries be
larger [12]: the PTEs are 16 bytes long, as compared to the 4-byte
PTEs in the other VM simulations. The page table organization is
illustrated in Figure 4. On a TLB miss, the operating system hashes
the faulting virtual address to find the head of a collision-chain. Note
that the walking of the table could be done in hardware as easily as in
software. A page table lookup can require many memory references
to find the mapping information, as there is no guarantee on the num-
ber of virtual addresses that produce the same hash value.

Simulating the PA-RISC is more difficult than simulating the
other architectures. Since the size of the page table is dependent on
the size of physical memory, we must make some choices about the
organization of physical memory. We define our simulated physical
memory to be 8MB, which is small for the average workstation but

Figure 2: The Mach/MIPS page table organization. Mach as imple-
mented on MIPS has a three-tiered page table. A user-level address space is
mapped by a 2MB table in kernel space at an offset aligned on a 2MB bound-
ary and related to the process ID of the user-level application: the virtual base
address of the table is essentially Base + (processID * 2MB). The top 4MB of
the kernel’s virtual address space is a page table that maps the 4GB kernel
space. This kernel table is in turn mapped by a root table in physical memory.

2GB User Virtual Address Space

4GB Kernel Virtual Address Space

2MB User
Page Tables

 Kernel
Page
Table

4MB Kernel Page Table

Unmapped Physical Memory

Mapped Virtual Memory

4KB Root Page Table

Base

Figure 3: The BSD/Intel page table organization. The Intel page table is
similar to the MIPS and NOTLB page tables; it is a two-tiered hierarchical
table. However, unlike the other two, it is walked in a top-down fashion.
Therefore, the user page table is a set of page-sized tables (4KB PTE pages)
that are not necessarily contiguous in either physical space or virtual space
(they do not need to be contiguous in virtual space because the table is never
treated as a unit; it is never indexed by the VPN). These 4KB PTE pages map
4MB segments in the user’s virtual address space. The 4MB segments that
make up the user’s address space are contiguous in virtual space.

2GB User Virtual Address Space

2MB User Page Table

Unmapped Physical Memory

Mapped Memory
addressed physically

2KB Root Page Table

Mapped Memory
addressed virtually

HPT CRT

PTE collisions
are chained into
the Collision
Resolution Table

HASHED PAGE
TABLE

Index into the
Hashed Page

Table

HASH
FUNCTION

Virtual Page Number

PHYSICAL
MEMORY

1:1 ratio of entries to
physical pages yields

average chain length 1.5

Figure 4: The PA-RISC page table organization. The PA-RISC hashed
page table is similar in spirit to the classical inverted page table, but it
dispenses with the hash anchor table, thereby eliminating one memory
reference from the lookup algorithm. Since there is not necessarily a 1:1
correspondence between entries in the table and page frames in the system,
the PFN must be stored in the page table entry, thereby increasing its size.
While the collision-resolution table is optional, we include it in our simulation.

5

larger than the physical memory requirements of any one benchmark,
and so this should behave similarly to a large physical memory. An
8MB physical memory has 2,048 4KB pages; we choose a 2:1 ratio to
get 4,096 entries in the page table, which should result in an average
collision-chain length of 1.25 entries [17]. GCC, for example, pro-
duced an average collision-chain length of just over 1.3. We place no
restriction on the size of the collision resolution table.

We do not simulate the operating system’s page placement policy,
since the cache hierarchy is entirely virtually-addressed and the place-
ment of a PTE within the hashed page table is dependent on the vir-
tual page number, not the page frame number. We use the same
hashing function as described by Huck & Hays: “a single XOR of the
upper virtual address bits and the lower virtual page number bits.” We
also use Huck & Hays’ 16-byte PTE. The hierarchical page tables use
4-byte PTEs (a PTE for a hierarchical page table scales with the size
of the physical address), so a PTE load in the PA-RISC simulation
impacts the data cache four times as much as in other simulations.

There is one TLB-miss handler, and the handler cannot cause a
data TLB miss: as with the Intel page table, the handler uses physical
but cacheable addresses to access the page table. The handler is
twenty instructions long, located in unmapped space, so executing it
cannot cause misses in the I-TLB. No distinction is made between
user-level PTEs and kernel-level PTEs, therefore the simulated TLBs
are like those in the INTEL simulations: they are not partitioned—all
128 entries in each of the TLBs are available for user-level PTEs.

NOTLB. NOTLB uses a two-tiered “disjunct” page table similar to a
Ultrix/MIPS page table; it is described in detail in [13] and is illus-
trated in Figure 5. It is based on a segmented address space; the seg-
ments that make up the 2GB space are disjunct segments in a flat
global space and the page groups that make up the user page table are
also disjunct regions in the flat space. As with the Ultrix table, it
requires at most two memory references to find mapping information.

The cache-miss handler is comprised of two code segments
located in unmapped space (executing them cannot cause cache-miss
exceptions). The first code segment is called when an application

load, store, or instruction-fetch misses the L2 virtual cache; the sec-
ond handles the case when a PTE reference in the first handler misses
the L2 cache. The first is ten instructions long, the second is twenty.
Since the ULTRIX and NOTLB page tables are similar and the cost of
walking the tables is identical, the differences between the measure-
ments should be entirely due to the presence/absence of a TLB.

