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ABSTRACT

In this paper, a novel lossless compression method for volumet-
ric medical datasets based on 3D adaptive prediction is presented.
While almost all existing methods are based on a three-dimensional
wavelet transform, this method, referred to as LSE-3D, evaluates
the performance of an algorithm that operates on a least-square pre-
diction basis. This leads to a different method with approximately
similar results on compression performance, although with some
advantages on computational cost.

1. INTRODUCTION

An important problem in medical imaging is that of efficient volu-
metric image compression, since the amount of medical data would
easily overwhelm the storage and transmission systems. Lossless
compression is preferred by physicians in order to avoid many legal
and regulatory issues [1]. There is a broad range of medical image
sources, and for most of them discarding small image details that
might be an indication of pathology could alter a diagnosis, causing
severe human and legal consequences.

General lossless compression engines are considered to be com-
posed of two main operational blocks: a data decorrelation block
and a second stage aimed at an entropy codification of decorre-
lated data. Usually, two major tendencies have been distinguished
on the decorrelation module: former employs wavelet transforms,
whereas the latter supports methods based on predictive coding.
This fact is clearly reflected in principal ITU-T compression stan-
dards: JPEG2000 [2] is the main representative of the first group,
while JPEG-LS [3] is the best paradigm of the latter.

The increasing use of three-dimensional imaging modalities, like
Magnetic Resonance Imaging (MRI), Computerised Tomography
(CT), Ultrasound (US), Single Photon Emission Computed Tomog-
raphy (SPECT) and Positron Emission Tomography (PET), trig-
gers the need for efficient techniques to transport and store the
related volumetric data. In this context, it is meaningful that the
ISO/IEC JTC1/SC29/WG1 committee decided to develop an ex-
tension (i.e. Part 10) of JPEG2000 that will give support to three-
dimensional encoding mechanisms [4]. Recently several examples
of 3-D wavelet-based coding engines have arisen, either from di-
rect extensions to a third space of already defined still image com-
pression methods, like 3D SPIHT (Set Partitioning in Hierarchical
Trees) [5], or just defined as new algorithms, like CS-EBCOT (Cube
Splitting) [6] or 3D QT-L (QuadTree-Limited) [7]. Usually these
techniques are rich featured but computationally intensive, with typ-
ical bottlenecks in memory access [6, 8]. While intensive attention
is paid to transform-based compression methods, the problem of
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adaptive prediction coding applied to volumetric image compres-
sion is relatively under-investigated.

It has been proved for still continuous-tone images [9] that JPEG-
LS offers quite an efficient performance, since compression rates
obtained have reached very similar results to those of JPEG2000
in spite of its greater simplicity, both computational and concep-
tual. Therefore, it is reasonable to think that an extension of basic
JPEG-LS premises to 3D images shall have similar satisfactory re-
sults. This paper focuses on this aspect, trying to shed light on a
compression algorithm computationally efficient.

Predictive coding methods are founded on a coding process of
residuals together with the prediction model employed, instead of
directly perform image data coding. Prediction errors, which hope-
fully shall have small amplitudes with fairly high probability, are
coded using entropy coding techniques that tend to associate shorter
binary codes to most probable symbols. Compression is achieved
this way, being lossless whenever prediction model is spatially
causal. In this context, the most efficient schemes employ a context-
based entropy coding, i.e., a different entropy coder is used depend-
ing on the values of adjacent pixels. Since a context value describes
the local properties of the volume region where a prediction error
occurs, a more accurate description of the prediction error distrib-
ution is obtained within the context, and therefore higher compres-
sion rates are achieved.

Linear prediction is an efficient decorrelation tool for stationary
sequences. Although it is commonly assumed that natural images
are characterized by abrupt changes in local statistics, the moti-
vation behind linear adaptive prediction is based on fact that im-
age values can be considered as locally stationary sequences, so it
would be possible to optimally exploit dependencies within causal
context of the pixel by an adaptive model. Context-based adap-
tive prediction schemes [10], like those implemented in JPEG-LS
and CALIC, have proved to achieve significant improvements over
fixed predictors such as lossless mode of JPEG standard. They can
be seen as variable prediction models that change according to a
experimentally tuned switching function, to adapt to local statistics.
In this sense, least-square(LS) adaptive linear prediction schemes
[12] have demonstrated important improvements over former mod-
els due to their natural adaptation to actual data.

