
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2011 1581

A Lossless Color Image Compression Architecture
Using a Parallel Golomb-Rice Hardware CODEC

Hong-Sik Kim, Joohong Lee, Hyunjin Kim, Sungho Kang, and Woo Chan Park, Member, IEEE

Abstract—In this paper, a high performance lossless color
image compression and decompression architecture to reduce
both memory requirement and bandwidth is proposed. The pro-
posed architecture consists of differential-differential pulse coded
modulation (DDPCM) and Golomb-Rice coding. The original
image frame is organized as m by n sub-window arrays, to which
DDPCM is applied to produce one seed and m × n − 1 pieces of
differential data. Then the differential data are encoded using the
Golomb-Rice algorithm to produce losslessly compressed data.
According to the experimental results on benchmark images, the
proposed architecture can guarantee high enough compression
rate and throughput to perform real-time lossless CODEC
operations with a reasonable hardware area.

Index Terms—Compression rate, DDPCM, Golomb-Rice
coding, lossless image compression.

I. Introduction

IN THIS PAPER, we consider the problem of hardware-
based lossless compression of color image data. In re-

quests for real-time image processing on massive multimedia
jobs, high performance communication between processor and
memory is required. In addition, increasing performance gaps
between embedded processors and external memories have re-
sulted in greater bandwidth requirement in the communication
networks or data buses. There still exist critical limitations
on the physical size of a bus due to the restricted operating
speed from signal integrity issues and increased hardware area.
Compressed memory architecture can be a good alternative
solution to the above problems since it can significantly reduce
requirements for increasing bus bandwidth [1], [2].

The compressed memory architecture should utilize a loss-
less compression algorithm because the original image should
be reconstructed from the compressed one. In addition, a
hardware-based, rather than a software-based, compression
methodology is required in order to implement real-time
features for data processing.

Manuscript received August 2, 2009; revised March 1, 2010 and May 24,
2010; accepted November 5, 2010. Date of publication March 17, 2011;
date of current version November 2, 2011. This paper was recommended
by Associate Editor M. Berekovic.

H.-S. Kim, H. Kim, and S. Kang are with the Department of Electrical
and Electronic Engineering, Yonsei University, Seoul 120-749, Korea (e-mail:
hongsik@yonsei.ac.kr; nagicman@soc.yonsei.ac.kr; shkang@yonsei.ac.kr).

J. Lee and W. C. Park are with the Department of Computer Engineering,
Sejong University, Seoul 143-747, Korea (e-mail: jhlee@rayman.sejong.ac.kr;
pwchan@sejong.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2011.2129350

Lossless image compression has been addressed with
Lempel-Ziv code [3], Golomb-Rice code [4], JPEG-LS [5],
and CALIC [6]. Most of these methodologies are software-
based approaches targeting a high compression rate. They
require complex hardware implementations to achieve suffi-
cient performance of compression for color image data. In [7],
in order to address the performance penalty which software-
based approaches usually accompany, the working sets are
selectively compressed according to the program phase in
which the changes are detected.

In [8]–[11], the compressed memory schemes to improve
the performance of embedded systems have been proposed.
Operating system-based memory compression architecture
is proposed to provide on-the-fly compression and decom-
pression for embedded systems [8]. In [9], discrete cosine
transform-based memory compression technique, which is
a lossy compression technique, is applied to the motion-
estimation applications. In [10], image compression hardware
architecture based on Hadamard transform and Golomb-Rice
coding is proposed. It, however, loses some data during the
Hadamard transform and Golomb-Rice encoding. In [11],
a new hardware-friendly adaptive decimation algorithm is
proposed to achieve low bit rate and less image quality
degradation for color images, which belongs to the lossy
compression technique. So the approaches in [9]–[11] are
not adequate for applications, such as most medical systems,
where loss of fidelity cannot be tolerated in compression and
decompression operations.

Many researches on hardware implementation of lossless
compression and decompression have been proposed in [12]–
[18]. In the previous schemes, since their complex coding
algorithms employ serious data dependency, the hardware
complexity and the performance degradation are increased
so that they are not adequate for the high throughput appli-
cations.

