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Abstract: Nowadays, a huge amount of digital data is frequently changed among different embed-

ded devices over wireless communication technologies. Data security is considered an important

parameter for avoiding information loss and preventing cyber-crimes. This research article details the

low power high-speed hardware architectures for the efficient field programmable gate array (FPGA)

implementation of the advanced encryption standard (AES) algorithm to provide data security.

This work does not depend on the Look-Up Table (LUTs) for the implementation the SubBytes and

InvSubBytes stages of transformations of the AES encryption and decryption; this new architecture

uses combinational logical circuits for implementing SubBytes and InvSubBytes transformation. Due

to the elimination of LUTs, unwanted delays are eliminated in this architecture and a subpipelining

structure is introduced for improving the speed of the AES algorithm. Here, modified positive

polarity reed muller (MPPRM) architecture is inserted to reduce the total hardware requirements,

and comparisons are made with different implementations. With MPPRM architecture introduced in

SubBytes stages, an efficient mixcolumn and invmixcolumn architecture that is suited to subpipelined

round units is added. The performances of the proposed AES-MPPRM architecture is analyzed in

terms of number of slice registers, flip flops, number of slice LUTs, number of logical elements, slices,

bonded IOB, operating frequency and delay. There are five different AES architectures including

LAES, AES-CTR, AES-CFA, AES-BSRD, and AES-EMCBE. The LUT of the AES-MPPRM architecture

designed in the Spartan 6 is reduced up to 15.45% when compared to the AES-BSRD.

Keywords: advanced encryption standard; composite field arithmetic; device security; Look-Up

Table; modified positive polarity reed muller; pipeline; SubBytes

1. Introduction

Information is treated as the most valuable asset in present day since about billions of
items of information are processed and shared per second in this technological world. This
large amount of information must be processed and shared in a very secure manner. Since
information is treated as a most valuable thing, there is also a very high chance of piracy
or alteration of this information by an unintended user [1–5]. Unauthorized change and
availability of the original information also form the major goal of the researchers to keep
the information secure. Researchers use cryptographic algorithms to keep information
secret while transmitting and receiving information on an insecure channel. Cryptographic
algorithms perform encryption operations on the original plain text before transmitting
and perform decryption operation after receiving the encrypted text from the insecure
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channel. A secret key is used for both encryption and decryption operations. Based on the
usage of a number of secret keys, cryptographic algorithms can be classified as symmetric
and asymmetric algorithms. Furthermore, algorithms can be classified as block and stream
cipher algorithms based on the number of bits, and the algorithms can operate simultane-
ously [6–10]. Generally, these cryptographic algorithms are utilized in different applications
such as banking applications, military and government [11], and critical infrastructures
such as Smart Grid [12,13].

In 2001, the National Institute of Standards and Technology (NIST) published a
symmetric algorithm called AES which is a replacement of the data encryption standard
(DES) [14,15]. AES is one of the extensively used symmetric key cryptography algorithm
that uses same key for both the encryption and decryption of the sensitive data [16,17]. In
the last two decades, researchers have developed many cryptographic efficient algorithms.
Still, AES stands as the most secure cryptographic algorithm due to its cost effectiveness
and easier implementation in both hardware and software. AES is a non-Feistel cipher that
has the same rounds of operations in both the encryption and decryption processes. It is
being proved that hardware implementations of the AES is more secure and faster than
that of software implementations [18–21]. The AES is categorized as AES-128, AES-192
and AES-256 based on the length of the key. Here, the 128, 192, and 256 indicates the
length of the key used during the cryptographic process [22]. A high-performance modern
microprocessors are used to design the AES for satisfying the high throughput requirements
in the desired applications. However, a VLSI based hardware description language (HDL)
design of AES is accomplished to obtain the low silicon area and high speed [23]. An
architectural modification such as pipelining, subpipelining, and loop-unrolling are used
to enhance the throughput and operational frequency [24,25]. A high-speed AES design is
obtained by using the hardware architectures with unwound loops and pipelines. However,
this architecture faces the high area consumption while accomplishing the encryption
operation [26].