3.2 Statistics gathered

The unit of measurement we use iscycles per instruction (CPI), cal-
culated as execution cycles divided by the number of user-level
instructions. This is a direct measure of performance, given that the
number of user-level instructions is constant and the processor cycle
time will remain constant for different VM simulations (partitioning
of the TLB or adding a hardware state machine to walk the page table
will not significantly impact cycle time). We present the measure-
ments classed as memory-system overhead (MCPI) and virtual-mem-
ory overhead (VMCPI). VMCPI is the number of additional cycles
imposed by the VM system divided by user-level instructions and so
represents the additional burden of the virtual memory system on top
of program execution. MCPI represents the basic cost of the memory

Figure 5: The disjunct page table organization. The NOTLB page table
is comprised of page groups in a global segmented address space that are
not necessarily contiguous—just as the segments that make up the
application’s address space are not necessarily contiguous. The page table is
traversed bottom-up like an Ultrix/MIPS page table.

2GB User Virtual Address Space

2MB User Page Table

Unmapped Physical Memory

Mapped Virtual Memory

2KB Root Page Table

Table 2: Components of MCPI

Tag Cost per

L1i-miss 20 cycles

L1d-miss 20 cycles

L2i-miss 500 cycles

L2d-miss 500 cycles

Table 3: Components of VMCPI

Tag Cost per Description

uhandler variable A TLB miss (or an L2 cache miss in the case of a NOTLB
simulation) that occurs during application-level
processing invokes the user-level miss handler

upte-L2 20 cycles The UPTE lookup during the user-level handler misses
the L1 data cache; reference goes to the L2 data cache

upte-MEM 500 cycles The UPTE lookup during the user-level handler misses
the L2 data cache; reference goes to main memory

khandler variable A TLB miss that occurs during the user-level miss
handler invokes the kernel-level miss handler

kpte-L2 20 cycles The KPTE lookup during the kernel-level handler misses
the L1 data cache; reference goes to the L2 data cache

kpte-MEM 500 cycles The KPTE lookup during the kernel-level handler misses
the L2 data cache; reference goes to main memory

rhandler variable A TLB miss (or an L2 cache miss in the case of a NOTLB
simulation) that occurs during the user-level or kernel-
level miss handler invokes the root-level miss handler

rpte-L2 20 cycles The RPTE lookup during the root-level handler misses
the L1 data cache; reference goes to the L2 data cache

rpte-MEM 500 cycles The RPTE lookup during the root-level handler misses
the L2 data cache; reference goes to main memory

handler-L2 20 cycles During execution of the miss handler, code misses the L1
instruction cache; reference goes to L2 instruction cache

handler-MEM 500 cycles During execution of the miss handler, code misses the L2
instruction cache; reference goes to main memory

Table 4: Simulated page-table events

VM Sim User
Handler

Kernel
Handler

Root
Handler

ULTRIX 10 instrs,
1 PTE load

n.a. 20 instrs,
1 PTE load

MACH 10 instrs,
1 PTE load

20 instrs,
1 PTE load

500 instrs,
10 “admin”
loads + 1
PTE load

INTEL 7 cycles,
2 PTE
loads

n.a. n.a.

PA-RISC 20 instrs,
variable #
PTE loads

n.a. n.a.

NOTLB 10 instrs,
1 PTE load

n.a. 20 instrs,
1 PTE load

6

system and includes only user-level references—but it does include
those misses incurred when application instructions and/or data are
displaced by the miss handlers. MCPI and VMCPI are further subdi-
vided into the categories described in Tables 2 and 3. Note that not all
of the categories apply to all simulations; for instance, the NOTLB
and ULTRIX simulations have no kernel-level miss handlers (khan-
dler, kpte-L2, andkpte-MEM events will not happen), and the INTEL
simulation cannot cause instruction cache misses during execution of
the handler (handler-L2 andhandler-MEM events will not happen).

Each VM simulation handles cache or TLB misses differently,
since each uses a different MMU and page table organization. When
simulating TLB-miss handlers, the contents of the I-caches are over-
written with the handler code (if the TLB is software-managed), and
PTE loads overwrite the D-caches. The costs of the events that can
occur in each of the simulations are summarized in Table 4. To put the
organizations on even footing, we ignore the cost of initializing the
process address space. This includes demand-paging data from disk
and initializing the page tables; a realistic measurement is likely to be
extremely dependent on implementation, therefore this cost is not fac-
tored into the simulations or the measurements given. We assume the
memory system is large enough to hold all pages used by an applica-
tion and all pages required to hold the page tables. All systems should
see the same number of page initializations, corresponding to the first
time each page is touched. Our measurements do not include this
cost, as it would be the same for every simulation. The measurements
are intended to highlight only the differences between the page table
organizations, the TLB implementations (hardware- or software-man-
aged), and the presence or absence of memory-management hard-
ware. The only part of the OS simulated is the TLB-refill mechanism.

Due to space constraints, in this paper we focus only on the
benchmarks that have the worst virtual memory performance:gccand
vortex, and one that provides interesting counterexamples:ijpeg. We

chose data sets so that each program would run to completion in less
than 200 million instructions; this makes the total running time feasi-
ble since the number of simulations is extremely large.

4 EXPERIMENTAL RESULTS

We first look at VMCPI overhead alone, then show its relation to the
cost of interrupts, the application’s cache performance, and the base-
line overhead of executing the application without virtual memory.

4.1 VMCPI as a function of cache organization

We begin by presenting the VMCPI overheads as a function of L1 and
L2 cache sizes and linesizes. Figure 6 gives the results for GCC, and
Figure 7 gives the results for VORTEX. Several things are clear:

• The overheads are in the right ballpark to represent a 5-10%
overhead for a 1 CPI machine, even without considering address
space and page table initialization, paging, I/O, etc.

