
A Lossless Data Reduction for Mining

Constrained Patterns in n-ary Relations

Gabriel Poesia and Löıc Cerf

Department of Computer Science, Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

{gabriel.poesia,lcerf}@dcc.ufmg.br

Abstract. Given a binary relation, listing the itemsets takes exponen-
tial time. The problem grows worse when searching for analog patterns
defined in n-ary relations. However, real-life relations are sparse and,
with a greater number n of dimensions, they tend to be even sparser.
Moreover, not all itemsets are searched. Only those satisfying some user-
defined constraints, such as minimal size constraints. This article pro-
poses to exploit together the sparsity of the relation and the presence
of constraints satisfying a common property, the monotonicity w.r.t. one
dimension. It details a pre-processing step to identify and erase n-tuples
whose removal does not change the collection of patterns to be discov-
ered. That reduction of the relation is achieved in a time and a space
that is linear in the number of n-tuples. Experiments on two real-life
datasets show that, whatever the algorithm used afterward to actually
list the patterns, the pre-process allows to lower the overall running time
by a factor typically ranging from 10 to 100.

1 Introduction

Given a binary relation, which generically represents objects having (or not)
some Boolean properties, an itemset is a subset of the properties. It can be asso-
ciated with the subset of all objects having all those properties. Those objects are
called the support of the itemset. Mining the itemsets with their supports allow
the discovery of correlations between arbitrary numbers of Boolean properties,
between arbitrary number of objects and between the objects and the properties.
For instance, mining a binary relation indicating whether a customer (an object)
bought a food item (a property) can unveil interesting buying behaviors. The
pattern ({Alice,Bob,Dave}, {bread,cheese,oil,salt}) indicates that the three
customers in the support are the only ones who bought together the four food
items in the itemset. The number of itemsets is exponential in the number of
properties and so is the time to compute them.

To keep under control the size of that output, two techniques are classically
used. First of all, the itemsets that are not closed can be removed from the
output without any loss of information. Every non-closed itemset is, by def-
inition, strictly included into another itemset with the exact same support.
For instance, {bread,cheese,oil,salt} is not closed if Alice, Bob and Dave

T. Calders et al. (Eds.): ECML PKDD 2014, Part II, LNCS 8725, pp. 581–596, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



582 G. Poesia and L. Cerf

all bought some butter. If there is no other food item that they all bought,
{bread,cheese,oil,salt,butter} is closed. With the support stored along with
the closed itemset, the support of any itemset can easily be retrieved from the
reduced collection of patterns: it is the support of the smallest superset that
is closed. However the number of closed itemsets remains exponential in the
number of objects or in the number of properties (whichever is smaller).

To further reduce the output, the sole relevant (closed) itemsets must be
shown. The relevance is usually defined by the analyst as a conjunction of con-
straints that every output itemset must satisfy. For instance, knowing the subset
W of customers who are women and the function p returning the price of the
food item in argument, our analyst may want to take a look at the patterns
(C, I) satisfying the following constraints:

C≥8 women(C, I) ≡ |C ∩W | ≥ 8 for at least eight women in every pattern;
C≤12 items(C, I) ≡ |I| ≤ 12 for at most twelve items in every pattern;
C50-min-area(C, I) ≡ |C × I| ≥ 50 for at least fifty tuples in the cover of every

pattern;
C8$-max-price(C, I) ≡ maxi∈I p(i) ≤ 8 for all items in every pattern having a

price below 8$;
C4$-min-range-price(C, I) ≡ max(i,i′)∈I2(p(i)− p(i′)) ≥ 4 for a price difference of

at least 4$ between the cheapest and the most expensive item in every pat-
tern;

C10$-min-total-price(C, I) ≡
∑

i∈I p(i) ≥ 10 for at least 10$ worth of items in ev-
ery pattern.

Depending on the algorithm at work, some constraints can guide the search
of the itemsets, i. e., regions of the pattern space are left unexplored because
they do not contain any relevant itemset. Doing so, the relevant patterns can be
discovered in a fraction of the time required to list every unconstrained pattern.

When dealing with “big data”, whose growth in quantity is steeper than that
of disk sizes, the first technique that is commonly applied is to simply identify
irrelevant data that need not be stored. Constraints on itemsets play this role on
the “big data output”. But what about using the constraints before the actual
extraction to reduce the input data? The binary relation is not “big”. Neverthe-
less, because listing the constrained itemsets generally remains NP-hard, that
simple idea can lead to a great reduction of the overall running time. This is es-
pecially true when a constraint allows, in a pre-processing step, to remove some
tuples but cannot be used by the chosen algorithm to prune the pattern space
(hence the need for a filter at the output). Notice that the removed tuples must
be guaranteely useless, i. e., with or without them, the closed itemsets satisfying
the constraints must be the same.

Such a pre-processing method has already been proposed for (not necessarily
closed) itemset mining [3]. In this article, the closedness is taken into consider-
ation. More challenging, the task is generalized toward n-ary relations. For ex-
ample, our proposal can take advantage of some of the constraints listed above
in the context of a ternary relations that encode whether customers buy items
along time (e. g., the third element of a 3-tuple can be jan-14 or feb-14 or etc.).