The traditional symmetric/asymmetric algorithms are used for the data security such
as DES [27–29], triple DES [30], elliptic curve cryptography (ECC) [31–34], Rivest–Shamir–
Adleman (RSA) [35], etc. In these algorithms, ECC and RSA are well known asymmetric-
key-cryptography that use public keys for encryption/decryption processes. In the conven-
tional general-purpose processors, the conventional cryptographic algorithms obtain less
speed and demands higher resources during the computation process [36]. For example,
the RSA has a complex design and low-level efficiency, and hence it is not appropriate
for low-area applications [37]. Nowadays, some of the block ciphers from the symmet-
ric algorithms are also used for the data security purpose and examples of the block
cipher are SIMON [38], SEED [39], KLEIN [40], HIGHT [41], KASUMI [42], CLEFIA [43],
PRESENT [44,45], etc. These low complexity light weight block ciphers can be used in
wireless communications (i.e., internet of things (IoT) applications). If the number of de-
vices in the certain communication increases, then it creates difficult issues such as higher
hardware utilization and delay. Therefore, theses block ciphers aren’t suitable for the low
area applications [46].

Kumar, K et al. [47] presented the design of lightweight AES (LAES) algorithm in
Artix-7 and Kintex-7 FPGAs to secure the voice data. The operation of the mix column was
decreased in the LAES algorithm than the conventional AES algorithm. After decreasing
the operations of the mix column, the 128-bit cipher text was acquired from the results of
shift rows operation. The reduction in the mix column process was resulted in the less delay
as well as it was used to minimize the logic operation. Therefore, the complexity of this
LAES algorithm was decreased while encrypting the voice data. However, the reduction
in the mix column was increased the utilization of the multiplexers. Shahbazi, K. and Ko,
S.B [48] developed the high throughput FPGA design of AES algorithm in counter (CTR)
mode on Xilinx Virtex-5 for high traffic applications. In this work, the AES was modified
based on the following two strategies: (1) sub-bytes and shift-rows were exchanged for
the first nine rounds, and (2) the shift rows were combined with added round keys. Here,
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the inner pipelining, outer pipelining, and loop-unrolling were used for obtaining a higher
throughput. A new-affine-transformation, which was a combination of inverse isomorphic
and affine transformation, was used to minimize the area of the Sub-Bytes. Moreover, the
operation of the mix-column was separated into two stages for obtaining an equal latency
among the stages. However, the execution of the mix column operation in on clock cycle
was resulted in higher latency.

Arul Murugan, C et al. [49] presented iterative architecture of AES-128 encryption
for enhancing the security. The LUT was used in the composite field arithmetic (CFA) to
perform the multiplication in the S-box. Subsequently, the area was minimized by using
the updated architecture of the S-box in the AES. Additionally, the Vedic multiplier was
used in the operation of mix columns for minimizing the hardware resources of the AES.
Here, three different FPGA devices such as Virtex-4, Virtex-5, and Spartan 3 devices were
used to design the AES algorithm. The utilization of the CFA resulted in higher speeds
in the process of sub-byte transformation. However, the architecture of the mix column
transformation was highly complex when compared to the architecture of the shift-row
transformation. Wegener, F et al. [50] developed the extended version of the AES in Spartan
6 for compromising the requirements of area and latency. The Bit-Serial Rotational Design
(BSRD) was used instead of the S-box in the AES architecture. Moreover, the nonlinear
proportion was significantly decreased by using the rotational symmetry technique for
implementing the S-box of the AES algorithm. The linear operation was replicated and
executed independently in the AES algorithm, which increased its area.

Madhavapandian and Maruthu Pandi [51] presented the design of secure architecture
for the Transmission Control Protocol/Internet Protocol (TCP/IP). The protection over
the TCP/IP protocol was achieved by using the 128 bit of AES algorithm. Next, the AES
architecture was optimized for reducing the power consumption and cost. Moreover, an
improved compressed structure for the mix columns was used along with the efficient mix
column Boolean expression (EMCBE) for optimizing the structure of the AES. Here, the
AES algorithm was designed and implemented using the Virtex 6 algorithm. However,
the technique of gate replacement used for minimizing the delay affected the scalability of
this AES architecture. Zodpe and Sapkal [52] developed the pseudo-random noise (PN)
sequence generator for generating the values of the S-box. The distinct sequence of random
numbers was generated by using the PN generator based on the feedback taps and initial
seed value. An efficiency of the cryptosystem was improved based on the features of the PN
sequence generator. Here, the requirement for applying the external key was avoided by
using an initial key generation technique. However, the utilization of hardware resources
of the AES was high, when it was designed by using the non-pipelined stages.

