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Abstract

The necessity of data transfer at a high speed, in fast-growing information technology, depends on compression algo-
rithms. Maintaining quality of data reconstructed at high compression rate is a very di�cult part of the data compres-
sion technique. In this paper, a new lossless image compression algorithm is proposed, which uses both wavelet and 
fractional transforms for image compression. Even though wavelets are the best choice for feature extraction from 
the source image at di�erent frequency resolutions, the low-frequency sub-bands of wavelet decomposition are the 
untouched part in compression method in most of the existing methods. On the other hand, fractional Fourier transform 
is a convenient form of generalized Fourier transform that helps in the compact lossless coding of the source image 
with optimal fractional orders. Hence, we have used discrete fractional Fourier transform to compress those sensitive 
sub-bands of the wavelet transform, carefully. In this method, an image is split into low- and high-frequency sub-bands 
by using Daubechies wavelet �lter and level 1 quantization is applied for both low-frequency and high-frequency sub-
bands. The low-frequency sub-bands are compressed by using fractional Fourier transform with optimal fractional orders, 
and at the same time, high-frequency sub-bands are compressed by eliminating zeroes and storing only nonzero blocks 
and its position. The compressed wavelet coe�cients are further compressed by the application of level 2 quantization 
and stored as a reduced array. This reduced array is encoded by using arithmetic encoder followed by run-length cod-
ing. The experimental results of the proposed algorithm with a di�erent set of test images are compared with some of 
the existing image compression algorithms. The results show that the proposed method has signi�cant improvement 
in image reconstruction quality.

Keywords Discrete wavelet transform (DWT) · One-dimensional discrete fractional Fourier transform (DFrFT) · Image 
compression · Quantization · Sub-bands

1 Introduction

The image compression technology in the past decade has 
revolutionized the �eld of data communication. Today’s 
high-de�nition photograph accessing/editing, live video 
display and multimedia messaging are easy and instanta-
neous because of compression techniques [1, 2]. The com-
pression technique helps in representing the source image 
with a reduced number of bits. Time–frequency-based 
compression algorithms have the property of multiscale 

characterization, which gives high quality of image recon-
struction [3–5]. Popular compression algorithm JPEG 2000 
[6] uses discrete wavelet transform that splits the image 
into a small number of tiles. The wavelet transform is 
applied to each tile individually to enhance the quality 
of the reconstructed image. However, the increase in the 
number of tiles leads to aliasing e�ect [7, 8], which is a 
limitation of this technique. However, discrete fractional 
Fourier transform (DFrFT) is a simple coding technique 
which elucidates the characteristics of signals, gradually 
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by changing them from a time domain to the frequency 
domain with an order from 0 to 1. The fractional part in 
DFrFT provides the extra degree of freedom in computa-
tions of coe�cients and also assists in a compact coding 
of information with the reduced number of discrete Fou-
rier transform (DFT) coe�cients [9]. Several compression 
algorithms [10–12] use wavelets, and a lossless image 
compression algorithm [13] uses a combination of wavelet 
transform and singular value decomposition to yield high-
resolution image reconstruction quality. A combination of 
wavelet with a discrete cosine transform (DCT) [14] shows 
an increase in compression performance with a large com-
putational time.

This paper is structured as follows: Sect. 2 explains the 
use of wavelet transform and DFrFT in image compression. 
Section 3 presents a proposed lossless image compression 
algorithm. The simulated results and analysis are discussed 
in Sect. 4, followed by the conclusion in Sect. 5.

2  Use of discrete wavelet transform 
and discrete fractional Fourier transform

2.1  Discrete wavelet transform

The multiresolution features of wavelet transform o�er the 
hierarchical set of scaling and mother wavelet functions to 
represent an original signal with less number of frequency 
samples. For each decomposition level, it generates two 
classes of wavelet coe�cients (approximate and detailed) 
[15, 16]. In two-dimensional wavelet decomposition, for 
each level, it produces approximate (LL), horizontal detail 
(HL), vertical detail (LH) and diagonal detail (HH) sub-
bands as shown in Fig. 1a.

In wavelet decomposition, for each level of decompo-
sition, wavelet coe�cients are decimated by a factor two, 
which helps in achieving good compression ratio. In wavelet 

decomposition, low-frequency wavelet coe�cients are dis-
tributed towards top left corner and high-frequency detailed 
coe�cients are distributed towards the bottom right corner 
as shown in Fig. 1b. As decomposition level increases, the 
detailed coe�cients are enriched by less signi�cant wavelet 
coe�cients for the reconstruction process, and hence, by 
neglecting the very �rst level of detailed coe�cients may 
produce the highest compression percentage [17]. Daube-
chies (Db) mother wavelet is the most widely used wavelet 
in an image compression application, as is orthogonal wave-
lets of compact support. The Db wavelets used overlapping 
window function, and hence, the decomposed wavelet 
coe�cients imitate all variations between pixel intensities, 
which are helpful in the coding of signi�cant coe�cients for 
image compression. The Daubechies 5 (Db5) mother wave-
let, which is used in this work, has �ve wavelet and scaling 
coe�cients [18].