The rest of the paper is organized as follows. Section 2
presents the proposed prediction-based compression scheme for
three-dimensional images. The lossless coding results obtained for
five volumetric data sets recorded with different imaging modali-
ties are shown in section 3, together with a comparative analysis
between our coder and some wavelet-transform based methods. Fi-
nally, section 4 summarizes the conclusions.

2. LSE-3D CODER DESCRIPTION

In this section, we propose a lossless compression scheme for vol-
umetric images, referred to as LSE-3D (Least Square Estimation
in 3-D), which is characterized with improved efficiency compared
with state-of-the-art adaptive prediction-based algorithms. It is
based on a scheme for still image coding presented in [11], extend-
ing it in order to consider information from third spatial dimension.



Figure 1: Ordering of 3-D causal context, based on euclidean dis-
tance to current voxel.

In other words, we will try to remove spatial redundancy present in
all three dimensions of volume, taking into consideration the values
of adjacent voxels, with low delay and limited complexity.

2.1 Least-square linear prediction

A reasonable assumption made with natural images is the Nth order
Markovian property. That is, we only need to consider the N nearest
causal neighbors in the prediction, that will shape the ”‘context”’ of
the prediction.

Ŝ(i) =
N

å
k=1

αkS(i− k)

In order to explain proposed LS-based prediction method in a
easy and intuitive manner, an order relationship established among
context voxels will be defined. A 3-D euclidean distance is defined
as

d3−D =
√

(m−mo)2 +(n−no)2 +(p− po)2

where S(m,n, p) is the voxel in causal context of S(mo,no, po), that
represents processed voxel. Usually, volumetric images will be
scanned in a raster-scanning order along each slice. This way, it will
be possible to adopt i to denote the spatial coordinate, being S(i)
the value of the voxel in coordinates (m,n, p). A three-dimensional
causal neighborhood could be defined over current and previous
slice, according to an ordering such as the one shown in Figure 1,
allowing us to refer to the kth nearest neighbor in the causal context
as S(i− k).

The LS approach enables us to find the optimal coefficients ak
such that the sum of squares of differences between the predic-
tion Ŝ(i) and the actual value S(i) is minimized. This will allow to
achieve local statistics adaptation and obtain the optimum predic-
tion within a causal region (called ”‘training window”’). Denoted
by ~x = [S(i− 1) · · ·S(i−M)]T , this window will describe the local
region where the LS-based estimator is being assessed. Translating
this training window to each component of the linear prediction we
would obtain an M×N matrix

C =

 S(i−1−1) · · · S(i−1−N)
...

...
S(i−M−1) · · · S(i−M−N)



where S(i−m− n) is the mth prediction neighbor of S(i− n). Us-
ing standard theory on optimal linear prediction, results from the
minimization of the prediction error power are derived from

~α = (CTC)−1CT~x.

It must be noted that ~α and Ŝ(i) are computed on the basis of
past information, so the decoder would be able to replicate all op-
erations without requiring any side-information. Coefficient assess-
ment therefore implies the calculation of the inverse of a square
matrix of size N. This can be done using the Gauss-Jordan elimina-
tion process, but considering that CT ·C represents the covariance
matrix of the considered voxel values, and that it is consequently
definite positive, the inverse could be effectively assessed as well
by Cholesky decomposition, with half computational cost [13].

Initially, coefficients assessment should be done for each voxel
in volume, in order to achieve maximum local statistics adaptation.
But in practice, this would derive in a great and often inefficient
computational load. Thus, in same manner as in [11], we will con-
sider that while the prediction error does not exceed a predefined
threshold T linear coefficients will not be recalculated, allowing to
perform LS optimization only when necessary. Furthermore, when-
ever covariance matrix is singular, coefficients will be initialized
to 1/N, thus assuming that the prediction is the mean value of the
considered context.