Sikka et al. [53] presented the high throughput FPGA implementation for the AES
algorithm. Here, the AES algorithm was designed for the automotive applications. Specif-
ically, the Vivado high-level synthesis (HLS) tool was used to design the AES with a
128-bit of key size and block size of 10 rounds. This HLS was used mainly based on the
application-specific bit widths that used to design the FPGA. The implementation of AES
using the HLS was used to improve the speed. However, the delay of this AES algorithm
was increased because of the frequent re-calculation of the signal width for each input,
output and intermediate value.

The existing methods are analyzed and explained as follows: for a better implementa-
tion of the AES, the hardware resources (e.g., slices and LUT) are required less during the
encryption/decryption process. But, the requirements of the multiplexers are increased,
when mix column operation is minimized in the LAES [47]. The replication of linear op-
eration increases the area of the AES in encryption/decryption processes [50]. Moreover,
the hardware resources of the AES are improved when it is designed by using the non-
pipelined stages [52]. The latency is increased in the AES operation in the mix column
operation [48]. Next, the delay of the AES is increased due to the frequent re-calculation of
the signal width [53]. In order to overcome the aforementioned issues, an MPPRM based
SubBytes transformation is designed to reduce the hardware resources used during the
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encryption/decryption process. Additionally, the delay element added in the AND gate of
the MPPRM is used to minimize the delay caused in the encryption process.

Generally, the SubBytes transformation processed in the AES is considered as bottle-
neck during the encryption process, since the transformation calculates the most resource
demanding multiplicative inverse function at the finite field arithmetic operation. The
SubBytes transformation designed by using the read only memory creates an inappropriate
delay in the AES encryption/decryption [54]. From the modifications of pipelining, sub-
pipelining, and loop-unrolling, the subpipelining is used to achieve maximum speed with
minimal area occupancy. LUT based approaches used in the SubBytes and InvSubBytes
transformation stages causes much delay than the total delay of all of the other transfor-
mations. Therefore, in this work LUT based transformation is replaced with the minimal
delay combinational circuits. Composite field architecture is one such architecture that pro-
vides the required logics. Also, composite field arithmetic structure has been implemented
with subpipelinining architecture in this work. However, delays can also be reduced by
eliminating the delays occurring due to dynamic hazards that take place in combination
circuits. This is achieved by implementing SubBytes and InvSubBytes transformation in
MPPRM architecture. Here, both the architectures are explored and hardware utilization
comparisons are made to explore the most suitable architecture. Algorithms used for secure
communication must withstand the cryptanalytic attacks which aim to find the secret
key based on the techniques and mathematical operations used in converting plain text
to cipher text. With the aim of optimizing the AES structure, a MPPRM based SubBytes
transformation is accomplished for achieving the less area and lesser hardware resources
during the FPGA implementation.

The most important contributions of this research work are given as follows:
This work uses composite field arithmetic structure both SubBytes and InvSubBytes

transformations with the speed efficient subpiplining structure. Earlier approach of im-
plementing CFA is to decompose GF(28) as GF(((22)2)2). Where in this work GF(28) is
decomposed as GF((24)2).

MPPRM architecture is used for both SubBytes and InvSubBytes transformations for
minimizing the AND and XOR gates to minimize the hardware resources used in the
encryption/decryption process.

In this work, key expansion architecture is used to provide 128-bit key for subpipelined
structure. A speed efficient AES-MPPRM architecture is achieved, because of the delay
element added in the AND gate output.

The organization of the paper is given as follows: The information about the conven-
tional AES algorithm is provided in Section 2. Section 3 provides the detailed explanation
about the AES-MPPRM architecture. The modified new architecture in key expansion mod-
ule is detailed in Section 4. Section 5 gives the results and discussion of the AES-MPPRM
architecture. The conclusion of this research paper is provided in Section 6.

2. Related Works

The information about the conventional AES encryption and decryption process is
provided in this section. This section contains the process of substitution, shift rows, mix
columns, added round keys, key expansion architecture, subpipelined architecture, and
composite field arithmetic operation.