2.2  One-dimensional discrete fractional Fourier 
transform

The development of continuous fractional Fourier transform 
(CFrFT) for signal analysis made many researchers develop a 
discrete complimentary part for it. The rotational property of 
DFrFT is quite similar to that of CFrFT. There are several meth-
ods to compute the DFrFT matrix; however, time-constraint 
eigenvector-based computational method is preferable [19]. 
The DFrFT de�ned in [20] uses a set of eigenvectors of the 
DFT matrix as a counterpart to the Hermite–Gaussian func-
tion which resembles the CFrFT. The mathematical unitary 
de�nition of DFrFT matrix S�[m, n] is given by:

(1)S
�[m, n] =

N−1
∑

K=0

QK [m](�K )
�
QK [n]

Fig. 1  Wavelet decomposition coe�cients for the �rst level
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where QK [n] are orthonormal eigenvectors set of the N × N 
DFT matrix and �

K
 are coupled with eigenvalues. S� matrix 

is computed by using the following steps. First, the matrix 
Z decomposes the arbitrary vector x(n) into even and odd 
parts. The Z matrix maps even part of N-dimensional vec-

tor x[n] onto �rst 
[

N∕
2 + 1

]

 components and odd part onto 

the remaining components [21]. The matrix Z is unitary 
and symmetry, that is Z = Z

T
= Z

−1 , and W is real symmet-
ric with tridiagonal structure. Hence, the resultant similar-
ity transform is given by diagonal elements of even and 
odd matrix with eigenvectors ek , ok.

Even though an eigenvector of the transformed matrix has 
either even or odd vectors, the common set of eigenvec-
tors of W  and DFT matrix are determined irrespective of 
the dimension of W  . Order of the eigenvectors is set by 
using zero-crossing values of discrete Hermite–Gaussian 
function [9], where eigenvectors of E

v
 and Od matrix with 

the highest eigenvalues do not have any zero crossing but 
second highest has one and so on. An even eigenvector of 

Z is calculated by e = Z

[
eT̂
k
|0… 0

]T
 and e = Z

[
0… 0|oT̂

k

]T
 

through êk , ôk where ‘ k ’ is zero crossing (0 ≤ k ≤ [N∕2]) and 

(0 ≤ k ≤
[

(N − 3)∕2
]

) , respectively. Finally, Eq. 1 becomes

whereas uk(n) is a discrete Hermite–Gaussian function at 
the k th order. It is observed that N is either even or odd 
and that there are no eigenvectors with N − 1 or N zero 
crossings. Hence, eigenvalue multiplicity of DFT matrix to 
get DFrFT kernel matrix is given in Table 1.

As shown in Table 1, DFrFT is computed for each col-
umn of LL sub-bands which have an order ranging from 
0.1 to 0.4. The processed matrix is stored as a single array 
along with its positions.

(2)ZWZ
−1

=

[

Ev 0

0 Od

]

(3)S�[m, n] =

N−1
∑

K=0,k≠(N−1+N2)

uK [m]e−j
�

2
k�uK [n],

3  The proposed lossless compression 
algorithm

This paper uses the best properties of transforms to 
enhance the compression performance. The wavelet trans-
form is used to extract the spectrum of a source image 
from low-frequency (LL) and high-frequency (non-LL) sub-
bands. The steps involved in the proposed method (Fig. 2) 
are shown below:  

Step 1 First, calculate the size of a test image and apply 
the two-dimensional discrete wavelet transform for 
decomposition (mother wavelet Daubechies of scale 5). 
The source image is split into LL and non-LL sub-bands.
Step 2 Apply level 1 quantization for decomposed sub-
bands to increase the correlation. For level 1 quantiza-
tion, the factor ‘M1’ is to be calculated by using Eq. (4). 
It is the product of de�ned quantization scale*(0.01 for 

Table 1  Eigenvalues multiplicity of DFT matrix to get DFrFT kernel 
matrix

N 1 − j − 1 J

4m m + 1 M M m − 1

4m + 1 m + 1 M M M

4m + 2 m + 1 M m + 1 M

4m + 3 m + 1 m + 1 m + 1 M
Fig. 2  Block view of a proposed method
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LL and 0.1 for non-LL sub-bands) and the median value 
of the quantized sub-band ‘S’ (either LL or non-LL sub-
bands).

