
A Lookahead Strategy for Heuristic Search Planning

Vincent Vidal∗
CRIL - Université d’Artois
rue de l’Université - SP 16

62307 Lens, France
vidal@cril.univ-artois.fr

Abstract

Relaxed plans are used in the heuristic search planner
FF for computing a numerical heuristic and extracting
helpful actions. We present a novel way for extracting
information from the relaxed plan and for dealing with
helpful actions, by considering the high quality of the
relaxed plans in numerous domains. For each evalu-
ated state, we employ actions from these plans in order
to find the beginning of a valid plan that can lead to
a reachable state. We use this lookahead strategy in a
complete best-first search algorithm, modified in order
to take into account helpful actions. In numerous plan-
ning domains, the performance of heuristic search plan-
ning and the size of the problems that can be handled
have been drastically improved.

Introduction
Planning as heuristic search has proven to be a success-
ful framework for STRIPS non-optimal planning, since the
advent of planners capable to outperform in most of the
classical benchmarks the previous state-of-the-art planners
Graphplan (Blum & Furst 1997), Blackbox (Kautz & Sel-
man 1999), IPP (Koehler et al. 1997), STAN (Long &
Fox 1999), LCGP (Cayrol, Régnier, & Vidal 2001), . . . Al-
though these planners (except LCGP) compute optimal par-
allel plans, which is not exactly the same purpose as non-
optimal planning, they also offer no optimality guarantee
concerning plan length in number of actions. This is one
reason for which the interest of the planning community
turned towards the planning as heuristic search framework
and other techniques, promising in terms of performance for
non-optimal planning plus some other advantages such as
easier extensions to resource planning and planning under
uncertainty.

The planning as heuristic search framework, initiated by
the planners ASP (Bonet, Loerincs, & Geffner 1997), HSP
and HSPr (Bonet & Geffner 1999; 2000), lead to some of
the most efficient planners, as demonstrated in the two previ-
ous editions of the International Planning Competition with

∗This work has been supported in part by the IUT de Lens, the
CNRS and the Region Nord/Pas-de-Calais under the TACT Pro-
gramme.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

planners such as HSP2 (Bonet & Geffner 2001), FF (Hoff-
mann & Nebel 2001) and AltAlt (Nguyen, Kambhampati, &
Nigenda 2002). FF was in particular awarded for outstand-
ing performance at the 2nd International Planning Compe-
tition1 and was generally the top performer planner in the
STRIPS track of the 3rd International Planning Competi-
tion2.

We focus in this paper3 on a technique introduced in the
FF planning system (Hoffmann & Nebel 2001) for calculat-
ing the heuristic, based on the extraction of a solution from a
planning graph computed for the relaxed problem obtained
by ignoring deletes of actions. It can be performed in poly-
nomial time and space, and the length in number of actions
of the relaxed plan extracted from the planning graph repre-
sents the heuristic value of the evaluated state. This heuristic
is used in a forward-chaining search algorithm to evaluate
each encountered state. As a side effect of the computation
of this heuristic, another information is derived in FF from
the planning graph and its solution, namely the helpful ac-
tions. They are the actions of the relaxed plan executable in
the state for which the heuristic is computed, augmented in
FF by all the actions which are executable in that state and
produce fluents that where found to be subgoals at the first
level of the planning graph. These actions permit FF to con-
centrate its efforts on more promising ways than considering
all actions, forgetting actions that are not helpful in a varia-
tion of the hill-climbing local search algorithm. When this
last fails to find a solution, FF switches to a classical com-
plete best-first search algorithm. The search is then started
again from scratch, without the benefit obtained by using
helpful actions and local search.

We introduce a novel way for extracting information from
the computation of the heuristic and for dealing with helpful
actions, by considering the high quality of the relaxed plans
extracted by the heuristic function in numerous domains. In-
deed, the beginning of these plans can often be extended to
solution plans of the initial problem, and there are often a
lot of other actions from these plans that can effectively be
used in a solution plan. We present in this paper an algo-
rithm for combining some actions from each relaxed plan,

12nd IPC: http://www.cs.toronto.edu/aips2000
23rd IPC: http://www.cis.strath.ac.uk/ derek/competition.html
3An extended abstract appeared in (Vidal 2003).

150 ICAPS 2004

From: ICAPS-04 Proceedings. Copyright © 2004, AAAI (www.aaai.org). All rights reserved.

in order to find the beginning of a valid plan that can lead
to a reachable state. Thanks to the quality of the extracted
relaxed plans, these states will frequently bring us closer to a
solution state. The lookahead states thus calculated are then
added to the list of nodes that can be chosen to be expanded
by increasing order of the numerical value of the heuristic.
The best strategy we (empirically) found is to use as much
actions as possible from each relaxed plan and to perform
the computation of lookahead states as often as possible.