A Lossless Data Reduction for Mining Constrained Patterns 583

That pre-process works at the level of tubes, i. e., one dimensional subspaces of
the n-ary relation such as ({Alice}, {bread},all months in which Alice bought
bread), ({Alice},all items Alice bought in jan-14, {jan-14}) and (all cus-
tomers buying bread in jan-14, {bread}, {jan-14}). The Cartesian product of
the n dimensions of a tube is called the cover of this tube. The less n-tuples in
the cover of a tube, the more likely they can be seamlessly removed altogether
from the relation thanks to a constraint that is monotone w.r.t one dimension, a
property that this article introduces and that many common constraints happen
to satisfy. Moreover, every n-tuple is in the cover of n tubes “oriented” in each
of the n dimensions of the relation. As a consequence, emptying a tube makes
it more likely that some of the orthogonal tubes can be emptied in a sequence.
Indeed, their covers have just lost one n-tuple.

The pre-process therefore is effective as long as the relation contains tubes
with small covers. It turns out that real-life n-ary relations often are sparse and
even sparser for a greater n. In our example, a customer who ever bought an
item usually did not buy it every month and the ternary relation is sparser than
the binary one. Furthermore, the distribution, over all tubes, of the number
of covered tuples often is skewed, i. e., most of the tubes cover few n-tuples.
All those n-tuples, covered by the long tail of the distribution, are prone to be
removed by the pre-process. Figure 1 shows such a distribution for one of the
real-life ternary relations we used in our experiments. Each curve relates to one
“orientation” for the tubes. In the log-scaled abscissa, those tubes were ordered
in decreasing order of the number of 3-tuples they cover.

After presenting the related work in Sect. 2, Sect. 3 provides some definitions
and formally defines the data-mining problem we consider. In Sect. 4, the pre-
process is detailed and its correctness proved. Sect. 5 shows, on two real-life
datasets that it frequently allows to solve the problem orders of magnitude faster.
Finally, Sect. 6 briefly concludes.

2 Related Work

Given a binary relation, which can be seen as a Boolean matrix, the famous
Apriori algorithm [1] mines itemsets under a minimal frequency constraint, i. e.,
a minimal number of rows in the support of the itemset. Apriori first considers
the individual columns of the matrix and removes those with a number of present
tuples that is below the frequency threshold. Indeed, such columns cannot be
involved in any frequent itemset. This property of the frequency constraint has
later been called anti-monotonicity by opposition to monotonicity [9].

[5] and [6] are among the early studies of the efficient extraction of pat-
terns under both monotone and anti-monotone constraints. A monotone con-
straint on the rows of a pattern is anti-monotone when applied, instead, on
its columns. This duality obviously vanishes when considering Boolean tensors,
i. e., relations of higher arities. In this article, the expression monotonicity w.r.t.
one dimension is coined. In the specific context of a binary relation, a con-
straint is monotone w.r.t. rows (respectively columns) if it only deals with rows



584 G. Poesia and L. Cerf

Fig. 1. Distributions of the number of 3-tuples in the cover of the tubes w.r.t. each of
the three dimensions of the densest Retweet relation



A Lossless Data Reduction for Mining Constrained Patterns 585

(respectively columns) and is anti-monotone (respectively monotone) in the clas-
sical meaning of the word.

When constrained patterns are to be extracted from a binary relation, the
individual rows (respectively columns) that do not satisfy the monotone (re-
spectively anti-monotone) constraints can be removed. ExAnte [3] iteratively
performs that reduction of a binary relation until a fixed point is reached, i. e.,
until no more row or column is removed. The algorithm presented in this article
can be seen as a generalization of ExAnte toward n-ary relations (n ≥ 2). To the
best of our knowledge, it is the first attempt to pre-process an n-ary relation to
speed up the subsequent search of constrained patterns.

Those “patterns” naturally generalize itemsets (along with their supports).
More precisely, a pattern in an n-ary relation consists of n subsets of each of the
n dimensions and only covers tuples present in the relation, i. e., the Cartesian
product of the n subsets must be included in the relation. [11], [10] and [14] detail
algorithms to mine such patterns in ternary relations. [7] and [13] directly tackle
the search of patterns in arbitrary n-ary relations. All those algorithms actually
enforce an additional maximality property, the closedness constraint, which is
known to losslessly reduce the collection of patterns to the most informative
ones [8]. Besides, they all are able to focus the search of the patterns on those
having user-specified minimal numbers of elements in each of the dimensions. In
fact, all of them but Data-Peeler [7] only consider minimal size constraints. In
contrast, Data-Peeler can prune the search of the patterns with any piecewise
(anti)-monotone constraint and, as a consequence, with any constraint that is
monotone w.r.t. one dimension (as defined in this article).