In this paper, a new hardware architecture for lossless color
image compression and decompression to improve throughput
by exploiting massive parallelism is proposed. The proposed
architecture consists of differential-differential pulse coded
modulation (DDPCM) [19] and Golomb-Rice encoding. Orig-
inal image frames are organized as m by n sub-window arrays,
to which DDPCM is applied to produce one seed and m×n−1
pieces of differential data. Then, the Golomb-Rice algorithm
encodes the differential data into variable length codeword.
Experimental results on real benchmark images show that the
proposed scheme can achieve high enough compression rate

1051-8215/$26.00 c© 2011 IEEE

1582 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2011

Fig. 1. Proposed hardware architecture for compression/decompression and segment data format.

and throughput to perform real-time lossless encoding and
decoding with a reasonable hardware area.

This paper is organized as follows. Sections II and III de-
scribe the proposed compression and decompression hardware
architectures, separately. Section IV provides experimental
results on real benchmark image data and Section V concludes
this paper.

II. Proposed Compression Architecture

Fig. 1 shows the architecture for the proposed compression
and decompression algorithms and the segment data format.
The proposed compression architecture consists of DDPCM
step and Golomb-Rice encoding step. In the first step, DDPCM
is applied to 4 × 4 block data (the sub-window size is
assumed to be 4 × 4 throughout this paper unless otherwise
described) to produce one piece of seed and 15 pieces of
differential data. The seed is used in its uncompressed form
while the differential data are encoded by Golomb-Rice coding
algorithm to produce the compressed data with variable length.

If the size of the compressed data is smaller than the size
of the uncompressed one, then the Golomb-Rice encoded data
is stored in the memory. Otherwise, the uncompressed data
is selected. Two types of segment data formats are used in
order to distinguish the two cases as shown in Fig. 1. A
V bit indicates whether the data is compressed or not. For
example, if the V bit is “0,” the data is meant to be compressed.
Otherwise, the data is uncompressed and the original data
(16 × 8 = 128 bits) follows. This V bit information is stored
at the V -buffer of the codec hardware as shown in Fig. 1
and the remaining data (75–128 bit variable codeword when

compressed and 128 bit original data when uncompressed) are
stored in the memory.

In the Seed field, the seed generated by DDPCM operation
is stored. The 15 bit Sign field contains information about the
signs of the 15 pieces of differential data calculated during
DDPCM step.

According to the Golomb-Rice algorithm, the original input
data is divided by 2k, to produce quotient data which will be
unary coded into a variable length unary codeword (15–68 bits)
and remainder data which will be used as a binary remainder
codeword. In this paper, the Golomb-Rice parameter of k is
assumed to be 2. In the Remainder field, fixed-length encoded
data of 15 × 2 bits for 15 remainders is stored. In addition,
the Unary field stores the variable length unary codeword for
15 quotients. Since the size of unary codeword is variable, its
length should be identified by L field.

The compression step is divided into two pipeline stages
as shown in Fig. 1 in order to reduce the critical path delay.
In the first stage, DDPCM-based preprocessing operations are
performed, and one piece of seed and 15 pieces of differential
data are latched and delivered to the second stage. In the
second stage, 15 pieces of differential data are compressed by
Golomb-Rice encoder and the encoded data is packed accord-
ing to the segment data format. In this section, the proposed
compression structure including a Golomb-Rice encoder and
a data packing module will be described in detail. For detailed
implementation of DDPCM operations, please refer to [10].

A. Golomb-Rice Encoder

The Golomb-Rice encoder receives 15 pieces of 10-bit
differential data from the DDPCM module and generates

KIM et al.: A LOSSLESS COLOR IMAGE COMPRESSION ARCHITECTURE USING A PARALLEL GOLOMB-RICE HARDWARE CODEC 1583

Fig. 2. Golomb-Rice encoder hardware structure.

Fig. 3. Example of unary encoding.

four outputs which are sign values (15 bits), 15 remainder
data (15×2 bits), variable length unary-encoded quotient data
(15–68 bits), and unary code length (7 bits). In the DDPCM
preprocessing step, 8-bit input data is processed by two
successive subtractions so that the length of the DDPCM result
data becomes 10 bits.