This lookahead strategy can be used in different search
algorithms. We propose a modification of a classical best-
first search algorithm in a way that preserves completeness.
Indeed, it simply consists in augmenting the list of nodes
to be expanded (the open list) with some new nodes com-
puted by the lookahead algorithm. The branching factor is
slightly increased, but the performances are generally better
and completeness is not affected. In addition to this looka-
head strategy, we propose a new way for using helpful ac-
tions that also preserves completeness. In FF, actions that are
not considered as helpful are lost: this makes the algorithm
incomplete. For avoiding that, we modify several aspects of
the search algorithm by introducing the notion of rescue ac-
tions (actions applicable in the state for which we compute
the relaxed plan and are not helpful). States will be first ex-
panded with helpful actions as in FF; but in case of failure
(i.e. no solution is found by using only helpful actions), we
choose a node that can be expanded with rescue actions. As
no action is lost and no node is pruned from the search space
as in FF, completeness is preserved.

Our experimental evaluation of the use of this lookahead
strategy in a complete best-first search algorithm that takes
benefit of helpful actions demonstrates that in numerous
planning benchmark domains, the improvement of the per-
formance in terms of running time and size of problems that
can be handled have been drastically improved. Taking into
account helpful actions makes a best-first search algorithm
always more efficient, while the lookahead strategy makes it
able to solve very large problems in several domains.

This paper is organized as follows. After giving classical
definitions, we present the computation and use of looka-
head states and plans. We then explain how to use helpful
actions in a complete best-first search algorithm. We finally
detail the algorithms implemented in our system, and pro-
vide an experimental evaluation before some conclusions.

Definitions
A state is a finite set of ground atomic formulas (i.e. without
any variable symbol) also called fluents. Actions are classi-
cal STRIPS actions. Let a be an action; Prec(a), Add(a)
and Del(a) are fluent sets and respectively denote the pre-
conditions, add effects, and del effects of a. A planning
problem is a triple 〈O, I,G〉 where O is a set of actions, I
is a set of fluents denoting the initial state and G is a set of
fluents denoting the goal. A plan is a sequence of actions.
The application of an action a on a state S (noted S ↑ a) is
possible if Prec(a) ⊆ S and the resulting state is defined by
S ↑ a = (S \ Del(a)) ∪ Add(a). Let P = 〈a1, a2, . . . , an〉
be a plan. P is valid for a state S if a1 is applicable on S
and leads to a state S1, a2 is applicable on S1 and leads to

S2, . . . , an is applicable on Sn−1 and leads to Sn. In that
case, Sn is said to be reachable from S for P and P is a so-
lution plan if G ⊆ Sn. First(P), Rest(P) and Length(P)
respectively denote the first action of P (a1 here), P with-
out the first action (〈a2, . . . , an〉 here), and the number of
actions in P (n here). Let P ′ = 〈b1, . . . , bm〉 be another
plan. The concatenation of P and P ′ (denoted by P ⊕ P ′)
is defined by P ⊕ P ′ = 〈a1, . . . , an, b1, . . . , bm〉.

Computing and using
lookahead states and plans

In classical forward state-space search algorithms, a node in
the search graph represents a planning state and an arc start-
ing from that node represents the application of one action to
this state, that leads to a new state. In order to ensure com-
pleteness, all actions that can be applied to one state must
be considered. The order in which these states will then be
considered for development depends on the overall search
strategy: depth-first, breadth-first, best-first. . .

Let us now imagine that for each evaluated state S, we
knew a valid plan P that could be applied to S and would
lead to a state closer to the goal than the direct descendants
of S (or estimated as such, thanks to some heuristic evalua-
tion). It could then be interesting to apply P to S, and use
the resulting state S′ as a new node in the search. This state
could be simply considered as a new descendant of S.

We have then two kinds of arcs in the search graph: the
ones that come from the direct application of an action to a
state, and the ones that come from the application of a valid
plan to a state S and lead to a state S ′ reachable from S. We
will call such states lookahead states, as they are computed
by the application of a plan to a node S but are considered in
the search tree as direct descendants of S. Nodes created for
lookahead states will be called lookahead nodes. Plans la-
beling arcs that lead to lookahead nodes will be called looka-
head plans. Once a goal state is found, the solution plan is
then the concatenation of single actions for arcs leading to
classical nodes and lookahead plans for the arcs leading to
lookahead nodes.

The determination of an heuristic value for each state as
performed in the FF planner offers a way to compute such
lookahead plans. FF creates a planning graph for each en-
countered state S, using the relaxed problem obtained by
ignoring deletes of actions and using S as initial state. A
relaxed plan is then extracted in polynomial time and space
from this planning graph. The length in number of actions
of the relaxed plan corresponds to the heuristic evaluation
of the state for which it is calculated. Generally, the relaxed
plan for a state S is not valid for S, as deletes of actions
are ignored during its computation: negative interactions be-
tween actions are not considered, so an action can delete a
goal or a fluent needed as a precondition by some actions
that follow it in the relaxed plan. But actions of the relaxed
plans are used because they produce fluents that can be inter-
esting to obtain the goals, so some actions of these plans can
possibly be interesting to compute the solution plan of the
problem. In numerous benchmark domains, we can observe
that relaxed plans have a very good quality because they con-

ICAPS 2004 151

tain a lot of actions that belong to solution plans. We will
describe an algorithm for computing lookahead plans from
these relaxed plans.

Completeness and correctness of search algorithms are
preserved by this process, because no information is lost:
all actions that can be applied to a state are still considered,
and because the nodes that are added by lookahead plans are
reachable from the states they are connected to. The only
modification is the addition of new nodes, corresponding to
states that can be reached from the initial state.