2.1. AES Algorithm

Advanced encryption standard (AES) is a symmetric cryptographic algorithm, in
which a single secret key is used for both encryption and decryption operations. AES has
three different versions and each version operates at different bit levels of secret key. Based
on the number of bits in the secret key, AES can be classified as AES-128, AES-192, or
AES-256. Number of rounds of encryption and decryption operation for each version also
varies from one another and it is given in Table 1.
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Table 1. Different types of AES.

Parameters AES-128 AES-192 AES-256

Rounds (Nr) 10 12 14
Key sizes 128 192 256

No of key (Nr + 1) 11 13 15

Every round in the AES algorithm uses different subkeys, which are generated from
the main original key. Although key sizes are different for each version, no of bits from the
original data to be communicated securely remains same for all the versions. Data block
size is 128 bits for all of the three versions of the AES algorithm. Number of rounds denotes
the number of encryption operation takes places for a single data block with different
subkeys obtained from the key expansion process. Diffusion and confusion process for
each round remains same. Initially, the main key is utilized for pre round transformation
and other subkeys are used in each round. So number of keys required will be always
higher than the amount of rounds in AES versions.

2.2. AES Encryption and Decryption

AES is generally a non-Fiestel block cipher cryptographic algorithm that encrypts
plain original text into encrypted cipher text with the help of secret key. Secret key lengths
differ for different versions of the AES algorithm, as mentioned in Table 1. The same
algorithm which is utilized to transform the plain text into cipher text can also be used to
get back the plain text from the cipher text by using a secret key used in the encryption
process. Except for the last round in all of the AEs versions, all of the other rounds will
have the following four operations in both the encryption and decryption processes. Before
proceeding to the encryption process, 128-bit plain text is grouped into a state matrix of
order 4 × 4 with each element in the matrix is represented as a word (2 bytes).

2.2.1. Substitution Transformation

Substitution is a process in which a byte value is replaced by another byte. Only
non-linear process involved in the AES algorithm is substitution.

Each byte in the state matrix is considered as a polynomial in the Galois Field 28. Next, the
affine transformation and matrix multiplication are used to transform the byte. Substitution
can also be conducted directly using the RijndaelS-box. In decryption, inverse S-box is used
for the substitution process. Substitution step introduces the actual confusion to the original
data, forms the important step in preserving the original data from unauthorized access.

2.2.2. Shift Rows

The rows of state array are periodically shifted in the shift row phase. Here, the second,
third, and fourth rows are shifted left by one, two and, three times, respectively, where the
first row remains unaffected in the given input. Moreover, the rows are shifted right for
accomplishing the decryption operation. Shift row is the first process of diffusion in the
AES algorithm. This shift row process is invertible.

2.2.3. Mix Column Transformation

Similar to the operation of the shift row, the mix column operation is carried out in the
column level. Here, the matrix multiplication is used to perform the operation of the mix
column. The mix column and inv mix column operation are expressed in the following
Equations (1) and (2).
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where S′1, S′2, S′3 and S′4 are the output obtained after mix column operation; S1, S2, S3
and S4 are the input for mix column operation obtained as the output of Shift row operation.

2.2.4. Add Round Key

The important operation in the AES algorithm is add round key, since all of the earlier
three steps are invertible. Without this operation, AES encryption becomes meaningless.
Function of secret key takes place at the add round key operation. In this operation the
original secret key or several subkeys are first arranges as a state matrix of 4 × 4 order.
Matrix addition between keys and plain text is the operation in the add round key. As a
result of this add round key operation, we get the cipher text.

All the above four operations are repeated for n number of times, where n denotes
the number of rounds in the AES version. For every iteration, a different subkey is used.
Therefore, for n number of rounds, n number of subkeys must be derived. Derivation of
several subkeys from single main secret key is referred as key expansion process. Operation
in the key expansion process or key schedule process must be carefully implemented, since
the relation between subkeys should not be exploited easily. The mathematical way is
followed by the key expansion process for deriving the different keys from the single way.
In AES-MPPRM architecture, the time consumption is minimized for obtaining the subkeys
from main key.