• The ULTRIX and MACH virtual memory systems have
surprisingly similar overheads, despite the extremely high cost of
managing the root-level table in the MACH simulation.

• The software-managed cache (NOTLB) tends to do about as well
as the other schemes, once the L2 cache is large enough (2MB+),
and once a suitable linesize is chosen (L2 linesize≥ 64 bytes).

• The VM system without a TLB (NOTLB) is much more sensitive
to choices of linesize and cache size than the other virtual
memory organizations. This is not surprising; the software-
oriented scheme places a much larger dependence on the cache
system than the other virtual memory organizations, which are
much more dependent on the performance of the TLBs.

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

ULTRIX — 2MB L2 cache INTEL — 2MB L2 cache PA-RISC — 2MB L2 cache NOTLB — 2MB L2 cache

Figure 6: VMCPI vs. L1 and L2 cache size and linesize — GCC. These are the VMCPI totals for each of the VM simulations. This overhead represents only the
cost of walking the page table and refilling the TLB (or, in the case of the NOTLB simulation, filling a cache block). Each data point represents one run of the
simulator; each curve represents a different L1/L2 linesize configuration. Note that the scale differs for the NOTLB graph with 1MB L2 cache size.

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.05

0.10

0.15

0.20

NOTLB — 1MB L2 cache

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

ULTRIX — 1MB L2 cache INTEL — 1MB L2 cache PA-RISC — 1MB L2 cache

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

ULTRIX — 4MB L2 cache INTEL — 4MB L2 cache PA-RISC — 4MB L2 cache NOTLB — 4MB L2 cache

L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

MACH — 2MB L2 cache

MACH — 4MB L2 cache

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

MACH — 1MB L2 cache

7

• For larger L1 cache sizes, the PA-RISC organization is relatively
immune to the choice of linesize, whereas the other schemes can
still be affected by a factor of two with the choice of linesize.

• For smaller L1 cache sizes, the PA-RISC organization continues
to benefit from increased linesize, after the other simulations
show the familiar signature of diminishing returns. For all other
simulations, performance remains constant or worsens when
moving from 64-byte linesizes to 128-byte linesizes (holding L1
cache size constant).

• The curves for the TLB-based schemes are roughly grouped by
L1 linesize (most evident in the PA-RISC graphs): for small L1
caches, linesize is more important than cache size. In contrast, the
NOTLB curves are roughly grouped by L2 linesize: L2 linesize is
more important than L1 cache size.

These simple graphs lend a good first insight into the VM systems.
Since the differences in performance between MACH and ULTRIX
are slight, we conclude that even fairly complicated page tables can
have low overheads provided that the common-case portions of the
structure are efficient. The PA-RISC simulation seems to contend
with the cache system less than the other schemes, especially for
larger caches—this could be due to the page table organization, which
is what sets the PA-RISC simulation apart from the others. Later
results show this to be the case.

4.2 VMCPI break-downs

To better understand the behavior, we present break-downs for spe-
cific linesize organizations. For space and sensory-overload consider-
ations, we limit this to one organization: 64/128-byte L1/L2 linesizes.
For most VM simulations, this choice is consistently at or near the top

in performance. The graphs of the worst-performing organizations
have similar shapes. Figure 8 shows the VMCPI break-downs for
GCC; Figure 9 shows results for VORTEX. We note the following:

• Theuhandlers component is a conservative measurement. For
example, hardware-walked page tables could overlap this cost
with normal instruction execution (as in the Pentium Pro).

• The PA-RISC simulation fits well into small L2 cache sizes; small
upte-MEM values indicate that PTEs for the inverted table are
found at the L2 level when they tend to miss at the L2 level for
other simulations. For GCC, PA-RISC has a harder time than the
other simulations keeping its PTEs in the L1 cache (theupte-L2
values do not taper down for larger L1 cache sizes), but for
VORTEX, the opposite is true—theupte-L2 values taper down
more quickly than for the other simulations.

• For the TLB-based schemes, theuhandlers cost is constant over
all cache organizations, whereas it decreases with increasing L2
cache sizes for the NOTLB simulations. This is because the
frequency of executing theuhandlers is dependent entirely on the
TLB miss rates for the TLB-based schemes, whereas it is
dependent on the L2 cache miss rates for NOTLB. For all
schemes, theuhandlers cost (the base overhead of the handler in
terms of the number of instructions cycles required to execute it,
given perfect caches) becomes dominant as cache sizes increase.

• The INTEL measurements show a noticeable overhead of having
to go to the L2 cache and physical memory for the root-level
PTEs (rpte-L2 andrpte-MEM). This occurs so infrequently in the
other simulations that it tends not to register in their bar charts.
Unlike the other organizations, the INTEL page table is walked in
a top-down manner, so the root level is accessed on every TLB

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.05

0.10

Figure 7: VMCPI vs. L1 and L2 cache size and linesize — VORTEX. These are the VMCPI totals for each of the VM simulations. This overhead represents only
the cost of walking the page table and refilling the TLB (or, in the case of the NOTLB simulation, filling a cache block). Each data point represents one run of the
simulator; each curve represents a different L1/L2 linesize configuration. Note that the scale differs for the NOTLB graphs with 1MB and 2MB L2 cache sizes.