Using helpful actions: the “optimistic”
strategy for search algorithms

In classical search algorithms, all actions that can be applied
to a node are considered the same way: the states that they
lead to are evaluated by an heuristic function and are then
ordered, but there is no notion of preference over the ac-
tions themselves. Such a notion of preference during search
has been introduced in the FF planner, with the concept of
helpful actions. Once the planning graph for a state S is cre-
ated and a relaxed plan is computed, more information is ex-
tracted from these two structures: the actions of the relaxed
plan that are executable in S are considered as helpful, while
the other actions are forgotten by the local search algorithm
of FF. But this strategy appeared to be too restrictive, so
the set of helpful actions is augmented in FF by all actions
executable in S that produce fluents that were considered
as subgoals at the first level of the planning graph, during
the extraction of the relaxed plan4. The main drawback of
this strategy, as used in FF, is that it does not preserve com-
pleteness: the actions executable in a state S that are not
considered as helpful are simply lost. In FF, the search al-
gorithm is not complete for other reasons (it is a variation of
an hill-climbing algorithm), and the search must switch to a
complete best-first algorithm when no solution is found by
the local search algorithm.

In this paper, we present a way to use such a notion of
helpful actions in complete search algorithms, that we call
optimistic search algorithms because they give a maximum
trust to the information returned by the computation of the
heuristic. The principles are the following:

• Several classes of actions are created. In our implemen-
tation, we only use two of them: helpful actions (the re-
stricted ones: the actions of the relaxed plan that are exe-
cutable in the state for which we compute a relaxed plan),
and rescue actions that are all the actions that are not help-
ful.

• When a newly created state S is evaluated, the heuristic
function returns the numerical estimation of the state and

4Fluents considered as subgoals during the extraction of a re-
laxed plan are either problem goals, or preconditions of actions not
yet marked true (i.e. no action has been selected yet in the relaxed
plan to produce them). Subgoals required to be true at the first
level of the planning graph (at time point 1) can thus be produced
by some actions executable in the initial state. Choosing only one
action for each of these subgoals could then be enough; but in FF,
all actions that produce them are considered as helpful

also the actions executable in S partitioned into their dif-
ferent classes (for us, helpful or rescue5). For each class,
one node is created for the state S, that contains the ac-
tions of that class returned by the heuristic function.

• In order to select a node to be expanded, the class of the
actions attached to it is taken into account: in our “opti-
mistic” algorithm, it is the first criterion: nodes containing
helpful actions are always preferred over nodes contain-
ing rescue actions, whatever their numerical heuristic val-
ues are.

No information is lost by this process. The way nodes
are expanded is simply modified: a state S is expanded first
with helpful actions, some other nodes are expanded, and
then S can potentially be expanded with rescue actions. As
the union of helpful actions and rescue actions is equal to the
set of all the actions that can be applied to S, completeness
and correctness are preserved.

In addition to that use of helpful actions, we use in our
planning system another “optimistic” strategy. Let us first
define goal-preferred actions as the actions that do not delete
a fluent which belongs to the goal and do not belong to the
initial state. If giving a maximum trust to the heuristic (and
being in that sense “optimistic”), we can suppose that a sub-
goal which has been previously achieved does not need to
be undone for solving the whole problem (with the except
of goals satisfied in the initial state). So, for each evalu-
ated state, we build a first relaxed planning graph with goal-
preferred actions only, and in case of failure (the goals are
not present in the relaxed planning graph), we build another
planning graph with all the actions of the problem.

Description of the algorithms
In this section, we describe the algorithms of our planning
system and discuss the main differences with the FF plan-
ner, on which is based our work. The main functions of the
algorithm are the following:

LOBFS(): this is the main function (see Figure 1). At
first, the function compute node is called over the initial
state of the problem and the empty plan: the initial state is
evaluated by the heuristic function, and a node is created
and pushed into the open list. Nodes in the open list have
the following structure: 〈S, P,A, h, f〉, where:

• S is a state,
• P is the plan that lead to S from the initial state,
• A is a set of actions applicable in S,
• h is the heuristic value of S (the length of the relaxed

plan computed for S),
• f is a flag indicating if the actions of A are helpful ac-

tions (value helpful) or rescue actions (value rescue).

We then enter in a loop that selects the best node (func-
tion pop best node) in the open list and expands it until
a plan is found or the open list is empty. In contrast to

5It must be noted that an action can be helpful for a given state,
but rescue for another state: it depends on the role it plays in the
relaxed plan and in the planning graph.