During unary encoding, if the sign of the input data is
restricted to positive numbers, then unary encoding can be
performed more efficiently since one unary code can stand for
two symbols, e.g., +7 and −7 can be encoded by one unary
code of 10 for k = 2. For this purpose, negative input values
are converted into positive ones, which are encoded by the
Golomb-Rice algorithm.

Fig. 2 describes the proposed Golomb-Rice hardware archi-
tecture. Since the Golomb-Rice algorithm uses only a power-
of-two divider, the k-bit splitter can replace the complex
divider as shown in Fig. 2. The splitter assigns the lower k

bits of the input data to a remainder and the higher 10-k bits
to a quotient. The unary encoder compresses the 15 pieces of
quotient data with unary codes. For example, if a quotient is 5,
then it is encoded with five successive 1s and one terminating
0, or 111110. The lengths of 15 pieces of encoded data can
vary, which means that both the positions of the terminating 0s
and the total length of the compression data for 15 quotients
are variable.

The operation of the unary encoder will be described with
a simple example in Fig. 3. In the example, there are five quo-

Fig. 4. Unary encoder hardware structure.

tients to be unary encoded. The unary-encoded sequence shall
be “1011101111100110.” In order to generate this encoded
sequence, the positions of the terminating 0s are calculated
by adding all previous quotients including the current one and
index numbers. For example, the third terminating position is
calculated by t3 = q1 + q2 + q3 + 2. Therefore, without loss
of generality, the ith terminating position, ti, can be calculated
by (1) and the last terminating position, t15, is to be the total
length of the unary-encoded data as follows:

ti =
i∑

j=1

qj + i − 1, (1 ≤ i ≤ 15). (1)

The equation to calculate each terminating zero position
is implemented by separate adders to improve calculation
throughput as shown in Fig. 4. After each adder calculates the
position of the corresponding terminating 0 by accumulating
adequate quotient values and index numbers, the code genera-
tor, which is a simple fully combinational circuit, produces the
final unary code according to the terminating positions. Since
the length of the unary code is variable, the length information
should be delivered to recover the original data. The code
length is exactly the same as the last terminating position, t15,
so that the position value of t15 is used to stand for the total
unary code length.

B. Data Packing

Once the Golomb-Rice encoding operation is finished, the
final compression data are produced by packing the encoded
codeword and information data according to the format in
Fig. 1. Sometimes, the length of the encoded data can be
greater than the length of the uncompressed data. In this
case, the original uncompressed data for 16 pixels are packed
together with the flag bit, V , set to 1. Otherwise, a piece of
seed data, a unary code length, the sign information of the
DDPCM results, the binary coded remainders, and the unary
encoded quotient data are packed together with the flag bit, V ,
set to 0. The corresponding V bits are stored at the V-buffer
of the codec hardware and the remaining data (75–128 bit
encoded codeword when compressed and 128 bit original data
when uncompressed) are stored in the memory.

1584 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2011

Fig. 5. Proposed decompression architecture.

III. Proposed Decompression Architecture

The decompression process is simply the inverse of the
compression process. As shown in Fig. 5, the whole decom-
pression flow consists of three steps of unpacking, Golomb-
Rice decoding, and inverse DDPCM. When a piece of sub-
window array data reaches, the unpacking hardware module
decides whether the data is a compressed one or not according
to the value of the V bit stored in the V-buffer. If the V bit is
1, then the data is directly forwarded to the processor without
any processing. Otherwise, Golomb-Rice decoding and inverse
DDPCM operations are performed to reconstruct the original
4 × 4 sub-window image data. The Golomb-Rice decoder
includes a unary decoder, a dividend reconstructor, and a sign
converter as shown in Fig. 5.

The decompressor is divided into two pipeline stages in
order to shorten the critical path delay. In the first stage,
compressed data is decoded by a Golomb-Rice decoder to
deliver one piece of seed and 15 pieces of differential data
to the second stage. In the second stage, inverse DDPCM is
applied to those pipelined data and original 4×4 sub-window
array data are reconstructed.