New quantized sub-band ‘Sub_band_q1’ is obtained by 
dividing the decomposed sub-bands ‘S’ with the factor 
‘M1’ 

*Quantization scale 0.01 means computing 1% from 
median value in LL sub-band to be divided by all val-
ues of LL sub-band. Quantization scale for non-LL sub-
band is taken largely because these sub-bands are less 
signi�cant and need coarse quantization.
Step 3 Coding of LL sub-band One-dimensional DFrFT 
with the optimal fractional order ( �opt ) is applied to 
each column of level 1 quantized LL sub-band. After 
DFrFT compression, coe�cients are arranged in two-
dimensional arrays (Fig. 3).
Further, level 2 quantization is applied for the trans-
formed matrix to divide them by ‘M2’ using Eq. 6 and 
to store the values in a reduced array of size of LL sub-
band, 

(4)M1 = Quantization_Scale ×median (S)

(5)Sub_band_q1 = round(S∕M1)

(6)M2(m, n) =

{

1, if (m = 1, n = 1)

m + n + R, if (m ≠ 1, n ≠ 1)

 where ‘m’ and ‘n’ are the row and column index of com-
pressed DFrFT matrix (4 × 4) and ‘R’ is the quantization 
scale de�ned during level 1 quantization.
Step 4 Coding of non-LL sub-band Level 1 quantized non-
LL sub-bands are partitioned into non-overlapped blocks 
of standard size ( 4 × 4, 8 × 8 , etc.). Create a window of 
standard size (4 × 4), sliding from left to right and up to 
an end of the sub-band. If nonzero value is found in the 
block, it will be stored along with its position. Blocks with 
zeros are neglected and are not stored. Apply the quan-
tization level 2 for nonzero blocks and then store them 
as a reduced array.
In Fig. 4, a window of size 4X4 is used to �nd the nonzero 
block and is found at position 2. Here, the block values 
along with position are stored.
Step 5 All reduced arrays are encoded by an arithmetic 
encoder into a compressed bitstream, since reduced 
array contains both positive and negative values and 
is encoded by the arithmetic encoder. This encoding 
scheme also adopts run-length encoder (RLE) to kill 
repeatedly occurring encoding values.
Step 6 The decompression process is the reverse of the 
compression process, where reduced arrays are decoded 
by the arithmetic decoder. The LL sub-bands recovered by 
inverse DFrFT with fractional order (−�opt) and by mul-
tiplying level 2 quantization factor M2. Similarly, non-
LL sub-bands recovered to their original position, and 
remaining blocks are padded by zero. Again multiply the 
quantization factor M1 for each non-LL sub-band and 
apply an inverse discrete wavelet transform to reconstruct 
the original image.

There are several parameters available to evaluate the 
compression algorithms: the parameter percentage, root-
mean-square di�erence (PRD), mean square error (MSE), 
peak signal-to-noise ratio (PSNR) and compression percent-
age (CP) which are given in Eqs. 7, 8, 9 and 10, respectively.

(7)PRD =

�

�

�

�

�

�

�

∑

M,N

�

I1(m, n) − I2(m, n)
�2

∑

M,N

�

I1(m, n)
�2

× 100

Fig. 3  Coding of LL sub-band

Fig. 4  Nonzero blocks storing technique for non-LL sub-band com-
pression
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where I
1
 and I

2
 are original and reconstructed images with 

m, n rows and columns, respectively. The simulation has 
been carried out repeatedly for optimal fractional orders 
to reduce the PRD and to maximize the PSNR value of the 
image for de�ned compression percentages.

4  Results and discussion

Original test images such as airplane, house, boat, aerial, 
peppers, Barbara and Mandrill of dimension 512 × 512 are 
chosen to evaluate our compression algorithm. This algo-
rithm uses two optimization measures to increase lossless 
compression performance.

1. Selection of suitable mother wavelet This algorithm uses 
‘Daubechies’ tap-5 (DB-5) mother wavelet �lters for 
decomposition process. It has �ve vanishing moments, 
which are enough to kill the insigni�cant wavelet coef-
�cients by using the set of quadrature mirror �lters.

2. Optimization of fractional orders This algorithm uses 
one-dimensional DFrFT kernel with optimal frac-
tional order to compress LL sub-band. The wavelet 
coe�cients in LL sub-bands are highly correlated and 
need speci�c fractional orders for compression. Thus, 
fractional orders are manually calculated and select 
the one speci�c value where maximum CP is obtained. 
For the purpose of discussion, we use LL sub-bands of 
‘peppers’, ‘Barbara’ and ‘aerial’ images for computation 
of optimal fractional orders.