152 ICAPS 2004

standard search algorithms, the actions chosen to be ap-
plied to the state are already known, as they are part of
the information attached to the node. These actions come
from the computation of the heuristic in the function com-
pute heuristic called by compute node, which returns a
set of helpful actions and a set of rescue actions.

pop best node(): returns the best node of the open list.
Nodes are compared following three criteria of decreas-
ing importance. Let N = 〈S, P,A, h, f〉 be a node in
the open list. The first criterion is the value of the flag
f : helpful is preferred over rescue. When two flags are
equal, the second criterion minimizes the heuristic value
f(S) = W×h+Length(P), as in WA∗ algorithm (Pearl
1983). In our current implementation, we use W = 3. In-
creasing the value of the W parameter can lead faster to
a solution, but with lower plan quality (Korf 1993). As
reported in (Bonet & Geffner 2001) for the HSP2 planner,
a value between 2 and 10 does not make a significant dif-
ference (they use W = 5); but from our experiments, we
found that using a lower value improves a bit plan quality
while having no impact on efficiency. When two heuristic
values are equal, the third criterion minimizes the length
of the plan P that lead to S. This generally gives better
plan quality than minimizing h, which could be another
possibility.

compute node(S, P): it is called by LOBFS over the ini-
tial state and the empty plan, or by LOBFS or itself over
a newly created state S and the plan P that lead to that
state (see Figure 1). Calls from LOBFS come from the
initial state or the selection of a node in the open list and
the application of one action to a given state. Calls from
itself come from the computation of a valid plan by the
lookahead algorithm and its application to a given state.
If the state S belongs to the close list or is a goal state, the
function terminates. Otherwise, the state is evaluated by
the heuristic function (compute heuristic, which returns
a relaxed plan, a set of helpful actions and a set of rescue
actions). This operation is performed the first time with
the goal-preferred actions (actions that do not delete a flu-
ent that belongs to the goal and do not belong to the initial
state).
If a relaxed plan can be found, two nodes are added to the
initial state: one node for the helpful actions (the flag is
set to helpful) and one node for the rescue actions (the
flag is set to rescue). A valid plan is then searched by the
lookahead algorithm, and compute node is called again
over the state that results from the application of this plan
to S (if this valid plan is at least two actions long).
If no relaxed plan can be found with the goal-preferred
actions, the heuristic is evaluated again with all actions.
In that case, we consider that S is of lower interest: if a
relaxed plan is found, only one node is added to the open
list (helpful actions and rescue actions are merged), the
flag is set to rescue, and no lookahead is performed.

compute heuristic(S,A): this function computes the
heuristic value of the state S in a way similar to FF. At
first, a relaxed planning graph is created, using only ac-

let Π = 〈O, I, G〉 ; /* planning problem */
let GA = {a ∈ O | ∀f ∈ Del(a), f /∈ (G \ I)} ;

/* goal-preferred actions */
let open = ∅ ; /* open list: nodes to be expanded */
let close = ∅ ; /* close list: already expanded nodes */

function LOBFS ()
compute node(I, 〈〉) ;
while open 6= ∅ do

let 〈S, P, actions, h, flag〉 = pop best node()
forall a ∈ actions do

compute node(S ↑ a, P ⊕ 〈a〉)
endfor

endwhile
end

function compute node (S, P) /* S: state, P: plan, */
if S /∈ close then

if G ⊆ S then output and exit(P) endif ;
close← close ∪ {S} ;
let 〈RP, H, R〉 = compute heuristic(S, GA) ;
if RP 6= fail then

open← open ∪ {〈S, P, H, Length(RP), helpful〉,
〈S, P, R, Length(RP), rescue〉} ;

let 〈S′, P ′〉 = lookahead(S, RP) ;
if Length(P ′) ≥ 2 then

compute node(S′, P ⊕ P ′)
endif

else
let 〈RP, H, R〉 = compute heuristic(S, O) ;
if RP 6= fail then

open← open ∪ {〈S, P, H ∪R, Length(RP), rescue〉}
endif

endif
endif

end

Figure 1: Lookahead Optimistic Best-First Search algorithm

tions from the set A. This parameter allows us to try to
restrict actions to be used to goal-preferred actions: this
heuristic proved to be useful in some benchmark domains.
Once created, the relaxed planning graph is then searched
backward for a solution.
In our current implementation, there are two main differ-
ences compared to FF. The first difference holds in the
way actions are used for a relaxed plan. In FF, when an
action is selected at a level i, its add effects are marked
true at level i (as in classical Graphplan), but also at level
i − 1. As a consequence, a precondition established at
a given level and required by another action at the same
level will not be considered as a new goal. In our imple-
mentation, add effects of an action are only marked true
at level i, but its preconditions are required at level i and
not at the first level they appear, as in FF. A precondi-
tion of an action can then be achieved by an action at the
same level, and the range of actions that can be selected
to achieve it is wider.
The second difference holds in the way actions are added
to the relaxed plan. In FF, actions are arranged in the or-
der they get selected. We found useful to use the follow-

ICAPS 2004 153

ing algorithm. Let a be an action, and 〈a1, a2, . . . , an〉 be
a relaxed plan. All actions in the relaxed plan are cho-
sen in order to produce a subgoal in the relaxed planning
graph at a given level, which is either a problem goal or a
precondition of an action of the relaxed plan. a is ordered
after a1 iff:

• the level of the subgoal a was selected to satisfy is
strictly greater than the level of the subgoal a1 was se-
lected to satisfy, or

• these levels are equal, and either a deletes a precondi-
tion of a1 or a1 does not delete a precondition of a.