2.2 Error prediction coding

Once the prediction error has been obtained (as the floor value of the
difference between the present voxel value and the assessed predic-
tion), this error is entropy coded. Continuing with our philosophy of
local statistics adaptation, a context-based code will be used; actu-
ally a Golomb-Rice code, similar to that defined in JPEG-LS stan-
dard [3], will be proposed due to its simplicity and relatively low
computational cost.

The prediction error, e, is an integer random variable which is
entropy coded using a context based probabilistic model. It can be
represented with no loss of information using a modulo-2b repre-
sentation in the range [−2b−1,2b−1 − 1], where b is the bit preci-
sion. This is because any representation of the form ê = e + k · 2b

permits to recover S = e + k · 2b + Ŝ with no ambiguity, since the
decoder can compute Ŝ and it is known in advance that S is in the
range [0,2b−1]. Thus, there is no need for an extra bit in the repre-
sentation of the difference e = S− Ŝ. The modulo-2b representation
of e typically has a two-sided geometric distribution, possibly with a
nonzero average value which is actually estimated and removed be-
fore coding, via a bias correction procedure. Furthermore, to map
the two-sided geometric distribution into a one-sided one, for which
computationally efficient coding schemes exist, positive and nega-
tive values of the prediction error are interleaved and remapped into
the range of non-negative integers. Finally, a Golomb-Rice code is
used to represent these prediction residuals.

Golomb-Rice codes are a family of codes indexed by a single
parameter, which clearly depends on the input distribution charac-
teristics. Like JPEG-LS, our proposal does not use a single proba-
bilistic model for the prediction error distribution, but a set of 365
models and, consequently, of Golomb-Rice codes. Each model is

Figure 2: Context considered in prediction residual coding.



Name Resolution Bit Depth
ECHO 256x256x256 8 bpp

MR 256x256x200 12 bpp
CT 512x512x44 12 bpp

PET 128x128x39 15 bpp

Table 1: Test images used in performance analysis.

chosen within the particular context in which the prediction error
has occurred. The context value is calculated by quantizing a vec-
tor of pixel differences, namely [d − b,b− c,c− a](see Figure 2).
For each context, the prediction error distribution is estimated us-
ing errors in the past, and then the appropriate Golomb-Rice code is
selected. JPEG-LS also includes a run-mode procedure to code im-
age regions with constant pixel values, which is maintained in our
proposal. Thus, when processing a low entropy region, with null
context value, the algorithm will be further simplified as only the
run-length value will be coded.

3. EXPERIMENTAL RESULTS

In this section, some experimental results are reported, evaluating
the performance corresponding to different options for the parame-
ters of the proposed lossless compression algorithm. Several test
were done on four volumes, representative of most-used modali-
ties of medical imaging: a magnetic resonance (MR), an echogra-
phy (ECHO), a positron-emission tomography (PET), and an X-ray
computerized tomography (CT). These volumes were also used in
[6] for evaluation and will allow us both to evaluate our algorithm
with different image sizes and bit depths and to compare it with
other state-of-the-art techniques, in order to achieve a greater valid-
ity for our compression algorithm.

3.1 Performance analysis

Lossless coding results are reported for several implementations of
our LSE-3D coding method, using a set of values for M, N and T
parameters on each of selected test volumes. For completeness in
the performance study, these results need to be compared against
those achieved by state-of-the-art techniques, like 3D-SPIHT [5] or
3D QT-L [6]. Obviously, just providing an objective measure for
compression performance will not be enough for a fair comparison.
Hence, we also analyze the computational cost associated to each
implementation of the considered techniques.