2.3. Key Expansion Architecture

AES-128 key expansion process is discussed in this section. In the key expansion
process, the main secret key of 128 bit is divided into four words, each with 32-bit length.
For AES-128, 10 subkeys must be derived from main original secret key. These subkeys
are used in process of producing cipher text from plain text. Figure 1 clearly explains the
process of key scheduling or key expansion. Mathematical operations are performed with
the main key to derive the subkeys. Interdependency with the previous subkey makes the
key expansion process efficient.

≠

Temporary word =  Subword (Rotword(W ))Rc ⊕ on

Figure 1. Existing Key Expansion Architecture.

Mathematical operation takes place at the word level and consecutive four words are
combined together to form a subkey. For example, W4, W5, W6, and W7 are combined to
form first subkey. Key expansion algorithm generates a total of 4 (Nr + 1) words. Math-
ematical operation used here is just an EXOR operation between a previous word and a
word from the previous subkey.
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Generation of Temporary Word

Temporary word is the most important thing in key expansion process, since the only
non-linear process involved in generation of subkeys is in the process of generation of
temporary word. The first word of every subkey is generated as a result of EXOR operation
between its corresponding temporary word and a word from a previous subkey. Three
operations are performed in a word to create a temporary word. Substitution, Rotation and
EXOR are the three operations which are performed in the process of creating a temporary
word. For AES-128, temporary words are necessary to create W4, W8, W12, W16, W20, W24,
W28, W32, W36, W40. Simply for i 6= 4Nr, temporary words are not needed. Equation (3)
represents the generation of the temporary word.

Temporary word = Subword (Rotword(Wi−1))Rc ⊕ on (3)

where, ‘i’ denotes the word number and ‘Nr’ denotes the round number in AES.
The rotword routine is identical to the Shift row routine, however it is used for the

only one row. Moreover, the subword is similar to the Sub byte routine. The value of R
constant differed for each round is provided in the Table 2.

Table 2. R constant values for each rounds of AES.

Round Number R Constant (Rcon)

1 (01000000)16
2 (02000000)16
3 (04000000)16
4 (08000000)16
5 (10000000)16
6 (20000000)16
7 (40000000)16
8 (80000000)16
9 (1B000000)16

10 (36000000)16

2.4. Subpipelined Architecture

As stated in the first section subpipelining architectural optimization achieves max-
imum speed and great throughput than that of pipelining and folded architectures. To
implement subpipelining, approach registers are inserted between each stage of every
round and registers are also inserted between the rounds to store the intermediate results.
One of the main advantages of subpipelining over folder structures is that it can simulta-
neously operate multiple blocks of data. Subpipelining involves splitting each round of
AES operation into n substages, as shown in Figure 2. The total delay in each substages
involves set up delay, propagation delay, multiplexer delay, and combinational circuits
delay (which are very small). Here, each substages within a round are divided with equal
delay, with extra registers included within and between the rounds adds up more area
to the architecture. It is noted that when the number of substages with equal delay are
increased for each round, improvement in speed can be achieved. But dividing the rounds
into substages does not improve the speed of the architecture due to the delay caused by
adding a greater number of registers. Some of the component of rounds may give minimal
delay when compared to the delay provided by the substages of that component. This is
entirely because of the accumulated delay due to the additional registers. In those cases it
is better not to divide those components into substages. Although subpipelining makes the
blocks to be processed simultaneously, the average number of clock cycles for processing
a block remains same. This is also the reason for not dividing each round after particular
parts. As we know that that individual logic gates delay is the highest undividable delay
of any combinational logics in non LUT based design. Based on this result, rounds can be
divided into substages.
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Figure 2. Illustration of the subpipelining architecture.

2.5. Composite Field Arithmetic

As stated in the previous section, composite field arithmetic is implemented to in-
crease speed as well as throughput of the AES encyptor and AES decryptor. For SubByte
transformation, a byte must undergo a multiplicative inversion process and affine trans-
formation. Composite field arithmetic is used to find the multiplicative inverse of a byte
without much complexity overload. CF is denoted as GF ((2n)m) and Gf (2k) is isomorphic
to GF ((2n)m) when K = nm. It is employed by mapping lower order GF to higher order GF.

The GF (28) is built from mapping GF by using the Equation (4).