In that case, the same process continues between a and
a2, and so on with all actions in the plan. Otherwise, a is
placed before a1.
The differences between FF and our implementation we
described here are all heuristic and motivated by our ex-
periments, since making optimal decisions for these prob-
lems are not polynomial, as stated in (Hoffmann & Nebel
2001).
The function compute heuristic returns a structure
〈RP,H,R〉 where: RP is a relaxed plan, H is a set of
helpful actions, and R is a set of rescue actions. As com-
pleteness is preserved by the algorithm, we restrict the set
of helpful actions compared to FF: they are only actions
of the relaxed plan applicable in the state S for which we
compute the heuristic. In FF, all the actions that are ap-
plicable in S and produce a goal at level 1 are considered
as helpful. Rescue actions are all actions applicable in S
and not present in RP , and are used only when no node
with helpful actions is present in the open list. So, H ∪R
contains all the actions applicable in S.

lookahead(S,RP): this function searches a valid plan for
a state S using the actions of a relaxed plan RP calculated
by compute heuristic (cf. Figure 2). Several strategies
can be imagined: searching plans with a limited number
of actions, returning several possible plans, etc. From our
experiments, the best strategy we found is to search one
plan, containing as most actions as possible from the re-
laxed plan. One improvement we made to that process is
the following. When no action of RP can be applied, we
replace one of its action a by an action a′ taken from the
global set of actions O, such that a′:

• does not belong to RP ,
• is applicable in the current lookahead state S ′,
• produces at least one add effect f of a such that f is

a precondition of another action in RP and f does not
belong to S′.

At first, we enter in a loop that stops if no action can be
found or all actions of RP have been used. Inside this
loop, there are two parts: one for selecting actions from
RP , and another one for replacing an action of RP by
another action in case of failure in the first part.
In the first part, actions of RP are observed in turn, in
the order they are present in the sequence. Each time an
action a is applicable in S, we add a to the end of the

function lookahead (S, RP) /* S: state, RP: relaxed plan */
let plan = 〈〉 ;
let failed = 〈〉 ;
let continue = true ;
while continue ∧RP 6= 〈〉 do

continue← false ;
forall i ∈ [1, n] do /* with RP = 〈a1, . . . , an〉 */

if Prec(ai) ⊆ S then
continue← true ;
S ← S ↑ ai ;
plan← plan⊕ 〈ai〉

else
failed← failed⊕ 〈ai〉

endif
endfor ;
if continue then

RP ← failed ;
failed← 〈〉

else
RP ← 〈〉 ;
while ¬continue ∧ failed 6= 〈〉 do

forall f ∈ Add(First(failed)) do
if f /∈ S ∧ ∃a ∈ (RP ⊕ failed) | f ∈ Prec(a) then

let actions =
{a ∈ O | f ∈ Add(a) ∧ Prec(a) ⊆ S} ;

if actions 6= ∅ then
let a = choose best(actions) ;
continue← true ;
S ← S ↑ a ;
plan← plan⊕ 〈a〉 ;
RP ← RP ⊕Rest(failed) ;
failed← 〈〉

endif
endif

endfor ;
if ¬continue then

RP ← RP ⊕ 〈First(failed)〉 ;
failed← Rest(failed)

endif
endwhile

endif
endwhile
return(S, plan)

end

Figure 2: Lookahead algorithm

lookahead plan and update S by applying a to it (remov-
ing deletes of a and adding its add effects). Actions that
cannot be applied are kept in a new relaxed plan called
failed, in the order they get selected. If at least one action
has been found to be applicable, when all actions of RP
have been tried, the second part is not used (this is con-
trolled by the boolean continue). The relaxed plan RP is
overwritten with failed, and the process is repeated until
RP is empty or no action can be found.

The second part is entered when no action has been ap-
plied in the most recent iteration of the first part. The
goal is to try to repair the current (not applicable) relaxed
plan, by replacing one action by another which is applica-
ble in the current state S. Actions of failed are observed

154 ICAPS 2004

in turn, and we look for an action (in the global set of
actions O) applicable in S, which achieves an add effect
of the action of failed we observe, this add effect being a
precondition not satisfied in S of another action in the cur-
rent relaxed plan. If several achievers are possible for the
add effect of the action of failed we observe, we select
the one that has the minimum cost in the relaxed planning
graph used for extracting the initial relaxed plan (function
choose best; the cost of an action is the sum of the initial
levels of its preconditions). When such an action is found,
it is added to the lookahead plan and the global loop is re-
peated. The action of failed observed when a repairing
action was found is not kept in the current relaxed plan.
This repairing technique is also completely heuristic, but
gave good results in our experiments.

Experimental evaluation
Planners, benchmarks and objectives
We compare four planners: FF v2.36, and three different set-
tings of our planning system called YAHSP (which stands
for Yet Another Heuristic Search Planner7) implemented in
Objective Caml8 compiled for speed:

• BFS (Best First Search): classical WA∗ search, with
W = 3. The heuristic is based on the computation of a
relaxed plan as in FF. BFS does not compute helpful ac-
tions: all possible children of a state are ordered thanks
to their heuristic evaluation, whether they come from the
application of an helpful action or not.

• OBFS (Optimistic Best First Search): identical to BFS,
with the use of a flag indicating whether the actions at-
tached to a node are helpful or rescue. A node containing
helpful actions is always preferred over a node containing
rescue actions.