A. Golomb-Rice Decoding

Two pieces of informative data such as a remainder binary
codeword and a quotient unary codeword have been produced
by the Golomb-Rice encoder. The remainder binary codeword
does not need to be decoded, since the original remainder data
were directly used for the remainder binary codeword. On the
contrary, the quotient unary codeword should be decoded to
reconstruct the original quotient data.

Once 15 pieces of quotient data are reconstructed by the
unary decoder, 15 pieces of unsigned dividend data will be
recovered by putting together remainders and quotients as
shown in Fig. 5. Then the 15 pieces of unsigned differential
data are converted into the original signed data according to
the information in the Sign field. Finally, the 8-bit seed and 15
pieces of 10-bit differential data construct the DDPCM data
which will be processed to reconstruct the original 4 × 4 sub-
window image by the inverse DDPCM operation.

B. Unary Decoding

The unary decoder recovers the original 15 pieces of quo-
tient data from the unary codeword, which has variable length

Fig. 6. Proposed unary decoder.

between 15 bits and 68 bits. Each piece of decoded quotient
data has a fixed length of 8 bits. Since a unary code word
contains 15 pieces of compressed quotient data, there exist 15
terminating 0s within the variable length unary code word. At
first, the proposed unary decoding hardware determines the
position of terminating 0s and then reconstructs the original
quotient data by subtracting the successive two position values.

Fig. 6 illustrates the unary decoding process of the proposed
decoder with the same example used in Fig. 4. The unary
decoding process is exactly the inverse of unary encoding. In
the example, the 16-bit unary codeword contains five quotients
so that five terminating 0s are included in the unary codeword.
The locations of the 0s are calculated and then the final
quotients are generated according to the equation by the unary
decoder hardware as shown in Fig. 6. In order to improve the
throughput of the whole system, all 15 positions are calculated
in parallel.

IV. Experimental Results

A. Simulation Results

For the experiment, several benchmark images are selected
from real video data (benchmarks 1–4) and Quake 3 game
images (benchmarks 5–7) as shown in Fig. 7. The image
sizes of the benchmarks 1–4 are 352 × 288 and the image
sizes of the benchmark 5–7 are 320 × 240. The proposed
compression and decompression algorithms are implemented
in C++. Each piece of benchmark image data is constructed
according to a 4:2:0 YUV format. Therefore, YUV image
frames are separately organized as m×n sub-window array, to
which DDPCM is applied to produce one seed and m× n− 1
pieces of differential data. For the experiments, four different
combinations of sub-window arrays have been considered,
such as 4 × 4, 8 × 4, 8 × 8, and 16 × 8 sub-window arrays.
Then the differential data are encoded by the Golomb-Rice
algorithm to produce losslessly compressed data. The final
compression ratio is calculated by dividing the number of bits
to store the original input image with the number of bits to
store the compressed data.

In Table I, the compression ratios of the proposed algorithm
for the benchmark images in case of four sub-window arrays