3 Definitions and Problem Statement

All along the article, × denotes the Cartesian product and
∏

is used for the
Cartesian product of an arbitrary number of sets. Given n ∈ N dimensions of
analysis (i. e., n finite sets) (Di)i=1..n, the dataset is a relation R ⊆

∏n

i=1 Di,
i. e., a set of n-tuples. Table 1 represents such a relation RE ⊆ {α, β, γ} ×
{1, 2, 3, 4} × {A,B,C}, hence a ternary relation. In this table, every ‘1’ (resp.
‘0’) at the intersection of three elements stands for the presence (resp. absence)
of the related 3-tuple in RE . E. g., (α, 1, A) ∈ RE and (α, 1, C) /∈ RE .

Table 1. RE ⊆ {α, β, γ} × {1, 2, 3, 4} × {A,B,C}

A B C A B C A B C

1 1 1 0 0 0 1 0 1 0
2 0 0 0 1 1 0 1 1 0
3 1 0 1 0 1 1 1 0 0
4 1 0 0 1 0 0 0 1 0

α β γ



586 G. Poesia and L. Cerf

An n-set (X1, · · · , Xn) consists of n subsets of each of the n dimensions, i. e.,
(X1, · · · , Xn) ∈

∏n

i=1 P(Di). For example, given the dimensions of RE , ({α, γ},
{2, 4}, {B}) is an n-set, whereas ({β}, {4}, {A,α}) is not because α /∈ D3.

An i-tube (with i ∈ {1, · · · , n}) is a special n-set: all its dimensions but the
ith are singletons and its ith dimension contains all the elements in Di that form,
with the elements in the singletons, n-tuples present in the relation. Formally,
(T1, · · · , Tn) ∈

∏n

i=1 P(Di) is an i-tube in R ⊆
∏n

i=1 Di if and only if:
{

∀j ∈ {1, · · · , i− 1, i+ 1, · · · , n}, ∃tj ∈ Dj | Tj = {tj}

Ti = {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R}
.

({α}, {1, 3, 4}, {A}) is an example of a 2-tube in RE . ({α}, {1, 3}, {A}) is not a
2-tube in RE because 4 is not in its second dimension although (α, 4, A) ∈ RE .
({α}, {1, 2, 3, 4}, {A}) is not a 2-tube either because (α, 2, A) /∈ RE .

A constraint over an n-set is a predicate, i. e., a function that associates every
n-set with a value of either true or false. The data mining task we consider is
the extraction, from an n-ary relation, of all patterns (“pattern” will be defined
in the next paragraph) satisfying a conjunction of constraints that are indepen-
dent from the relation. The introduction of this article provides six examples
of constraints. None of them depends on the relation, i. e., the sole n-set and,
possibly, some external data (such as W and p in the introduction) are sufficient
to evaluate the constraint.

A pattern in an n-ary relation is a natural generalization of a closed itemset
and its support in a binary relation. It is an n-set (1) whose cover (the Cartesian
product of its n dimensions) is included in the relation and (2) that is closed. The
closedness is a property of maximality. It means that no element can be added
to any of dimension of the pattern without breaking property (1). Formally,
(X1, · · · , Xn) ∈

∏n

i=1 P(Di) is a pattern in R ⊆
∏n

i=1 Di if and only if:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1)
∏n

i=1 Xi ⊆ R

(2) ∀(X ′
1, · · · , X

′
n) ∈

∏n

i=1 P(Di),
{

∀i ∈ {1, · · · , n}, Xi ⊆ X ′
i

∏n

i=1 X
′
i ⊆ R

⇒ ∀i ∈ {1, · · · , n}, Xi = X ′
i

.

For brevity, we sometimes write Cclosed(X1, · · · , Xn,R) to mean that the n-set
(X1, · · · , Xn) satisfies property (2).

({β, γ}, {2}, {A,B}) is an example of a pattern in RE because (1) the four
3-tuples in {β, γ}×{2}×{A,B} belong to RE and (2) no element can be added
to any of its dimensions without breaking property (1). ({β}, {2}, {A,B}) is not
a pattern in RE because it is not closed: it is “included” in ({β, γ}, {2}, {A,B}),
which only covers 3-tuples that are present in RE . ({α, γ}, {1}, {A}) is not a
pattern either because (γ, 1, A) can be formed by taking an element in each of
its dimensions and (γ, 1, A) /∈ RE .

The data mining task considered in this paper can now be formalized. Given a
relation R ⊆

∏n

i=1 Di and a set Call of constraints that are all independent from
the relation, the problem is the computation of the following set T h(R, Call):



A Lossless Data Reduction for Mining Constrained Patterns 587

{

(X1, · · · , Xn) ∈

n
∏

i=1

P(Di) |

{

(X1, · · · , Xn) is a pattern in R

∀C ∈ Call, C(X1, · · · , Xn)

}

However, this work is not about a new algorithm to solve the problem. It is about
computing a relation R′ ⊆ R that is as small as possible and yet guarantees that
T h(R′, Call) = T h(R, Call). In this way, the actual pattern miner potentially runs
faster on R′ and yet outputs the correct and complete collection of constrained
patterns.