• LOBFS (Lookahead Optimistic Best First Search): iden-
tical to OBFS, with the use of lookahead states and plans.

We use nine different domains9: the Logistics domain,
the Mprime and Mystery domains created for the 1st IPC,
the Freecell domain created for the 2nd IPC, and five do-
mains created for the 3rd IPC (Rovers, Satellite, DriverLog,
Depots, ZenoTravel). Problems for Logistics are 30 selected
problems from the 2nd IPC (from the smallest to the biggest)
and those for Freecell come from the 3rd IPC.

We classified these domains into three categories, in
accordance with the way LOBFS solves them: easy
ones (Rovers, Satellite, Logistics, DriverLog, ZenoTravel),
medium difficulty ones (Mprime, Freecell), and difficult
ones (Depots, Mystery).

Our objectives for these experiments are the following:

6http://www.informatik.uni-freiburg.de/∼hoffmann/ff.html
7http://www.cril.univ-artois.fr/∼vidal/yahsp.html
8Objective Caml is a strongly-typed functional lan-

guage from the ML family, with object oriented extensions
(http://caml.inria.fr/).

9All domains and problems used in our experiments can be
downloaded on the YAHSP home page.

1. To test the efficiency of our planning system over a state-
of-the-art planner, FF. Indeed, FF is known for its distin-
guished performances in numerous planning domains and
successes in the 2nd and 3rd IPC. Although generally not
as fast as FF in the BFS and OBFS settings, our planner
compares well to FF.

2. To evaluate the suitability of the optimistic search strat-
egy. This strategy allows us to use helpful actions in com-
plete search algorithms. This is in contrast to their use
in the local search part of FF. We will see in particular
that the OBFS strategy is better than BFS in almost all the
problems.

3. To demonstrate that the use of a lookahead strategy
greatly improves the performances of forward heuristic
search. Even more, we will see that our planner can solve
problems that are substantially bigger than what other
planners can handle (up to 10 times more atoms in the
initial state and 16 times more goals in the last DriverLog
problem).

All tests have been performed on a Pentium II -
450MHz machine with 512Mb of memory running Debian
GNU/Linux 3.0. The maximal amount of time devoted to all
planners for each problem was fixed to one hour. Problems
in the various graphs are ordered following LOBFS running
time for a better readability.

Easy problems
As original problems from the competition sets are solved
very easily by LOBFS, we created 10 more problems in each
domain with the available generators. The 20 first problems
are the original ones, and the 10 following are newly created.

In order to fully understand the results we present here, it
is very important to remark that: difficulty (measured as the
number of atoms in the initial state and the number of goals)
between successive new created problems numbered from 21
to 30, increases much more than difficulty between original
problems. Indeed, the last problem we created in each prob-
lem is the largest one that can be handled by LOBFS within
the memory constraints. As the solving time remains rea-
sonable, larger problems could surely be solved in less than
one hour with more memory.

As a consequence, the graphs representing plan length are
divided into two parts: plan length for new created problems
increases much more than for original ones. We also show
in Table 1 some data about the largest problems solved by
FF, OBFS and LOBFS, in order to realize the progress ac-
complished in the size of the problems that can be solved by
a STRIPS planner.

For the five domains we presented in this section, the su-
periority of LOBFS over all planners and the superiority of
OBFS over BFS are clearly demonstrated, while OBFS and
FF have comparable performances (see Figure 3). Similar
results have been observed in several other domains (Ferry,
Gripper, Miconic-10 elevator).

The only drawback of LOBFS is sometimes a degrada-
tion of plan quality, but this remains limited: the trade-off
between speed and quality tends without any doubt in favor
of our lookahead technique.

ICAPS 2004 155

 0.1

 1

 10

 100

 1000

 10000

1 3 5 6 7 8 2 11 4 10 13 14 9 15 12 17 18 19 20 16 21 23 22 24 25 26 27 28 29 30

Ti
m

e
(s

ec
on

ds
)

Problems (DriverLog)

FF
LOBFS
OBFS
BFS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 3 5 6 7 8 2 11 4 101314 9 15121718192016

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (DriverLog)

FF
LOBFS
OBFS
BFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

21 23 22 24 25 26 27 28 29 30
Problems (DriverLog)

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 11 12 10 14 16 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
(s

ec
on

ds
)

Problems (Rovers)

FF
LOBFS
OBFS
BFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 1112101416131517181920

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Rovers)

FF
LOBFS
OBFS
BFS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

21 22 23 24 25 26 27 28 29 30
Problems (Rovers)

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
(s

ec
on

ds
)

Problems (Logistics)

FF
LOBFS
OBFS
BFS

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Logistics)

FF
LOBFS
OBFS
BFS

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

21 22 23 24 25 26 27 28 29 30
Problems (Logistics)

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 6 5 7 8 9 10 11 18 12 14 13 19 15 20 16 17 21 22 23 24 25 26 27 28 29 30

Ti
m

e
(s

ec
on

ds
)

Problems (Satellite)

FF
LOBFS
OBFS
BFS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 6 5 7 8 9 1011181214131915201617

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Satellite)