KIM et al.: A LOSSLESS COLOR IMAGE COMPRESSION ARCHITECTURE USING A PARALLEL GOLOMB-RICE HARDWARE CODEC 1585

TABLE I

Compression Ratio of the Proposed Lossless Compression Algorithm

Compression Ratio
4 × 4 Array 8 × 4 Array 8 × 8 Array 16 × 8 Array

Y U V Sum Y U V Sum Y U V Sum Y U V Sum
Benchmark 1 1.46 1.65 1.69 1.52 1.53 1.77 1.80 1.60 1.56 1.83 1.86 1.65 1.60 1.87 1.92 1.68
Benchmark 2 1.44 1.65 1.68 1.50 1.50 1.76 1.79 1.58 1.54 1.82 1.86 1.63 1.57 1.86 1.90 1.66
Benchmark 3 1.53 1.66 1.67 1.57 1.62 1.76 1.78 1.66 1.67 1.83 1.84 1.72 1.71 1.86 1.88 1.76
Benchmark 4 1.22 1.60 1.62 1.33 1.24 1.69 1.72 1.37 1.26 1.75 1.79 1.39 1.26 1.78 1.81 1.40
Benchmark 5 1.52 1.60 1.63 1.55 1.59 1.68 1.71 1.62 1.62 1.74 1.77 1.66 1.62 1.76 1.80 1.67
Benchmark 6 1.59 1.65 1.63 1.60 1.67 1.74 1.72 1.69 1.71 1.81 1.79 1.74 1.73 1.84 1.81 1.76
Benchmark 7 1.56 1.61 1.58 1.57 1.64 1.70 1.66 1.65 1.68 1.76 1.71 1.70 1.70 1.79 1.74 1.72
Average 1.47 1.63 1.64 1.52 1.54 1.73 1.74 1.60 1.58 1.79 1.81 1.64 1.60 1.83 1.83 1.67

Fig. 7. Benchmark images. (a) Benchmark 1. (b) Benchmark 2. (c)
Benchmark 3. (d) Benchmark 4. (e) Benchmark 5. (f) Benchmark 6. (g)
Benchmark 7.

are presented. As the size of sub-window array increases, the
compression ratio also increases. For example, the average
compression ratios of 4×4, 8×4, 8×8, and 16×8 arrays are
1.52 1.59, 1.64, and 1.67, respectively. Since the spatial redun-
dancy of the adjacent data at the sub-window boundaries can-
not be exploited, the compression ratio of smaller sub-window
array will decrease. The compression ratio for benchmark
4 was relatively lower than the compression ratio for other
benchmark images. With benchmark 4, the sharp variance in
the brightness component (Y) reduces spatial redundancies so
that the compression ratio on Y value was relatively lower
than the other benchmark images. However, on average, the
proposed algorithm could guarantee more than 35% reduction
in storage compared to the uncompressed image, which means
that the proposed compression architecture can significantly
reduce the storage requirement.

B. Standard Cell-Based Implementation

The proposed hardware architecture of compression and de-
compression was designed with Verilog hardware description
language and synthesized with Synopsys Design Vision using a
0.15 μm complementary metal-oxide-semiconductor standard

cell library. Table II includes the synthesis results in terms of
area, critical path delay, and power consumption for various
sub-window cases of 4 × 4, 8 × 4, 8 × 8, and 16 × 8 pixels.
The hardware area is given in terms of gate equivalents (GEs),
assuming that a two-input NAND gate is one GE. In all cases,
the same number of pipeline stages and design constraints
were applied. Since the proposed architecture exploits massive
parallelism for compression and decompression operations,
the area increases exponentially as the sub-window array size
increases but the critical path delay slightly increases. For
example, comparing 4 × 4 array and 8 × 8 array cases, the
area increased by about three to four times but the critical
path delay increased by about 10%. According to the critical
path delay, in all cases, the encoder and decoder hardware
can operate well at clock frequency of higher than 100 MHz.
The dynamic power and static consumptions are calculated
by using Synopsys Design Vision under 1.2 V operating volt-
age and the maximum operating clock frequency (such as,
170 MHz for 4 × 4 case, 150 MHz for 8 × 4 case, 130 MHz
for 8×8 case, and 100 MHz clock frequency for 16×8 case).
The power consumption increases exponentially according to
the size of the sub-window. The throughputs of the proposed
CODEC hardware are provided in the fifth column. In order to
see the tradeoffs between different metrics, we have calculated
the throughput per unit area and the throughput per unit power
at the sixth and seventh columns of Table II, respectively.
According to the results, the proposed scheme guarantees the
most efficient throughput for the 4 × 4 sub-window case in
terms of both the power consumption and the hardware area.

C. Performance Analysis for Different Bus Bandwidths

The actual performance improvement of the proposed hard-
ware CODEC is limited by bus bandwidth. So we have
performed experiments for different bus bandwidths such as
1-byte, 2-byte, and 4-byte bandwidths. Fig. 8 illustrates the
experimental results for the performance improvement of the
proposed CODEC. We have normalized the performance of
the proposed CODEC to the performance of the system with-
out any compression. According to the results, the proposed
CODEC hardware could improve the system performance
by about 66.47% on average. In addition, for the narrow
bandwidth case, such as 1 byte bus, the contribution of the
proposed CODEC was more significant.