To shrink R into R′, the algorithm proposed in this article exploits the con-
straints in Call that aremonotone w.r.t. one dimension. They are constraints that
do not depend on any dimension of the n-set but one and that are monotone
w.r.t. the inclusion order on this dimension, i. e., if an n-set satisfies a constraint
that is monotone w.r.t. dimension i, then any n-set with a larger ith dimension
(w.r.t. set inclusion) satisfies it as well. Formally, a constraint C is monotone
w.r.t. dimension i (with i ∈ {1, · · · , n}) if and only if:

∀(X1, · · · , Xn) ∈
∏n

i=1 P(Di), ∀Yi ⊆ Di,
C(X1, · · · , Xn) ⇒ C(X1, · · · , Xi−1, Xi ∪ Yi, Xi+1, · · · , Xn) .

Among the six constraints listed in the introduction, C≥8 women is monotone
w.r.t. the customerdimension;C8$-max-price,C4$-min-range-price andC10$-min-total-price

are monotone w.r.t. the food item dimension. C≤12 items is not monotone: given an
n-set that satisfies it, there exists another n-set with more than twelve items, in-
cluding all those involved in the first n-set. C50-min-area is not monotone w.r.t. one
dimension either because it depends on two dimensions of the n-set.

4 Dataset Reduction

The reduction of the n-ary relation R ⊆
∏n

i=1 Di, which is proposed in this
article, is based on the removal of the n-tuples covered by an i-tube that does
not verify a constraint that is monotone w.r.t. dimension i. This section first
proves that this operation does not change the set of constrained patterns that
is to be discovered. Then the actual algorithm is presented and its complexity
is analyzed.

4.1 Fundamental Theorem

Let us first show that the ith dimension of a pattern necessarily contains a subset
of the ith dimension of any i-tube that covers some of its tuples:

Lemma 1. Given a pattern (X1, · · · , Xn) in R and an i-tube (T1, · · · , Tn) in
R (with i ∈ {1, · · · , n}), we have:

⎛

⎝

n
∏

j=1

Xj

⎞

⎠ ∩

⎛

⎝

n
∏

j=1

Tj

⎞

⎠ �= ∅ ⇒ Xi ⊆ Ti .



588 G. Poesia and L. Cerf

Proof. If
(

∏n

j=1 Xj

)

∩
(

∏n

j=1 Tj

)

�= ∅, then ∀j ∈ {1, · · · , n}, Xj ∩ Tj �= ∅. By

definition of the i-tube (T1, · · · , Tn), ∀j �= i, |Tj| = 1. As a consequence, ∀j �= i,
Tj ⊆ Xj (1). Assume, by contradiction, Xi �⊆ Ti, i. e., ∃e ∈ Xi \ Ti. By (1)
and the first property defining the pattern (X1, · · · , Xn), T1 × · · ·Ti−1 × {e} ×
Ti+1 × · · · × Tn ⊆

∏n

j=1 Xj ⊆ R (2). By definition of the i-tube (T1, · · · , Tn),
Ti = {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R}. With (2), we therefore have
e ∈ Ti, which contradicts the assumption. ⊓⊔

From now on, Ci (with i ∈ {1, · · · , n}) denotes the conjunction of all con-
straints in Call that are monotone w.r.t. dimension i. Clearly, Ci is monotone
w.r.t. dimension i. The following lemma states that whenever an i-tube violates
Ci, removing the n-tuples covered by this i-tube leads to a reduced relation that
does not embed any pattern absent from the original relation.

Lemma 2. Given R, Call and an i-tube (T1, · · · , Tn) in R (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h

⎛

⎝R \

n
∏

j=1

Tj , Call

⎞

⎠ ⊆ T h (R, Call) .

Proof. Let (X1, · · · , Xn) ∈ T h(R \
∏n

j=1 Tj, Call).

By the first property defining the pattern (X1, · · · , Xn) in R \
∏n

j=1 Tj ,
∏n

j=1 Xj ⊆ R \
∏n

j=1 Tj. Because R \
∏n

j=1 Tj ⊆ R and by transitivity of ⊆,
∏n

j=1 Xj ⊆ R (1).
Assume, by contradiction, ¬Cclosed(X1, · · · , Xn,R). By definition of Cclosed,

∃(X ′
1, · · · , X

′
n) ∈

∏n

i=1 P(Di) |

⎧

⎪

⎨

⎪

⎩

∏n

i=1 X
′
i ⊆ R(2)

∀i ∈ {1, · · · , n}, Xi ⊆ X ′
i(3)

∃i ∈ {1, · · · , n} | Xi � X ′
i(4)

. We necessar-

ily have
∏n

i=1 X
′
i �⊆ (R \

∏n

i=1 Ti) otherwise, with (3) and (4), it would follow
that ¬Cclosed(X1, · · · , Xn,R \

∏n

j=1 Tj) what would contradict (X1, · · · , Xn) ∈

T h(R\
∏n

j=1 Tj, Call). By adding (2) to that, we have (
∏n

j=1 X
′
j)∩(

∏n

j=1 Tj) �= ∅

and, by Lemma 1, X ′
i ⊆ Ti. Because (3) imposes Xi ⊆ X ′

i, we have, by transitiv-
ity of ⊆,Xi ⊆ Ti. Therefore, by contraposition of the definition of the monotonic-
ity w.r.t. dimension i that holds for Ci, ¬Ci(T1, · · · , Tn) ⇒ ¬Ci(X1, · · · , Xn). As
a consequence, (X1, · · · , Xn) /∈ T h(R\

∏n

j=1 Tj, Call), a contradiction. Therefore,
the assumption is wrong, i. e., Cclosed(X1, · · · , Xn,R) (5).