FF
LOBFS
OBFS
BFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

21 22 23 24 25 26 27 28 29 30
Problems (Satellite)

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 9 8 10 11 13 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e
(s

ec
on

ds
)

Problems (ZenoTravel)

FF
LOBFS
OBFS
BFS

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 9 8 1011131214151617181920

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (ZenoTravel)

FF
LOBFS
OBFS
BFS

 100

 150

 200

 250

 300

 350

 400

 450

21 22 23 24 25 26 27 28 29 30
Problems (ZenoTravel)

Figure 3: Easy domains

156 ICAPS 2004

Driver 15 Driver 21 Driver 30 Rovers 24 Rovers 30
Init atoms 227 607 2130 5920 35791
Goals 10 38 163 33 127

FF OBFS LOBFS FF LOBFS LOBFS FF OBFS LOBFS LOBFS
Plan length 44 44 54 184 193 1574 130 133 145 560
Evaluated nodes 161 273 4 3266 8 38 3876 2114 9 24
Search time 0.21 0.84 0.02 207.89 0.45 93.92 418.32 430.95 1.97 44.35
Total time 0.26 0.97 0.14 209.40 1.96 284.65 422.48 437.92 8.87 219.13

Logistics 13 Logistics 15 Logistics 30 Satellite 21 Satellite 30
Init atoms 320 364 1140 971 10374
Goals 65 75 200 124 768

FF OBFS LOBFS FF LOBFS LOBFS FF OBFS LOBFS LOBFS
Plan length 398 387 403 505 477 1714 140 125 151 2058
Evaluated nodes 16456 16456 4 45785 4 5 22385 20370 5 5
Search time 527.21 1181.95 0.29 2792.51 0.42 16.64 188.69 328.42 0.12 33.73
Total time 528.10 1184.35 2.68 2793.82 3.88 96.69 188.82 328.70 0.40 94.24

Zeno 24 Zeno 25 Zeno 30
Init atoms 166 183 353
Goals 45 49 100

FF OBFS LOBFS FF LOBFS LOBFS
Plan length 163 165 177 179 211 444
Evaluated nodes 3481 5271 15 8714 16 20
Search time 562.09 1496.81 4.15 1898.26 6.45 59.67
Total time 564.07 1505.43 12.80 1901.03 18.98 247.06

Table 1: Largest problems in easy domains

 0.1

 1

 10

 100

 1000

 10000

25 1 2835 4 32 7 1112 3 9 5 2 292627341631 8 19213317233024 6 18201522101314

Ti
m

e
(s

ec
on

ds
)

Problems (Mprime)

FF
LOBFS
OBFS
BFS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

25 1 2835 4 32 7 1112 3 9 5 2 292627341631 8 19213317233024 6 18201522101314

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Mprime)

FF
LOBFS
OBFS
BFS

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 8 9 12 10 13 16 7 15 17 14 11 18 20 19

Ti
m

e
(s

ec
on

ds
)

Problems (Freecell)

FF
LOBFS
OBFS
BFS

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 8 9 12 10 13 16 7 15 17 14 11 18 20 19

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Freecell)

FF
LOBFS
OBFS
BFS

Figure 4: Medium difficulty domains

It is to be noted that FF had already good performances
in these domains, that are for the most part transportation
domains; but the time required for solving problems from
these domains and the size of problems that can be handled
have been considerably improved.

Medium difficulty problems

Although not as impressive as for the five first domains
we studied, the improvements obtained using the looka-
head technique are still interesting for these two domains,
as LOBFS has much better performances than OBFS (see
Figure 4). This last compares well to FF, and is more effi-

ICAPS 2004 157

 0.1

 1

 10

 100

 1000

 10000

1 2 3 10 13 7 16 17 11 19 18 21 14 4 8 5 9 22 12 15 6 20

Ti
m

e
(s

ec
on

ds
)

Problems (Depots)

FF
LOBFS
OBFS
BFS

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 10 13 7 16 17 11 19 18 21 14 4 8 5 9 22 12 15 6 20

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Depots)

FF
LOBFS
OBFS
BFS

 0.1

 1

 10

 100

 1000

 10000

1 7 18 25 28 11 29 27 3 26 30 2 20 19 17 15 13 14 9 6 12

Ti
m

e
(s

ec
on

ds
)

Problems (Mystery)

FF
LOBFS
OBFS
BFS

 0

 5

 10

 15

 20

 25

1 7 18 25 28 11 29 27 3 26 30 2 20 19 17 15 13 14 9 6 12

P
la

n
le

ng
th

 (n
um

be
r o

f a
ct

io
ns

)

Problems (Mystery)

FF
LOBFS
OBFS
BFS

Figure 5: Difficult domains

cient than BFS. The loss in quality of solution plan observed
for LOBFS remains limited to a small number of problems,
and for example in Mprime domain where LOBFS solves all
problems in less than 10 seconds, we could use LOBFS for
getting a solution as fast as possible and then another plan-
ner to get a better solution. We can remark that when FF
is faster than LOBFS, it is less than an order of magnitude;
and when LOBFS is faster than FF, it is often more than one
order of magnitude.