L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

0.05

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

0.05

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

0.05

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.02

0.04

0.06

0.08

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

ULTRIX — 1MB L2 cache MACH — 1MB L2 cache INTEL — 1MB L2 cache PA-RISC — 1MB L2 cache NOTLB — 1MB L2 cache

NOTLB — 2MB L2 cachePA-RISC — 2MB L2 cacheINTEL — 2MB L2 cacheMACH — 2MB L2 cacheULTRIX — 2MB L2 cache

ULTRIX — 4MB L2 cache MACH — 4MB L2 cache INTEL — 4MB L2 cache PA-RISC — 4MB L2 cache NOTLB — 4MB L2 cache

0.15

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

8

miss. The graphs show that for small L1 caches, one will miss the
L1 cache equally often when referencing the root-level and user-
level PTEs (rpte-L2 andupte-L2 are roughly the same size): if one
PTE reference is likely to miss the cache, the other is likely to
miss the cache as well. However, as the Level-1 cache increases,
therpte-L2 overhead grows small very quickly; this is expected,
since a single root-level PTE maps many user-level PTEs.

• The primary difference between MACH and ULTRIX is in
rpte-MEM, which, along withrpte-L2 andrhandlers, is where we
account for the simulated “administrative” memory activity in the
MACH simulation. This supports the conclusion that excessive
VM overheads seen in other studies (e.g. [22]) are largely due to
implementation and are not inherent in the page table design.

We now can reason about the behavior of PA-RISC. The hierarchical
page table in ULTRIX, MACH, INTEL and NOTLB simulations is
likely to spread itself across a large portion of the cache, if not across
the entire cache. In our simulations, the virtual address spaces are
2GB, which means the page table spans 2MB—roughly the size of
the L2 cache. Since space in the table is allocated an entire page at a
time, there can be many empty PTEs adjacent in the table; these are
likely to waste space in caches with long lines. In contrast, the PA-
RISC inverted page table clusters the PTEs together more densely.
Space in the table is allocated one PTE at a time; therefore the table is
likely to make better use of cache space and will cover a smaller por-
tion of the cache. This is not surprising—inverted tables were
invented to save space. This effect is most likely to be seen in applica-
tions that tend to exhibit low degrees of spatial locality, which is cer-
tainly true for VORTEX: it is a database application with data
accesses that have poor spatial locality. The inverted page table is also

less likely to hit hotspots in the caches than the hierarchical page
table, though this is easily solved with set associativity.

The GCC measurements show that the inverted table can do
worse in the L1 caches than the hierarchical tables, evidenced by con-
stant values forupte-L2 for all L1 cache sizes. This is because each
PTE in the inverted table is four times the size of the PTEs for the
other schemes—for L1 caches, this is a significant effect. The VOR-
TEX results show different behavior: the inverted table fits better in
both L1 and L2 caches than the hierarchical table. The frequency of
missing the L1 cache on PTE loads decreases by roughly 80% as the
L1 cache size increases (upte-L2), as opposed to the decreases of 50%
for the other hardware-oriented schemes, and the frequency of miss-
ing the L2 cache on PTE loads is much lower than any other VM-sim-
ulation (upte-MEM). However, this discrepancy says less about the
inverted page table than it does about the two benchmarks.

In summary, the schemes with the lowest overhead are Intel’s
hardware-managed TLB, which requires little overhead to execute the
handler, and the inverted page table of PA-RISC, which fits into the
data caches better than hierarchical tables.The best solution would
be to merge these two and use a hardware-managed TLB with an
inverted page table. Note that this is exactly what has been done in
the PowerPC and PA-7200 architectures [19, 12]. We also see that
software-managed caches have widely varying performance that is
highly dependent on cache organization, though with the right caches
the scheme can perform as well as TLB-based designs.

We can use these results to interpolate for the costs of other VM
organizations, such as an inverted page table with a hardware-man-
aged TLB, a MIPS-style page table with a hardware-managed TLB,
or a system with no TLB but a hardware-walked page table (as in
SPUR [11, 36]). A hardware-managed TLB with an inverted page

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

NOTLB — closeup of graph to right

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.04

0.08

0.12

0.16

NOTLB: 64/128-byte L1/L2 linesizes

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

O
ve

rh
ea

d
(C

P
I)

uhandlers
upte-L2
upte-MEM
khandlers
kpte-L2
kpte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
rpte-L2
rpte-MEM

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
handler-L2
handler-MEM

Figure 8: VMCPI break-downs — GCC. These are the VMCPI break-downs for the best-performing choices of linesize: 64/128 bytes in the L1/L2 caches. The
x-axis represents different L1 cache sizes. For each point, we show three stacked bar charts, corresponding to 1, 2, and 4MB L2 cache sizes.

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

ULTRIX: 64/128-byte L1/L2 linesizes INTEL: 64/128-byte L1/L2 linesizes

PA-RISC: 64/128-byte L1/L2 linesizes

MACH: 64/128-byte L1/L2 linesizes

9

table would have similar overhead to the PA-RISC graphs, if one were
to delete the top two bars (handler-L2 and handler-MEM—those
caused by invocation of the software miss handler) and scale the bot-
tom bar to a fraction of its present size (uhandlers—the overhead of
executing instructions, which could be reduced if done in hardware).

4.3 Mean free path between VM interrupts

We note that there is some variation in the bottommost grey bars
(uhandlers overheads) of the TLB-based systems. They should be in
the proportions 10, 10, 7, 20 for ULTRIX, MACH, INTEL, PA-RISC,
respectively: these are the ratios of the costs of their handlers, and the
handlers should execute with the same frequency, since this frequency
is dependent only on the interaction of the address stream and the
TLB. However, theuhandlers overheads are actually in the propor-
tions 10, 10, 5, 15. This prompted us to look at the TLB performance
numbers for each simulation. We give performance as the mean free
path, which is similar to the metric used by Chen, et al [5] and corre-

sponds to TLB hit rate. The numbers are presented in Figure 10, and
we note that they are consistent with Chen’s.