Finally, because all constraints in Call are independent from the relation, the
fact that (X1, · · · , Xn) satisfies them in R \

∏n

j=1 Tj implies that it satisfies
them as well in R. Together with (1) and (5), we therefore have (X1, · · · , Xn) ∈
T h(R, Call). ⊓⊔

One final lemma to state the opposite of Lemma 2, i. e., whenever an i-tube
violates Ci, removing the n-tuples covered by this i-tube leads to a reduced
relation that embeds every pattern present in the original relation.



A Lossless Data Reduction for Mining Constrained Patterns 589

Lemma 3. Given R, Call and an i-tube (T1, · · · , Tn) in R (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h (R, Call) ⊆ T h

⎛

⎝R \

n
∏

j=1

Tj , Call

⎞

⎠ .

Proof. Let (X1, · · · , Xn) ∈ T h(R, Call).
By the first property defining the pattern (X1, · · · , Xn) in R,

∏n

j=1 Xj ⊆ R

(1). Assume, by contradiction,
∏n

j=1 Xj �⊆ R \
∏n

j=1 Tj . With (1), we have

(
∏n

j=1 Xj) ∩ (
∏n

j=1 Tj) �= ∅, i. e., Lemma 1 applies and Xi ⊆ Ti. By con-
traposition of the definition of the monotonicity w.r.t. dimension i that holds
for Ci, ¬Ci(T1, · · · , Tn) ⇒ ¬Ci(X1, · · · , Xn). As a consequence, (X1, · · · , Xn) /∈
T h(R, Call), a contradiction. Therefore, the assumption is wrong, i. e.,

∏n

j=1 Xj ⊆

R \
∏n

j=1 Tj (2).

Cclosed(X1, · · · , Xn,R \
∏n

j=1 Tj) (3) directly follows from R \
∏n

j=1 Tj ⊆ R
and, in a sequence, from the closedness of (X1, · · · , Xn) in R: ∀(X ′

1, · · · , X
′
n) ∈

∏n

j=1 P(Dj),

{

∀j ∈ {1, · · · , n}, Xj ⊆ X ′
j

∏n

j=1 X
′
j ⊆ R \

∏n

j=1 Tj ⊆ R
⇒ ∀j ∈ {1, · · · , n}, Xj = X ′

j.

Finally, because all constraints in Call are independent from the relation, the
fact that (X1, · · · , Xn) satisfies them in R implies that it satisfies them as well
in R \

∏n

j=1 Tj. Together with (2) and (3), we therefore have (X1, · · · , Xn) ∈

T h(R \
∏n

j=1 Tj , Call). ⊓⊔

Finally, here is the theorem at the foundation of the data reduction proposed
in this article.

Theorem 1. GivenR, Call and an i-tube (T1, · · · , Tn) inR (with i ∈ {1, · · · , n}),
we have:

¬Ci(T1, · · · , Tn) ⇒ T h (R, Call) = T h

⎛

⎝R \

n
∏

j=1

Tj , Call

⎞

⎠ .

Proof. The equality follows from Lemmas 2 and 3.

4.2 Algorithm

The obvious pre-process, which directly follows from Th. 1, would consider, one
by one and for all i ∈ {1, · · · , n}, every i-tube in R. It would test whether the
related Ci is satisfied and, if not, it would “empty” the i-tube. However, the
removal of an n-tuple in an i-tube corresponds as well to the removal of this
same n-tuple in every orthogonal j-tube (with j �= i). Such a j-tube may have
already been considered and was satisfying Cj . However, since Cj is monotone
w.r.t. dimension j, the j-tube may now violate Cj because it contains one element
less in its jth dimension. In this way, the constraints that are monotone w.r.t.
one dimension work in synergy with the constraints that are monotone w.r.t.



590 G. Poesia and L. Cerf

any other dimension. When one is effective, (i. e., allows to identify a tube to
empty), it makes it more likely that the others become effective.

The following pseudo-code formalizes the pre-process. It enumerates, one by
one, the n-tuples in the relation and checks all n tubes that cover each of the n-
tuples. Whenever an i-tube is emptied because it violates Ci, the j-tubes (j �= i)
that involve the removed n-tuples are rechecked. In this way, the pre-process only
terminates when all i-tubes, for all i ∈ {1, · · · , n}, are either empty or satisfy
the related constraint Ci.