  From Fig.  5, it is observed that the CP of three 
images is not so linear with respect to fractional orders 
and it is saturated above 0.77 up to 0.99. (*highlighted 
in block box in Fig. 5 has maximum CP.) Hence, this 
range is used as an optimum fractional order through-
out this compression process. For each test image, this 
procedure is repeatedly performed with suitable (αopt) 
values and overall compression performance is ana-
lysed. The quantization scale used in this algorithm 
(�xed 0.01 and 0.1 for LL and non-LL sub-bands) will 
not a�ect information as it can be reconstructed dur-

(8)
MSE =

∑

M,N

�

I1(m, n) − I2(m, n)
�2

M × N

(9)PSNR = 10 log10

(

255 × 255

MSE

)

(10)

Compression_percentage =

[

I1(m, n) − I2(m, n)
]

I2(m, n)
× 100

ing decoder stage and leads to a reconstruction of the 
approximate original image.

By adopting all the above optimization techniques, 
the compression algorithm is implemented and evalu-
ated as follows: Table 2 tabulates PRD and PSNR values of 
the proposed method at a high compression percentage 
from 50%, 55, 60, 70 to 90% with optimal fractional orders 
(αopt) for Barbara image. In order to reduce the PRD and to 
increase the PSNR values (Table 2), the fractional orders 
are varied from 0.94 to 0.98. The value αopt for compres-
sion of the original image and for decomposed wavelet 
coe�cients is quite di�erent. Since wavelet coe�cients 
in LL sub-bands are much correlated, it is di�cult to dif-
ferentiate the signi�cant and non-signi�cant coe�cients 
in it. Even PSNR value of the reconstructed image is high 
even with some loss in the reconstructed image. But meas-
uring PRD is bene�cial for developing this algorithm as 
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Fig. 5  Fractional orders over CP for LL sub-bands of peppers, Bar-
bara and aerial imagery

Table 2  PRD and PSNR calculation of the proposed method at dif-
ferent compression percentages for Barbara image

Compression percent-
age

�opt PRD PSNR

50 0.94 9.52 28.24

55 0.89 9.65 27.24

60 0.96 10.04 26.03

65 0.92 10.14 25.94

70 0.98 10.28 25.77

75 0.96 10.36 25.73

80 0.92 10.44 25.70

85 0.97 10.59 25.62

90 0.98 10.62 25.24
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lossless compression by computing the pixel-to-pixel error 
between original and reconstructed images.

The simulated Barbara image from Fig. 6, at di�erent 
CPs, reveals that, even at CP with 80%, the reconstructed 
image does not seem to be different from its original 
image.

Figure 7 shows the graphical deviation of PRD on PSNR 
of the proposed method for Barbara image. It is observed 
that PRD and PSNR are inverse in relation, and in order to 
make our algorithm more stable in terms of lossless, we 
need to reduce the PRD as much as possible.

Table 3 gives PRD, PSNR comparative tabulation of the 
proposed method with JPEG using binary arithmetic cod-
ing (JAC) proposed by Lakhani et al. [22] and other combi-
nation of wavelet transform with DFrCT and DFrST at com-
pression percentage (80%). PSNR value of the proposed 
method for boat image at 80% is 2 db, 0.41 db and 2.56 db 
lesser than remaining three methods, respectively. PRD 
also varied in the same manner, as the proposed method 
is less e�cient in reconstructing the images with a large 
number of edges.

Figure 8 shows the graphical representation of a com-
parison of the proposed method with other methods. 
The overall results show that the proposed algorithm is 
signi�cantly improved from its primitive algorithms and 

Fig. 6  a Original Barbara image compressed using by DWT-DFrFT at compression ratio; b 20%; c 40%; d 60%; e 70%; e 80%
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Fig. 7  Graphical comparison of PRD and PSNR for Barbara image



Vol.:(0123456789)

SN Applied Sciences (2019) 1:266 | https://doi.org/10.1007/s42452-019-0276-z Research Article

also competes with some of the best algorithms in the 
reconstruction process. 

5  Conclusion

This paper introduces a lossless image compression algo-
rithm using a combination of two-dimensional DWT and 
one-dimensional DFrFT. The use of wavelet decomposition 
in the extraction of sub-bands at di�erent frequencies and 
compact coding of the low-frequency sub-band by DFrFT 
contributes to the e�ciency of the algorithm. Even though 
the algorithm has some limitations of dependency on 
the encoded bitstream for the decoder and on fractional 
order ranging from 0.85 to 0.99 to reconstruct the original 
image, the simulated results and comparative study with 
other algorithms show that the proposed method is e�-
ciently operated at high compression percentage. Also at 
this compression percentage, the reconstruction quality is 
better and has potential advantages for multimedia image 
compression applications.
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