Figures 10(a) and 10(b) illustrate the differences; the TLB perfor-
mance is obviously not identical for the four TLB-based simulations,
though common sense says it should be. Moreover, there seems to be
little that can account for a 30% difference in TLB hit rate. However,
Figure 10(c) shows the differences when the size of the TLB is varied
by a factor of two. Whereas changing the cache sizes by several
orders of magnitude tends to result in factor-of-two differences in VM
performance, factor-of-two changes in TLB size can result in order-
of-magnitude differences in VM performance.

This explains the discrepancy between the four VM simulations.
The two with lower mean free paths (MACH and ULTRIX) simulate
partitioned TLBs. They reserve 16 of the 128 TLB entries for root-
and kernel-level PTEs; 112 TLB entries are available for user-level
PTEs. The INTEL and PA-RISC simulations, on the other hand, use
all 128 TLB entries for user-level PTEs. Therefore, a 15% change in
the TLB size results in a 30% change in TLB hit rate.

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04
O

ve
rh

ea
d

(C
P

I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.01

0.02

0.03

0.04

O
ve

rh
ea

d
(C

P
I)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

0.00

0.02

0.04

0.06

0.08

0.10

Figure 9: VMCPI break-downs — VORTEX. These are the VMCPI break-downs for the best-performing choices of linesize: 64/128 bytes in the L1/L2 caches.
The x-axis represents different L1 cache sizes. For each point, we show three stacked bar charts, corresponding to 1, 2, and 4MB L2 cache sizes.

1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)

uhandlers
upte-L2
upte-MEM
khandlers
kpte-L2
kpte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
rpte-L2
rpte-MEM

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

uhandlers
upte-L2
upte-MEM
rhandlers
rpte-L2
rpte-MEM
handler-L2
handler-MEM

ULTRIX: 64/128-byte L1/L2 linesizes INTEL: 64/128-byte L1/L2 linesizes

PA-RISC: 64/128-byte L1/L2 linesizes

NOTLB: 64/128-byte L1/L2 linesizes

NOTLB — closeup of graph to right

MACH: 64/128-byte L1/L2 linesizes

64 128 256
TLB size (entries)

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

M
ea

n
F

re
e

P
at

h
(in

st
ru

ct
io

ns
)

(c) GCC performance versus TLB size (using ULTRIX page table)

165,689

ULTRIX MACH INTEL PA-RISC
VM Simulation

0

5000

10000

15000

20000

25000

M
ea

n
F

re
e

P
at

h
(in

st
ru

ct
io

ns
)

Data Path
Instruction Path

(a) Mean free path of GCC

ULTRIX MACH INTEL PA-RISC
VM Simulation

0

50000

100000

150000

200000

250000

300000

350000

M
ea

n
F

re
e

P
at

h
(in

st
ru

ct
io

ns
)

2544 2544 3252 3322

Data Path
Instruction Path

(b) Mean free path of VORTEX

Data Path
Instruction Path

Figure 10: Mean free path, TLB performance. Mean free path is the average number of user-level instructions processed between TLB misses.

10

Note this doesnot imply that partitioning a TLB is a bad idea.
Partitioning is important when there are two classes of PTEs in one’s
page table design: one that has a low overhead for replacement, and
another that has a high overhead for replacement. For performance, it
is necessary to keep the high-cost PTEs in the TLB; partitioning is an
effective solution [22]. However, this studydoes show that a page
table organization requiring TLB-partitioning can perform worse than
a page table organization requiring none, because the scheme requir-
ing no partitioning makes better use of the available TLB entries.

4.4 Total overhead: MCPI + VMCPI + interrupts

In this section, we show the relation of virtual memory overhead to
overall performance, including VMCPI, MCPI, and the cost of taking
interrupts. We will refer to the sum of these three overheads astotal
overhead, even though it does not include I/O, paging, or even
instruction execution costs. This is the overhead that would be added
to the base cost of instruction execution.

We present three interrupt models: 10-, 50-, and 200-cycle. The
first corresponds to a simple in-order pipeline where all state is held in
pipeline registers and the cost of taking an interrupt is roughly the cost
of draining the pipe. This assumes that general-purpose registers need
not be saved, as is often the case when handling memory-manage-
ment interrupts in the MIPS processor. The second model corre-
sponds to a contemporary out-of-order processor with a few dozen
reorder-buffer entries that must be flushed. The last model corre-
sponds to a processor that can execute an enormous number of con-
current instructions. Note that there is a trade-off here that we are
over-simplifying for the sake of brevity: as the issue width grows, so
does the cost of taking an interrupt, but so does the machine’s IPC. An
N-entry reorder buffer will not have a fixed N-cycle interrupt cost. We
also approximate the performance of 64-entry TLBs, which are more
commonly found in today’s microprocessors. These numbers are
extrapolated based on our measurements for mean free path.