Data: relation R ⊆
∏n

j=1
Dj , set Call of constraints that are all independent

from R
begin

forall the (t1, · · · , tn) ∈ R do

forall the i ∈ {1, · · · , n} do

CleanTube(R, i, (t1, · · · , ti−1, ti+1, · · · , tn));

Algorithm 1. CleanRelation

Data: relation R ⊆
∏n

j=1
Dj , orientation of the tube i ∈ {1, · · · , n}, elements in

the singletons of the tube (t1, · · · , ti−1, ti+1, · · · , tn)
begin

Ti ← {ti ∈ Di | (t1, · · · , ti−1, ti, ti+1, · · · , tn) ∈ R};
if ¬Ci({t1}, · · · , {ti−1}, Ti, {ti+1}, · · · {tn}) then

forall the ti ∈ Ti do

R ← R \ {(t1, · · · , tn)};
forall the j ∈ {1, · · · , i− 1, i+ 1, · · · , n} do

CleanTube(R, j, (t1, · · · , tj−1, tj+1, · · · , tn));

Procedure. CleanTube()

In the pseudo-code, there may be no removal of n-tuples in an i-tube between
two checks of this i-tube. To avoid that, the actual implementation does not
directly execute the recursive calls of CleanTube. Instead, the tubes in argu-
ments of those calls are stored in a hash set (hence no duplicate). As long as
the hash set is non-empty, a tube is retrieved from it and the related call of
CleanTube is made. Once the hash map is empty, the execution comes back
to CleanRelation.

Also, the tubes are not actually computed from the set of all n-tuples whenever
they are required. Instead, the n-ary relation is stored n times as the set all i-
tubes (i ∈ {1, · · · , n}).



A Lossless Data Reduction for Mining Constrained Patterns 591

4.3 Complexity Analysis

In the worst case scenario, CleanRelation’s enumeration of the n-tuples does
not identify any tube to empty but the last one. Then, every single n-tuple is
removed one by one, hence |R| calls of the CleanTube function. In this scenario,
the pre-process consists of four steps whose time complexities follow:

Storage of R: O(n|R|) since every n-tuple in R is stored n times; it is the
space complexity of the overall pre-process too (assuming no external data
is required to verify or speed up the verification of some constraints);

Outer-most enumeration: O(|R|
∑n

i=1 check(Ci)) where check(Ci) denotes
the cost of verifying whether one i-tube verifies the constraints in Call that
are monotone w.r.t. dimension i;

Actual cleaning: O(|R|
∑n

i=1 check(Ci));
Output of the remaining n-tuples: O(|R|); the worst-case scenario for this

step corresponds to no actual cleaning.

Overall, the pre-process has a O(n|R|) space complexity and a time complex-
ity of O(|R|

∑n

i=1 check(Ci)). Notice that, for common constraints, check(Ci) is
cheap. For instance, it is O(1) for minimal size constraints (assuming every i-
tube is stored in a container with a constant time access to its size) or minimal
sum constraints over positive numbers (assuming the sums for each i-tube are
stored and updated whenever an n-tuple in it is erased). It is O(log |Di|) for a
maximal, a minimal or a min-range constraint (using respectively max-heaps,
min-heaps and both).

5 Experimental Study

CleanRelation is integrated to Data-Peeler, which is free software1. It is
implemented in C++ and compiled by GCC 4.7.2 with the O3 optimizations.
Because it is a pre-process, any pattern extractor can work on the reduced rela-
tion it outputs. We received, from their respective authors, the implementations
of CubeMiner [11], Trias [10], Data-Peeler [7], TriCons [14] and CnS-

Miner [13], i. e., all (exact) pattern extractor that handle ternary relations (or
more in the cases of Data-Peeler and CnS-Miner). Unfortunately, CnS-

Miner never produced any output and we therefore decided to focus the exper-
imental study on ternary relations where comparisons can be made. TriCons

did not work, either crashing or returning an incomplete output.
The remaining three algorithms are tested on a GNU/LinuxTM system run-

ning on top of 3.10GHz cores and 12GB of RAM. CubeMiner and Data-

Peeler, both implemented in C++, were compiled with GCC 4.7.2. Trias was
compiled and interpreted by Oracle’s JVM version 1.7.0 45. CubeMiner and
Trias can only prune the search space with minimal size constraints on some
or all dimensions of the pattern. In contrast, Data-Peeler’s traversal of the

1 It is available, under the terms of the GNU GPLv3, at
http://dcc.ufmg.br/~lcerf/en/prototypes.html#d-peeler.

http://dcc.ufmg.br/~lcerf/en/prototypes.html#d-peeler


592 G. Poesia and L. Cerf

pattern space can be guided by any number of piecewise (anti)-monotone con-
straints. That includes any constraint that is monotone w.r.t. one dimension.
As a consequence, unless the sole minimal size constraints are desired, Data-

Peeler would be preferred. Fortunately, minimal size constraints are monotone
w.r.t. one dimension. The remainder of this section compares the times CubeM-

iner, Trias and Data-Peeler take to list minimally sized patterns in ternary
relations, with and without the pre-process

5.1 Retweet Dataset

The micro-blogging service Twitter is particularly popular in Brazil. Tweets
about the Brazilian soccer championship were collected from January, 9th 2014
to April, 11th 2014 (92 days) and classified w.r.t. to the mentioned team(s)
(supervised classification method, which is out of the scope of this paper). How
many times a user is retweeted (i. e., other users “repeat” her tweets) is known
to be a good measure of her influence [12]. 184,159 users were retweeted at least
once during the considered period. A 3-dimensional tensor gives how many times
each of them is retweeted (over all her messages) during a given day when writing
about a given soccer team (among 29). That tensor contains 731,685 non-null
values.