1586 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2011

TABLE II

Standard Cell-Based Implementation

Area (GEs) Delay (ns) Power (mW)
Throughput Throughput Per Unit Area Throughput Per Unit Power
(Gpixels/s) (Kpixels/s) (Mpixels/s×mW)

Dynamic Static

4 × 4
array

Encoder 15 998 4.23 4.48 0.004
2.72 41.91 308.42

Decoder 16 456 5.78 4.33 0.005
8 × 4
array

Encoder 54 560 4.59 14.84 0.013
5.02 22.83 16.92

Decoder 55 381 6.34 11.67 0.014
8 × 8
array

Encoder 202 095 4.95 55.51 0.049
8.64 9.97 7.65

Decoder 231 011 7.38 57.38 0.068
16×8
array

Encoder 639 195 5.26 176.53 0.157
13.31 4.96 3.64

Decoder 701 205 9.55 179.36 0.207

TABLE III

Performance Comparison Between the Proposed Scheme and the Previous Encoders

[15] [16] [17] [18] [20]
Proposed Encoder
(For 4×4 Array)

Algorithm X-Match ProRli SPIHT JPEG-LS Arithmetic Coding FELICS DDPCM + Golomb Rice
Technology Altera FPGA EP20K100 0.18 μm 0.18 μm Xilinx Vertex 4 0.13 μm 0.15 μm

Operating frequency (MHz) 34.7 30 40 123 273 170
Throughput (MB/s) 275 13.82 9.9 123 546 2720
Compression ratio 1.51 2.00 NA 1.76 2.35 1.52

Parallelism 2 1 1 1 2 16

Area
Logic (GEs) 245 K 26 K 17.6 NAa 12.97 K 16.00 K

Memory (Byte) Not used 1.28 K 2.25 K 7.7 K 1.9 K Not used
Power (mW) NA 3.36 7.17 NA 33.93 4.48

Power efficiency (MB/mW) NA 4.11 1.38 NA 16.0 607.14

aIn [18], the hardware area is expressed as the number of the logic and FF slices and LUT, so that we could not provide exact GE.

Fig. 8. Performance evaluation for different bus bandwidth configurations.

D. Comparison with the Previous Encoder Schemes

Table III provides the comparison between the proposed
scheme and the various previous lossless compression hard-
ware approaches [15]–[18], [20] in terms of the algorithm,
the technology, the operating frequency, the throughput, the
compression ratio, the parallelism, the hardware area, and
the power consumption. Except for the compression ratio,
the proposed scheme shows the best results in terms of
hardware complexity, performance, and power consumption.
The compression ratio of the proposed scheme was relatively
lower than the compression ratios of [16], [18], and [20] since
the proposed scheme adopts much simpler preprocessing stage
based on DDPCM algorithm. The usability of the proposed

TABLE IV

Decoder Performance Comparison

Technology Operating Logic Area Throughput
Frequency (GEs) (MB/s)

Proposed 0.15 μm 170 MHz 16.46 K 2720
decoder
Lossless JPEG 0.18 μm 200 MHz 39 K 500
decoder [21]

scheme would be limited due to its lower compression ra-
tio. The DDPCM algorithm, however, is better for parallel
implementation so that the proposed encoder hardware could
guarantee much higher throughput than the other schemes due
to its extensive parallelism exploitation. Also, in terms of
the power efficiency the proposed architecture demonstrates
superior performance. Therefore, the proposed system would
be more adequate for the high throughput applications.

E. Comparison with the Previous Decoder Schemes

Table IV shows the comparison between the proposed
decoder scheme and the lossless JPEG decoder. Since we
could not find any decoder hardware implementation for the
previous schemes [15]–[18], [20], the comparison with the
lossless JPEG decoder implementation [21] is provided in
Table IV. According to the results in Table IV, the proposed
scheme outperforms the lossless JPEG decoder in terms of
hardware complexity and performance.