Figures 11, 12, and 13 show the results for GCC, VORTEX, and
IJPEG, respectively. Each figure presents graphs for three different L1
cache sizes: 16KB, 64KB, and 256KB, where each cache is split into
I- and D-caches with identical cache line configurations. Each graph
within the figure gives numbers for the five VM simulations as well as
the BASE case (running the application alone on the caches without
any VM overhead). We note the following:

• Comparing the BASE case to the other simulations shows that the
addition of virtual memory code (handlers) and data (page tables)
increases application L1 & L2 cache misses by 5% (for GCC) to
20% (for VORTEX). This effect is not normally mentioned in
studies measuring VM overhead because it requires one to run the
application without the VM system to make a comparison. The
result is that this doubles the net effect of the VM system on total
performance. This is almost entirely due to contention with the
page table (most increases are seen inL1d-miss andL2d-miss and
not inL1i-miss orL2i-miss): the VM code affects an application’s
I-cache behavior less than the application conflicts with itself. For
GCC, the overhead is seen in the L2 cache, not the L1 cache,
meaning the additional overhead imposed by the VM system is
less significant than GCC simply not fitting in the L1 cache.

• The cost of interrupts is large and (for TLB-based systems)
unaffected by cache size—as cache overhead decreases, the
interrupt cost becomes more prominent. Interrupt overhead is as
high as VMCPI, and can account for 10% of the total overhead.
For the 200-cycle interrupt costs (i.e., for future systems with
larger interrupt overheads), this number is even higher.

• For the software-managed cache (NOTLB), interrupt cost
decreases significantly with increased L2 cache sizes: for large
caches, interrupts represent a small fraction of total overhead.

• The INTEL scheme does better than all other hierarchical page
tables, largely due to its lack of interrupt overhead.

Figure 11: Total overhead — GCC. Total overhead includes application cache misses, interrupt costs, and virtual memory overhead; it is additive to base
instruction-execution costs. All graphs represent 64/128-byte L1/L2 linesizes. For each VM simulation we show the performance of twelve configurations, covering
1MB L2 caches, 4MB L2 caches, 128/128-entry TLBs, 64/64-entry TLBs, and three different interrupt costs. Note that 64-entry TLB performance is estimated.

L1i-miss
L1d-miss
L2i-miss
L2d-miss
interrupts
VMCPI

128KB/128KB split L1 cache

32KB/32KB split L1 cache8KB/8KB split L1 cache

A BCD

Split 128/128-entry TLBs
10-cycle interrupt

A:

Split 128/128-entry TLBs
50-cycle interrupt

B:

Split 128/128-entry TLBs
200-cycle interrupt

C:

Split 64/64-entry TLBs
200-cycle interrupt

F:

LEGEND(estimated)

E F Split 64/64-entry TLBs
10-cycle interrupt

D:

Split 64/64-entry TLBs
50-cycle interrupt

E:

(estimated)

(estimated)

ULTRIX MACH INTEL PA-RISC NOTLB BASE
0.0

1.0

2.0

3.0

T
ot

al
 O

ve
rh

ea
d

(C
P

I)

GH I J K L

Split 128/128-entry TLBs
10-cycle interrupt

G:

Split 128/128-entry TLBs
50-cycle interrupt

H:

Split 128/128-entry TLBs
200-cycle interrupt

I:

Split 64/64-entry TLBs
200-cycle interrupt

L:

(estimated)

Split 64/64-entry TLBs
10-cycle interrupt

J:

Split 64/64-entry TLBs
50-cycle interrupt

K:

(estimated)

(estimated)

1MB L2 caches: 4MB L2 caches:

T
ot

al
 O

ve
rh

ea
d

(C
P

I)

ULTRIX MACH INTEL PARISC NOTLB BASE
0.0

1.0

2.0

3.0

ULTRIX MACH INTEL PARISC NOTLB BASE
0.0

1.0

2.0

3.0

11

• IJPEG presents some interesting counterexamples: its results
show that PA-RISC does worse than the other schemes; that there
is a significant difference between the MACH and ULTRIX
simulations; and that VMCPI is often larger than the interrupt
overhead. These behaviors are largely due to the low level of
overhead—the total is well below 1 CPI, so effects like
compulsory misses are actually a large portion of the overhead.

• Cache sizes are extremely important: increasing L1 or L2 cache
sizes by a factor of four can decrease total overhead by 50%.

One conclusion is that large TLBs are necessary. However, they do
not solve the whole problem because copy-on-write (used extensively
in operating systems such as Mach and Windows NT [23, 8]) can be
disastrous—every copy-on-write causes a TLB protection violation.
If used as frequently as in Mach (every 40,000 instructions [13]), this
could increase each of the interrupt-overhead numbers by 50%.

We see that the total cost of memory management includes the
execution of the virtual memory system (adding roughly 5-10% to
total execution time), the cost of taking interrupts to handle the mem-
ory-management events (another 5-10%), and the increased number
of cache misses seen by the application (another 5-10%). This adds
up to a significant cost that becomes more noticeable as caches and
reorder buffers increase in size.

5 CONCLUSIONS

This paper presents a trace-based study of five virtual memory
designs, including combinations of hierarchical and inverted page
tables on hardware-managed and software-managed TLBs (as well as
a system with no TLBs). The primary goal of the study is to under-
stand the performance differences that are due to one’s choice of
memory-management unit and page table organization.

We find a number of interesting results. Against common intu-
ition, the x86 memory management unit performs better than all other

mechanisms, despite the fact that it makes two memory references per
TLB miss. An inverted page table tends to impact the data caches sig-
nificantly less than a hierarchical page table, even when its entries are
four times the size of the hierarchical table’s entries. Memory man-
agement systems increase application cache misses by 5-10%, which
roughly doubles the total impact of the VM system. Precise interrupts
are a source of overhead that is not hidden by increased cache sizes or
increased TLB sizes beyond 256 entries (the point at which copy-on-
write effects would dominate, if used frequently). Software-managed
caches are a viable design, provided that the caches and cache line-
sizes are large enough. The choice of page table and MMU is not
likely to confer an enormous performance advantage, therefore the
large performance differences in TLB handling reported in previous
studies are likely due to implementation.