GF(2) > GF((2)2); x2 + x + 1

GF
(

(2)2
)

> GF
(

(

22
)2
)

; x2 + x + F

GF
(

(

22
)2
)

> GF

(

(

(

22
)2
)2

)

; x2 + x + L

(4)

The values of F and L are chosen as 10 and 1100, respectively, to make the above three
equations as an irreducible equation. Isomorphic mapping function f(x) = δ × x and its
inverse f(x)−1 are to be mapped to its composite field element and its inverse field element,
where δ is a matrix with binary digits as its elements based on the GF (28) elements and its
composite field elements. Suitable matrix for composite field and Galois field is expressed
in the Equation (5).

δ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5)

Due to isomorphic mapping, transformation stages in an AES algorithm are not suited
for composite field implementation. Mix column and inverse mix column transformation
must be provided some modification to make it suitable for the subpipelining architecture.
In mixcolumn operations, {02}16 and {03}16 are mapped to {5F}16 and {5E}16, respectively,
whereas in inverse mixcolumn operation, {0d}16, {09}16, {0b}16, and {0e}16 are mapped
to {09}16, {75}16, {2a}16, and {57}16, respectively, in the composite field. These modifica-
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tions increase the hardware complexity on implementation of mixcolumn and inverse
mixcolumn operations. In case of shift rows, Inverse Shift Rows and Key expansion stages
operations are independent of Galios field representations. Therefore, no modifications are
needed for these stages to implement Composite Field Arithmetic structure suitable for
subpipelining architecture.

3. A Novel Proposed Multi-Stage Positive Polarity Reed Muller Architecture

In the proposed AES-MPPRM architecture, the MPPRM structure is used to the design
the SubBytes/InvSubBytes transformation. Next, this SubBytes/InvSubBytes transforma-
tion is used to design an effective subpipelining structure. Therefore, the design of MPPRM
structure used in the AES is used to minimize the hardware resources as well as it used
to improve the design of the overall AES architecture. The detailed process of designing
the AES-MPPRM architecture is described in the following sections. Figure 3 shows the
architecture diagram of the AES-MPPRM.

The encryption and decryption process of the AES-MPPRM architecture is similar
to the conventional AES method. Here, the encryption/decryption data path includes
an individual block. The processes accomplished in the encryption and decryption of
AES-MPPRM architecture are Sub Byte/Inv-Sub Byte, Shift Row/Inv-Shift Row, Mix
Column/Inv-Mix Column and Add Round Key. The steps carried out in the AES-MPPRM
architecture is given as follows:

• Initially, the proposed MPPRM based Sub Byte transformation is performed the non-
linear transformation over an individual byte of input state. The MPPRM is designed
for minimizing the hardware utilization by reducing the logical operations carried out
during the Sub Byte transformation.

• In second step of encryption, the circular shift through an individual bit is accom-
plished by using the shift row’s function.

• Each column of the state matrix is processed under the mix column operation. In that,
every byte in each column is represented as a new value.

• Finally, the operation of XOR is performed over the current state matrix’s bytes along
with the round key bytes to obtain the encryption output.

 

(  & ) + (  & ) + (  & ) + (  & ) =  ( +  ) & ( +  )

Figure 3. Description of AES-128 encryption and decryption operations.

Composite field arithmetic architecture for the subbyte transformation is efficient in
terms of power consumption, but power consumption can still be reduced by carefully
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designing some components of the CFA structure into two level logic architecture which is
suitable for subpipelining architecture. Subbyte transformation operation can be splitted
into three stages (pre-inversion stage, inversion stage, and post-inversion stage) to achieve
better power efficiency. Splitting the subbyte transformation into further more stages
increase the power consumption rather than decreasing it. Splitting the entire architecture
into two stages also does not show any significance in power consumption. So it is wise to
divide the CFA architecture for Subbyte and Invsubbyte transformation into three stages.
All these stages are implemented with AND and XOR gate Arrays.

3.1. Modified PPRM Architecture

In AES-MPPRM architecture, the MPPRM is designed for the SubByte Transformation.
Conventionally, the SubByte Transformation is implemented with three stage PPRM archi-
tecture as shown in Figure 4. PPRM architecture is modified into MPPRM with reduced
area and improved time efficiency, by introducing a minute change in the second stage of
PPRM architecture. In this MPPRM modification is introduced only in second stage, with-
out altering any structural logic in stage-1 and stage-3. The sample modified architecture
from the PPRM to the MPPRM is shown in Figure 5.