KIM et al.: A LOSSLESS COLOR IMAGE COMPRESSION ARCHITECTURE USING A PARALLEL GOLOMB-RICE HARDWARE CODEC 1587

V. Conclusion

In this paper, hardware architecture and implementation
of a new lossless image compression and decompression
scheme were presented. The proposed algorithm consists of
DDPCM and Golomb-Rice coding. The input image frame is
organized as n × m sub-window arrays, to which DDPCM is
applied to produce one piece of seed and (n × m − 1) pieces
of differential data. Then Golomb-Rice coding algorithm is
applied to the differential data in order to produce losslessly
compressed data. New hardware architecture for compression
and decompression are proposed to contribute to memory
bandwidth reduction by exploiting parallelism of operations.
Experimental results on real benchmark image data show that
the proposed architecture can guarantee adequate performance
enhancement for real-time lossless encoding and decoding op-
erations with moderate hardware area and power consumption.

References

[1] E. G. Hallnor and S. K. Reinhardt, “A unified compressed memory hier-
archy,” in Proc. 11th Int. Symp. High-Performance Comput. Architect.,
2005, pp. 201–212.

[2] S. Roy, R. Kumar, and M. Prvulovic, “Improving system performance
with compressed memory,” in Proc. 15th Int. Parallel Distributed
Process. Symp., 2001, pp. 630–636.

[3] J. Ziv and A. Lempel, “Compression of individual sequences via variable
rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, no. 5, pp. 530–536,
Sep. 1978.

[4] S. W. Golomb, “Run-length codings,” IEEE Trans. Inform. Theory, vol.
12, no. 7, pp. 399–401, Jul. 1966.

[5] JPEG LS Image Coding System, document ISO/IEC JTC1/SC29/WG1
N399-WD14495, ISO/IEC, Jul. 1996.

[6] X. Wu and N. D. Memon, “Context-based adaptive lossless image
coding,” IEEE Trans. Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.

[7] D. Nakar and S. Weiss, “Selective main memory compression by
identifying program phase changes,” in Proc. 3rd Workshop Memory
Performance Issues, 2004, pp. 96–101.

[8] L. Yang, H. Lekatsas, R. Dick, and S. Chakradhar, “Operating
system-based memory compression for embedded systems,” U.S. Patent
US2007005911A1, 2007.

[9] R. R. Osorio and J. D. Bruguera, “A combined memory compression
and hierarchical motion estimation architecture for video encoding in
embedded systems,” in Proc. 9th EUROMICRO Conf. Digital Syst. Des.:
Architect., Methods, Tools, 2006, pp. 269–274.

[10] T. Y. Lee, “A new frame-recompression algorithm and its hardware
design for MPEG-2 video decodes,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 6, pp. 529–534, Jun. 2003.

[11] A. Wu and P. W. M. Tsang, “VLSI implementation of computation
efficient color image compression scheme based on adaptive decimation
for portable device application,” J. Signal Process. Syst., vol. 59, no. 3,
pp. 267–279, 2010.

[12] K. Denecker, D. V. D. Ville, F. Habils, W. Meeus, M. Brunfaut, and I.
Lemahieu, “Design of an improved lossless halftone image compression
codec,” Signal Process.: Image Commun., vol. 17, no. 3, pp. 277–292,
2002.

[13] L. Brooks and K. Fife, “Hardware efficient lossless image compression
engine,” in Proc. IEEE Int. Conf. Acou., Speech, Signal Process., 2004,
pp. 17–21.

[14] X. Chen, N. Canagarajah, and J. L. Nunez-Yanez, “lossless multi-mode
interband image compression and its hardware architecture,” in Proc.
Conf. Des. Architect. Signal Image Process., 2008, pp. 208–215.

[15] M. Milward, J. L. Nunez, and D. Mulvaney, “Design and implementation
of a lossless parallel high-speed data compression system,” IEEE Trans.
Parallel Distributed Syst., vol. 15, no. 6, pp. 481–490, Jun. 2004.