Future systems are likely to make much better use of superpages
at the application level [29], thereby reducing all overheads related to
virtual-memory, including interrupts (note that this study only consid-
ers 4KB page sizes). Future processors will also execute increasing
numbers of concurrent instructions, thereby needing larger issue win-
dows and reorder buffers. If the implementation of VM-related inter-
rupts is not changed significantly, the individual cost of interrupts will
increase in these future processors, competing with the tendency of
superpages to bring the frequency of VM-related interrupts down. A
simple solution is a hardware-managed TLB with a hardware-walked
inverted table; it is also worth considering a compromise between per-
formance and flexibility in the form of a software-configurable state
machine that walks the page table in a software-defined manner.

In general, the performance differences between the systems stud-
ied here are not large enough to prefer one over another, which sup-
ports our previous suggestions that the industry standardize on some
VM interface [14, 15]. However, if interrupts do remain a problem, it
is interesting that the two schemes that are least dependent on the cost
of interrupts as caches grow larger are the purely hardware-managed
scheme, INTEL, and the purely software-managed scheme, NOTLB.

128KB/128KB split L1 cache

32KB/32KB split L1 cache8KB/8KB split L1 cache

Figure 12: Total overhead — VORTEX. Total overhead includes application cache misses, interrupt costs, and virtual memory overhead; it is additive to base
instruction-execution costs. All graphs represent 64/128-byte L1/L2 linesizes. For each VM simulation we show the performance of twelve configurations, covering
1MB L2 caches, 4MB L2 caches, 128/128-entry TLBs, 64/64-entry TLBs, and three different interrupt costs. Note that 64-entry TLB performance is estimated.

ULTRIX MACH INTEL PA-RISC NOTLB BASE
0.0

1.0

2.0

3.0

T
ot

al
 O

ve
rh

ea
d

(C
P

I)
T

ot
al

 O
ve

rh
ea

d
(C

P
I)

L1i-miss
L1d-miss
L2i-miss
L2d-miss
interrupts
VMCPI

A BCD

Split 128/128-entry TLBs
10-cycle interrupt

A:

Split 128/128-entry TLBs
50-cycle interrupt

B:

Split 128/128-entry TLBs
200-cycle interrupt

C:

Split 64/64-entry TLBs
200-cycle interrupt

F:

LEGEND(estimated)

E F Split 64/64-entry TLBs
10-cycle interrupt

D:

Split 64/64-entry TLBs
50-cycle interrupt

E:

(estimated)

(estimated)

GH I J K L

Split 128/128-entry TLBs
10-cycle interrupt

G:

Split 128/128-entry TLBs
50-cycle interrupt

H:

Split 128/128-entry TLBs
200-cycle interrupt

I:

Split 64/64-entry TLBs
200-cycle interrupt

L:

(estimated)

Split 64/64-entry TLBs
10-cycle interrupt

J:

Split 64/64-entry TLBs
50-cycle interrupt

K:

(estimated)

(estimated)

1MB L2 caches: 4MB L2 caches:

ULTRIX MACH INTEL PARISC NOTLB BASE
0.0

1.0

2.0

3.0

ULTRIX MACH INTEL PARISC NOTLB BASE
0.0

1.0

2.0

3.0

12

REFERENCES
[1] T. E. Anderson, et al. “The interaction of architecture and operating

system design.” InProc. ASPLOS-4, April 1991, pp. 108–120.
[2] A. W. Appel and K. Li. “Virtual memory primitives for user programs.”

In Proc. ASPLOS-4, April 1991, pp. 96–107.
[3] K. Bala, M. F. Kaashoek, and W. E. Weihl. “Software prefetching and

caching for translation lookaside buffers.” InProc. OSDI-1, Nov. 1994.
[4] J. B. Chen, et al. “The measured performance of personal computer

operating systems.” InProc. SOSP-15, December 1995, pp. 299–313.
[5] J. B. Chen, A. Borg, and N. P. Jouppi. “A simulation based study of TLB

performance.” InProc. ISCA-19, May 1992.
[6] D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle. “Software-controlled

caches in the VMP multiprocessor.” InProc. ISCA-13, January 1986.
[7] D. W. Clark and J. S. Emer. “Performance of the VAX-11/780

translation buffer.”ACM Trans. Comp. Sys, vol. 3, no. 1, February 1985.
[8] H. Custer.Inside Windows NT. Microsoft Press, Redmond WA, 1993.
[9] D. R. Engler, S. K. Gupta, and M. F. Kaashoek. “AVM: Application-

level virtual memory.” InProc. HotOS-V, May 1995.
[10] D. S. Henry. “Adding fast interrupts to superscalar processors.” Tech.

Rep. Memo-366, MIT Computation Structures Group, December 1994.
[11] M. D. Hill, et al. “Design decisions in SPUR.”IEEE Computer, vol. 19,

no. 11, November 1986.
[12] J. Huck and J. Hays. “Architectural support for translation table

management in large address space machines.” InISCA-20, May 1993.
[13] B. L. Jacob and T. N. Mudge. “Software-managed address translation.”