Difficult problems
Due to the loss in plan quality, the use of the lookahead tech-
nique is less interesting than in previous studied domains; it
however allows to find plans for problems where OBFS fails
to do so, and to get a better running time for a lot of prob-
lems (see Figure 5). Problems not solvable for any planner
are not reported in the graphs. Further developments of the
ideas presented in this paper should concentrate on improv-
ing the behavior of LOBFS for such domains, where there
are a lot of subgoal interactions as in the Depots domain, or
limited resources as in the mystery domain.

Lookahead utility
In order to try to characterize the effectiveness of the looka-
head strategy, we studied the impact of the lookahead utility
on the performance of our planner. The lookahead utility
can be defined as the percentage of actions of the relaxed
plans that are effectively used in lookahead plans. For ex-
ample, a lookahead utility of 60 for a given problem means
that on the average, 60% of the actions in the computed re-
laxed plans are used in lookahead plans. The graphs in Fig-

ure 6 represent the acceleration of the running time between
LOBFS and OBFS (i.e. the running time of LOBFS divided
by the running time of OBFS), for the lookahead utility of
each problem.

We can remark that the highest utility does not lead to the
best improvements in a given domain. For example in Zeno-
Travel, the best improvements can be found around an utility
of 30%, while between 60% and 90%, the improvements are
much more modest. This also happens in Freecell, where an
utility below 40% is better than above 70%. This suggests
that the strategy we defined (trying to use as most actions
of relaxed plans as possible, that is maximize the utility),
is perhaps not the best; or at least, producing better relaxed
plans could improve the process. We can also observe that in
domains where the lookahead strategy gives the best results
for both time and quality, e.g. in Logistics domain, utility is
grouped in a short interval (between 70% and 90%).

Conclusion
We presented a new method for deriving information from
relaxed plans, by the computation of lookahead plans. They
are used in a complete best-first search algorithm for com-
puting new nodes that can bring closer to a solution state.
We then improved this search algorithm by using helpful ac-
tions in a way different than FF, that preserves complete-
ness of the search algorithm in a strategy we called “opti-
mistic”. Although lookahead states are generally not goal
states and the branching factor is increased with each cre-
ated lookahead state, the experiments we conducted prove
that in numerous domains (Rovers, Logistics, DriverLog,
ZenoTravel, Satellite), our planner can solve problems that

158 ICAPS 2004

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

A
cc

el
er

at
io

n
LO

B
FS

 /
O

B
FS

Lookahead utility

DriverLog
Logistics
Rovers
Satellite
ZenoTravel

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

A
cc

el
er

at
io

n
LO

B
FS

 /
O

B
FS

Lookahead utility

Mprime
Freecell
Depots
Mystery

Figure 6: Improvement of the running time between OBFS and LOBFS in relation to the lookahead utility

are up to ten times bigger (in number of actions of the ini-
tial state) than those solved by FF or by the optimistic best-
first search without lookahead. The efficiency for problems
solved by all planners is also greatly improved when us-
ing the lookahead strategy. In domains that present more
difficulty for all planners (Mystery, Depots), the use of the
lookahead strategy can still improve performances for sev-
eral problems. There are very few problems for which the
optimistic search algorithm is better without lookahead. The
counterpart for such improvements in performances and size
of the problems that can be handled resides in the quality of
solution plans that can be in some cases degraded (generally
in domains where there are a lot of subgoal interactions).
However, there are few of such plans and quality remains
generally very good compared to FF.

This work can be extended in a number of ways. Amongst
them are improving the lookahead technique for domains
containing many subgoal interactions (which could benefit a
lot from the work about landmarks of (Porteous, Sebastia, &
Hoffmann 2001)), and interpreting the results presented here
in the light of recent works about complexity of planning
benchmarks (Hoffmann 2001; 2002; Helmert 2003).

Acknowledgments
Thanks to Pierre Régnier for his help and numerous discus-
sions. Thanks to Héctor Geffner for useful discussions, and
who first suggested the measure of lookahead utility. Thanks
also to the anonymous reviewers for their very helpful com-
ments.

References
Blum, A., and Furst, M. 1997. Fast planning through
planning-graphs analysis. Artificial Intelligence 90(1-
2):281–300.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. ECP-99, 360–372.
Bonet, B., and Geffner, H. 2000. HSP: Heuristic search
planner. AI Magazine 21(2).
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Proc.
AAAI-97, 714–719.
Cayrol, M.; Régnier, P.; and Vidal, V. 2001. Least commit-
ment in Graphplan. Artificial Intelligence 130(1):85–118.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proc. IJCAI-2001,
453–458.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In Proc. AIPS-2002,
379–387.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based planning. In Proc. IJCAI-99, 318–325.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning-graphs to an ADL subset. In
Proc. ECP-97, 273–285.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62:41–78.
Long, D., and Fox, M. 1999. The efficient implementation
of the plan-graph in STAN. JAIR 10:87–115.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73–123.
Pearl, J. 1983. Heuristics. San Mateo, CA: Morgan Kauf-
mann.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In Proc. ECP-2001, 37–48.
Vidal, V. 2003. A lookahead strategy for solving large
planning problems (extended abstract). In Proc. IJCAI-03,
1524–1525.

ICAPS 2004 159