It is turned into a ternary relation by keeping the tuples relating to cells of
the tensors with a high enough number of retweets. In the experiments on this
dataset, the threshold is a variable. On the contrary, the minimal size constraints
on the patterns are kept constant: at least two days, two teams and two users.
Although those constraints are rather loose, the pre-process is efficient because
the relation is very sparse. In the most challenging context, when one retweet is
considered “influential enough”, CleanRelation only keeps 263,413 out of the
731,685 3-tuples, a 64% reduction.

5.2 Distrowatch Dataset

DistroWatch2 is a popular Web site that gathers comprehensive information
about GNU/LinuxTM, BSD, and Solaris operating systems. Every distribution
is described on a separate page. When a visitor loads a page, her country is
known from the IP address. The logs of the Web server are turned into a ternary
relation that gives for any time period (13 semesters from early 2004 to early
2010) and every page (describing 655 distributions), the countries that visited it
more than 25 times. From that relation, we consider the extraction of all patterns
involving at least four semesters, m distributions and m countries, where m is
an integer variable ranging from 5 to 48.

The relation contains 150,834 3-tuples, a number that is comparable to those
of the Retweet relations. However, it is considerably denser. Because of that, and
even with strong minimal size constraints, some of the algorithms cannot mine
the patterns in the relation that is not pre-processed. Those same algorithms

2 http://www.distrowatch.com

http://www.distrowatch.com


A Lossless Data Reduction for Mining Constrained Patterns 593

benefit a lot from the pre-process, with overall running times that become several
orders of magnitude shorter. With m = 10, CleanRelation keeps 65,130 out
of the 150,834 3-tuples, a 57% reduction.

5.3 Pre-processing Time

Figure 2 depicts Data-Peeler’s running times on the Retweet relations with
and without the pre-processing step. The actual data reduction takes only a
fragment of the time required by the subsequent extraction. Despite the loose
constraints at work (“at least two elements in every dimension of the pattern”),
the pre-process is effective. With it, Data-Peeler lists all the constrained pat-
terns in about one percent of the time it takes to process the non-reduced relation
(for the exact same result).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10000  100000  1e+06

ti
m

e
 (

s
)

tuples

pre-processing
pattern mining

total
total without pre-processing

Fig. 2. Running times of CleanRelation and Data-Peeler running with and with-
out the pre-processing step on the Retweet relations

5.4 Time Gains over the Whole Task

Figures 3 and 4 show the time gains CleanRelation brings to all the three
tested algorithms. 24 hours are not enough for CubeMiner to directly mine
the patterns in the DistroWatch dataset, even under the strongest considered
constraints. However, in this same context but with the pre-process, it returns
those patterns in 0.028s, i. e., at least three million times faster than without
CleanRelation. Data-Peeler, which is the fastest algorithm when no pre-
process is used, remains the fastest when it is used. However Data-Peeler



594 G. Poesia and L. Cerf

benefits less from CleanRelation than CubeMiner. The pre-process allows
to divide the overall running time by a factor ranging between 2 and 4. Trias is
5 to 100 times faster when it mines the reduced relation rather than the original
one. It is faster for Trias to compute from the reduced relation all patterns with
at least four semesters, 16 distributions and 16 countries than to compute from
the original relations the patterns with at least four semesters, 23 distributions
and 23 countries.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5  10  15  20  25  30  35  40  45  50

ti
m

e
 (

s
)

minimum number of distributions and countries

Data-Peeler with pre-processing
Data-Peeler without pre-processing

Trias with pre-processing
Trias without pre-processing

CubeMiner with pre-processing

Fig. 3. Running times of Data-Peeler, CubeMiner and Trias with and without the
pre-processing step on the Distrowatch relation

CubeMiner first computes an amount of memory to allocate for the pattern
space. With an unreduced Retweet dataset, that amount overflows the number
of bits in an integer and CubeMiner crashes. On the other hand, when mining
the reduced relation, CubeMiner is efficient. It even competes with Data-

Peeler for the sparsest versions of the dataset. Within a few hours, Trias

manages to extract the constrained patterns only if the relation is very sparse.
By preceding the call of Trias by the pre-process, the results dramatically
improve. The running times are divided by about 50,000. Data-Peeler is the
only algorithm that allows to extract, in a reasonable time, the patterns in the
densest versions of the dataset. The pre-processing step helps it a lot in those
more challenging contexts. In the dataset encoding whether a user was retweeted
at least once when writing about a team during a day, the ternary relation, which
used to contain 731,685 3-tuples, is reduced to only 170,388 tuples (≈ 23% of
the original size). In sequence, Data-Peeler runs about 100 times faster on the
reduced relation.