In Proc. HPCA-3, February 1997, pp. 156–167.
[14] B. L. Jacob and T. N. Mudge. “Virtual memory in contemporary

microprocessors.”IEEE Micro, vol. 18, no. 4, July/August 1998.
[15] B. L. Jacob and T. N. Mudge. “Virtual memory: Issues of

implementation.”IEEE Computer, vol. 31, no. 6, pp. 33–43, June 1998.
[16] T. L. Johnson and W.-M. W. Hwu. “Run-time adaptive cache hierarchy

management via reference analysis.” InProc. ISCA-24, June 1997.
[17] D. E. Knuth.The Art of Computer Programming–Volume 3 (Sorting and

Searching). Addison-Wesley, 1973.
[18] J. Liedtke and K. Elphinstone. “Guarded page tables on MIPS R4600.”

ACM Operating Systems Review, vol. 30, no. 1, pp. 4–15, January 1996.

[19] C. May, et al, Eds.The PowerPC Architecture: A Specification for a New
Family of RISC Processors. Morgan Kaufmann Publishers, 1994.

[20] M. Moudgill and S. Vassiliadis. “Precise interrupts.”IEEE Micro, vol.
16, no. 1, pp. 58–67, February 1996.

[21] D. Nagle, et al. “Optimal allocation of on-chip memory for multiple-API
operating systems.” InProc. ISCA-21, April 1994.

[22] D. Nagle, et al. “Design tradeoffs for software-managed TLBs.” InProc.
ISCA-20, May 1993.

[23] R. Rashid, et al. “Machine-independent virtual memory management for
paged uniprocessor and multiprocessor architectures.”IEEE
Transactions on Computers, vol. 37, no. 8, pp. 896–908, August 1988.

[24] J. A. Rivers and E. S. Davidson. “Reducing conflicts in direct-mapped
caches with a temporality-based design.” InProc. ICPP-96, Aug. 1996.

[25] M. Rosenblum, et al. “The impact of architectural trends on operating
system performance.” InProc. SOSP-15, December 1995.

[26] J. E. Smith, G. E. Dermer, and M. A. Goldsmith.Computer System
Employing Virtual Memory. US Patent Office, no. 4,774,659, Sep. 1988.

[27] J. E. Smith and A. R. Pleszkun. “Implementing precise interrupts in
pipelined processors.”IEEE Trans. Computers, vol. 37, no. 5, May 1988.

[28] G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-
performance, interruptable pipelined processors.” InISCA-14, June ’87.

[29] M. Talluri and M. D. Hill. “Surpassing the TLB performance of
superpages with less operating system support.” InASPLOS-6, Oct. ’94.

[30] M. Talluri, M. D. Hill, and Y. A. Khalidi. “A new page table for 64-bit
address spaces.” InProc. SOSP-15, December 1995.

[31] C. A. Thekkath and H. M. Levy. “Hardware and software support for
efficient exception handling.” InProc. ASPLOS-6, October 1994.

[32] G. Tyson, et al. “A modified approach to data cache management.” In
Proc. MICRO-28, November 1995, pp. 93–103.

[33] M. Upton.Personal communication. 1997.
[34] W. Walker and H. G. Cragon. “Interrupt processing in concurrent

processors.”IEEE Computer, vol. 28, no. 6, June 1995.
[35] B. Wheeler and B. N. Bershad. “Consistency management for virtually

indexed caches.” InProc. ASPLOS-5, October 1992, pp. 124–136.
[35] D. A. Wood.The Design and Evaluation of In-Cache Address

Translation. PhD thesis, University of California at Berkeley, 1990.

Figure 13: Total overhead — IJPEG. Total overhead includes application cache misses, interrupt costs, and virtual memory overhead; it is additive to base
instruction-execution costs. All graphs represent 64/128-byte L1/L2 linesizes. For each VM simulation we show the performance of twelve configurations, covering
1MB L2 caches, 4MB L2 caches, 128/128-entry TLBs, 64/64-entry TLBs, and three different interrupt costs. Note that 64-entry TLB performance is estimated.

ULTRIX MACH INTEL PA-RISC NOTLB BASE
0.0

0.1

0.2

0.3

0.4

0.5

ULTRIX MACH INTEL PA-RISC NOTLB BASE
0.00

0.02

0.04

0.06

0.08

0.10

128KB/128KB split L1 cache

32KB/32KB split L1 cache8KB/8KB split L1 cache

T
ot

al
 O

ve
rh

ea
d

(C
P

I)
T

ot
al

 O
ve

rh
ea

d
(C

P
I)

L1i-miss
L1d-miss
L2i-miss
L2d-miss
interrupts
VMCPI

A BCD

Split 128/128-entry TLBs
10-cycle interrupt

A:

Split 128/128-entry TLBs
50-cycle interrupt

B:

Split 128/128-entry TLBs
200-cycle interrupt

C:

Split 64/64-entry TLBs
200-cycle interrupt

F:

LEGEND(estimated)

E F Split 64/64-entry TLBs
10-cycle interrupt

D:

Split 64/64-entry TLBs
50-cycle interrupt

E:

(estimated)

(estimated)

GH I J K L

Split 128/128-entry TLBs
10-cycle interrupt

G:

Split 128/128-entry TLBs
50-cycle interrupt

H:

Split 128/128-entry TLBs
200-cycle interrupt

I:

Split 64/64-entry TLBs
200-cycle interrupt

L:

(estimated)

Split 64/64-entry TLBs
10-cycle interrupt

J:

Split 64/64-entry TLBs
50-cycle interrupt

K:

(estimated)

(estimated)

1MB L2 caches: 4MB L2 caches:

ULTRIX MACH INTEL PARISC NOTLB BASE
0.00

0.02

0.04

0.06

0.08

0.10