[16] C.-C. Cheng, P.-C. Tseng, C.-T. Huang, and L.-G. Chen, “Multi-mode
embedded compression codec engine for power-aware video coding
system,” in Proc. IEEE Workshop Signal Process. Syst., Nov. 2005, pp.
532–537.

[17] L. Xiaowen, X. Chen, X. Xie, G. Li, L. Zhang, C. Zhang, and Z. Wang,
“A low power, fully pipelined JPEG-LS encoder for lossless image
compression,” in Proc. IEEE Int. Conf. Multimedia EXPO, Jul. 2007,
pp. 1906–1909.

[18] X. Chen, N. Canagarajah, J. L. Nunez-Yanez, and R. Vitulli, “Hardware
architecture for lossless image compression based on context-based
modeling and arithmetic coding,” in Proc. IEEE Int. SoC Conf., Sep.
2007, pp. 251–254.

[19] S. Morein, “ATI Radeon: HyperZ technology,” in Hot3D Session Euro-
graphics Workshop Graphics Hardware, Aug. 2000.

[20] T.-H. Tsai, Y.-H. Lee, and Y.-Y. Lee, “Design and analysis of high-
throughput lossless image compression engine using VLSI-oriented
FELICS algorithm,” IEEE Trans. Very Large Scale Integr. Syst., vol.
18, no. 1, pp. 39–52, Jan. 2010.

[21] CAST. Image, Video, and Audio Interface IP Cores [Online]. Availble:
http://www.cast-inc.com/ip-cores/images

Hong-Sik Kim received the B.S., M.S., and Ph.D.
degrees in electrical and electronic engineering from
Yonsei University, Seoul, Korea, in 1997, 1999, and
2004, respectively.

In 2005, he was a Post-Doctoral Fellow with
the Virginia Institute of Technology, Blacksburg. In
2006, he was a Senior Engineer with System LSI
Group, Samsung Electronics Company, Gwangju,
Korea. He is currently a Research Professor with
Yonsei University. His current research interests
include design for testability, test cost reduction,

lossless data compression, and 3-D graphics rendering hardware design.

Joohong Lee received the B.S. degree in Internet
engineering and the M.S. degree in computer science
from Sejong University, Seoul, Korea, in 2008 and
2010, respectively.

He is currently an Assistant Engineer with the Re-
search and Development Team, Digital Appliances,
Samsumg Electronics Company, Ltd. His current re-
search interests include 3-D rendering processor ar-
chitecture, high performance computer architecture,
real-time ray tracing, embedded systems, system-
on-chip design, lossless image compression, and

software engineering.
Hyunjin Kim received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Yonsei Uni-
versity, Seoul, Korea, in 1997, 1999, and 2010,
respectively.

From 2002 to 2004, he was a Research Engineer
with the Research and Development Center, Sam-
sung Electro Mechanics, Suwon, Korea. His current
research interests include parallel string matching,
reconfigurable computing, interconnection networks,
micro architecture, and compilers.

Sungho Kang received the B.S. degree from Seoul
National University, Seoul, Korea, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Texas at Austin, Austin.

He was a Post-Doctorial Fellow with the Uni-
versity of Texas at Austin, a Research Scientist
with the Schlumberger Laboratory for Computer
Science, Schlumberger Inc., Austin, and a Senior
Staff Engineer with Semiconductor Systems Design
Technology, Motorola Inc., Austin. Since 1994, he
has been an Associate Professor with the Department

of Electrical and Electronic Engineering, Yonsei University, Seoul. His current
research interests include very large scale integration (VLSI) design, VLSI
computer-aided design, and VLSI testing and design for testability.

Woo-Chan Park (M’11) received the B.S., M.S.,
and Ph.D. degrees in computer science from Yonsei
University, Seoul, Korea, in 1993, 1995, and 2000,
respectively.

From 2001 to 2003, he was a Research Professor
with Yonsei University. He is currently an Associate
Professor of computer engineering, Sejong Univer-
sity, Seoul. His current research interests include
ray tracing processor architecture, 3-D rendering
processor architecture, real-time rendering, advanced
computer architecture, computer arithmetic, lossless

image compression hardware, and application-specific integrated circuit de-
sign.