A Lossless Data Reduction for Mining Constrained Patterns 595

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10000  100000  1e+06

ti
m

e
 (

s
)

tuples

Data-Peeler with pre-processing
Data-Peeler without pre-processing

Trias with pre-processing
Trias without pre-processing

CubeMiner with pre-processing

Fig. 4. Running times of Data-Peeler, CubeMiner and Trias with and without the
pre-processing step on the Retweet relations

6 Conclusion

When searching for itemset-like patterns in an n-ary relation, constraints are,
in practice, required. They specify some relevance criteria every pattern must
satisfy, reduce the output to a manageable size and drastically lower the extrac-
tion times (if the algorithm can prune the search space with the constraints). In
this article, we have identified a common property among constraints, the mono-
tonicity w.r.t. one dimension, that allows to empty tubes (i. e., one-dimensional
subspaces) of the relation while guaranteeing the presence of the same con-
strained patterns in the reduced data. Because an n-tuple belongs to n different
tubes, constraints on the different dimensions of the pattern (e. g., minimal size
constraints) work in synergy: emptying a tube makes it easier to empty the or-
thogonal tubes that used to contain the erased n-tuples. Once the fixed point
reached, the actual pattern extraction, with any algorithm, takes place. Because
real-life n-ary relations usually are sparse, the effectiveness of our pre-process
can be impressive: in our experiments, the overall time to mine the patterns
with the fastest algorithm, Data-Peeler, is lowered by a factor typically rang-
ing from 10 to 100 and it can reach millions for less efficient algorithms. In the
same way that the idea behind ExAnte [3] was then applied along the search for
the itemsets [2,4], we currently investigate an analog integration of the present
proposal into Data-Peeler.



596 G. Poesia and L. Cerf

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994: Proceedings of the 20th International Conference on
Very Large Data Bases, pp. 487–499. Morgan Kaufmann (1994)

2. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAMiner: Optimized level-
wise frequent pattern mining with monotone constraints. In: ICDM 2003: Pro-
ceedings of the 3rd International Conference on Data Mining, pp. 11–18. IEEE
Computer Society (2003)

3. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAnte: Anticipated
data reduction in constrained pattern mining. In: Lavrač, N., Gamberger, D.,
Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp.
59–70. Springer, Heidelberg (2003)

4. Bonchi, F., Goethals, B.: FP-Bonsai: the art of growing and pruning small FP-trees.
In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056,
pp. 155–160. Springer, Heidelberg (2004)

5. Boulicaut, J.F., Jeudy, B.: Using constraints during set mining: should we prune
or not? In: BDA 2000: Actes des 16ème Journées Bases de Données Avancées, pp.
221–237 (2000)

6. Bucila, C., Gehrke, J., Kifer, D., White, W.M.: DualMiner: a dual-pruning algo-
rithm for itemsets with constraints. In: KDD 2002: Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
42–51. ACM Press (2002)

7. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary
relations. ACM Transactions on Knowledge Discovery from Data 3(1), 1–36 (2009)

8. Gallo, A., Mammone, A., Bie, T.D., Turchi, M., Cristianini, N.: From frequent
itemsets to informative patterns. Tech. Rep. 123936, University of Bristol, Senate
House, Tyndall Avenue, Bristol BS8 1TH, UK (December 2009)

9. Grahne, G., Lakshmanan, L.V.S., Wang, X.: Efficient mining of constrained cor-
related sets. In: ICDE 2000: Proceedings of the 16th International Conference on
Data Engineering, pp. 512–521. IEEE Computer Society (2000)

10. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias–an algorithm
for mining iceberg tri-lattices. In: ICDM 2006: Proceedings of the 6th IEEE Inter-
national Conference on Data Mining, pp. 907–911. IEEE Computer Society (2006)

11. Ji, L., Tan, K.L., Tung, A.K.H.: Mining frequent closed cubes in 3D data sets. In:
VLDB’06: Proceedings of the 32nd International Conference on Very Large Data
Bases, pp. 811–822. VLDB Endowment (2006)

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: WWW 2010: Proceedings of the 19th International World Wide Web
Conferences, pp. 591–600. ACM Press (2010)

13. Nataraj, R.V., Selvan, S.: Closed pattern mining from n-ary relations. International
Journal of Computer Applications 1(9), 9–13 (2010)

14. Trabelsi, C., Jelassi, N., Ben Yahia, S.: Scalable mining of frequent tri-concepts
from Folksonomies. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012, Part II. LNCS, vol. 7302, pp. 231–242. Springer, Heidelberg (2012)


	A Lossless Data Reduction for MiningConstrained Patterns in n-ary Relations
	1 Introduction
	2 Related Work
	3 Definitions and Problem Statement
	4 Dataset Reduction
	4.1 Fundamental Theorem
	4.2 Algorithm
	4.3 Complexity Analysis

	5 Experimental Study
	5.1 Retweet Dataset
	5.2 Distrowatch Dataset
	5.3 Pre-processing Time
	5.4 Time Gains over the Whole Task

	6 Conclusion
	References