Since measure dependency on image properties was not desired,
compression efficiency was chosen for doing the performance com-
parison, computed as

CE =
Orig. Image Size−Compressed Image Size

Orig. Image Size
×100

.
Figure 3 shows the lossless coding efficiency results achieved by

several implementations of the LSE-3D coder, together with the re-
sults (reported in [6]) achieved by two wavelet-based techniques,
taking the latter as reference values. Denoted by LSE-3D(M,N),
reported implementations are provided with N-th order linear pre-
dictors, where linear coefficients assessment is done over M-size
contexts. Normally, values of parameter M are chosen around N2

for better performance [11], while parameter T , that represents the
error threshold that triggers the assessment of linear coefficients, is
bit-depth dependent.

Figure 4 reports computational costs in terms of floating-point
operations (sums and multiplications) per voxel derived from exe-
cution of LSE-3D prediction algorithm on each test volume. We can
infer a clear compromise between this magnitude and compression
performance that must be solved in each case.

We notice that for all volumes, the LSE-3D coder achieves an
similar coding performance than wavelet-based schemes for low
values of T , providing even better results in the ECHO and PET

Figure 3: Compression efficiency (CE) derived from evaluated loss-
less coders implementations over test volumes, (a) MR (b) CT (c)
PET (d) ECHO. LSE-3D coder results are reported for several val-
ues of T parameter.

volumes. The compression efficiency clearly gets diminished with
greater values of threshold T , although at the same time the number
of operations per voxel noticeably drops to very low levels. Since
LSE-3D is designed for greater performance in positions with lim-
ited computational resources, gain in computational cost will pre-
vail over compression efficiency. Therefore the selection of the val-
ues for the coder parameters in each volume will be submitted to
the achievement of a good compromise between these performance
measures.

3.2 Comparative analysis

Due to the different nature of our proposed method and the wavelet-
based coders considered, any fair comparison should regard not
only measurable performance but also any additional features sup-
ported. For example, both 3D QT-L and 3D-SPIHT have resolution
and quality scalability because of their use of wavelet transforms
and progressive coding algorithms. In this sense, we will compare
the complexity of the decorrelation method separately from the one
derived from the codification module in both compression strate-
gies, i.e., the residual prediction coding or the wavelet-based tech-
niques.

Regarding codification, our method based on Golomb-Rice
codes was aimed to be simple yet efficient, with little computa-
tional resources. From this point of view, it clearly outperforms
other coding methods employed in wavelet-based techniques, where
usually complex optimization algorithms and arithmetic codes are
used. However, due to the fact that these coding processes carry out
a set of complementary features that our codec does not support,
i.e., progressive coding, we will take the complexity of the coding
algorithm as a consequence of the further desirable characteristics
of the compression method.

Thus far, decorrelative processes stand out as decisive in com-
parative analysis. Figure 4 illustrates the number of floating-point
operations (sums and multiplications) per voxel associated to a 5-
level wavelet transform that employs a lossless 5x3-lifting kernel
in all 3 dimensions, together with those carried out during predic-
tion algorithm in each LSE-3D implementation. The former slightly



Figure 4: Computational cost (CC) derived from evaluated lossless
coders implementations over test volumes, (a) MR (b) CT (c) PET
(d) ECHO. LSE-3D coder results are reported for several values of
T parameter.

vary around 36 operations per voxel, whereas the latters are strongly
dependent of T parameter. It can be noticed that, for all volumes,
an LSE-3D coder implementation delivers up to 50% less compu-
tational load than wavelet-based algorithms, while provided com-
pression efficiency is maintained within a 5% interval of the best
performance.

4. CONCLUSIONS

This paper proposes a new lossless coding algorithm based on a
predictive scheme aimed to be simple but efficient, referred to as
LSE-3D. Its performance was compared with state-of-the-art tech-
niques, including 3D SPIHT and 3D QT-L, analyzing both com-
pression efficiency and computational load. Based on a test bed of
4 medical volumes it was shown that our LSE-3D coder performs
a bit below wavelet-based techniques, although its computational
requirements are much less restrictive. This work provide compet-
itive lossless coding results on positions with critical restrictions
imposed on available computational resources.
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