Figure 5 details the modification introduced in the stage-2 of standard PPRM architecture.
By analyzing the above two logic structures, it is clear that new architecture has two EXOR
gates and a single AND gate whereas the existing architecture has three EXOR gates and
four AND gates. Output of both the architectures remains same irrespective of the gate
used. A delay element has to be added to the output of AND gate in the second structure,
since the processing time of AND gate is faster than the XOR gate. Main aim of PPRM
architecture is to reduce the power consumption due to dynamic hazards is preserved
in this new logical structure also. The logical expression of Figure 5 can be expressed as
follows in Equation (6).

((a & b) + (b & c)) + ((a & d) + (c & d)) = (a + c) & ( d + b) (6)

The difference between the conventional PPRM and MPPRM are clearly represented
by using the mathematical expressions which are given in the following sections.

 

( )( 0 − 7)0 − 3, 0 − 3 0 − 30 − 3, 0 − 3 0 − 33 =  7 +  52 =  7 +  6 +  4 +  3 +  2 +  11 =  7 +  5 +  3 +  2 0 =  7 +  5 +  3 +  2 + 13 =   x5 +  x6 +  x2 +  x12 =   x61 =    x7 +  x5 +  x3 +  x2 +  x6 +  x4 +  x10 =    x7 +  x5 +  x3 +  x2 +  x6 +  x03 =    ( 5 & 1) + ( 7 & 1) + ( 5 & 2) + ( 5 & 6) + ( 5 & 7) + ( 5 & 4) + ( 7 & 4) + ( 5 & 0)+ ( 7 & 0) + ( 3 & 1) + ( 4 & 1) + ( 3 & 2) + ( 2 & 4) + ( 4 & 6) + ( 2 & 1)+ ( 2 & 6) + ( 6 & 1)

Figure 4. PRRM based SubByte transformation.
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( )( 0 − 7)0 − 3, 0 − 3 0 − 30 − 3, 0 − 3 0 − 33 =  7 +  52 =  7 +  6 +  4 +  3 +  2 +  11 =  7 +  5 +  3 +  2 0 =  7 +  5 +  3 +  2 + 13 =   x5 +  x6 +  x2 +  x12 =   x61 =    x7 +  x5 +  x3 +  x2 +  x6 +  x4 +  x10 =    x7 +  x5 +  x3 +  x2 +  x6 +  x03 =    ( 5 & 1) + ( 7 & 1) + ( 5 & 2) + ( 5 & 6) + ( 5 & 7) + ( 5 & 4) + ( 7 & 4) + ( 5 & 0)+ ( 7 & 0) + ( 3 & 1) + ( 4 & 1) + ( 3 & 2) + ( 2 & 4) + ( 4 & 6) + ( 2 & 1)+ ( 2 & 6) + ( 6 & 1)

Figure 5. Sample structure for MPPRM architecture.

3.1.1. Mathematical Derivation for PPRM Architecture

The steps processed under the PPRM architecture are stated as follows:
Initially, an 8-bit input value (x) is given as a input to the stage 1. In stage 1, the

8-bit input value (x0 − x7) is processed under AND and XOR arrays. Three different 4-bit
output values such as a0− a3, b0− b3 & c0− c3 are taken from the input x. The 4-bit values
of a0 − a3, b0 − b3 & c0 − c3 are expressed in Equations (7)–(9) respectively.

a3 = x7 + x5
a2 = x7 + x6 + x4 + x3 + x2 + x1
a1 = x7 + x5 + x3 + x2a0 = x7 + x5 + x3 + x2 + x1

(7)

b3 = x5 + x6 + x2 + x1
b2 = x6
b1 = x7 + x5 + x3 + x2 + x6 + x4 + x1
b0 = x7 + x5 + x3 + x2 + x6 + x0

(8)

c3 = (x5 & x1) +(x7 & x1) + (x5 & x2) + (x5 & x6) + (x5 & x7) + (x5 & x4) + (x7 & x4) + (x5 & x0)
+(x7 & x0) + (x3 & x1) + (x4 &x1) + (x3 & x2) + (x2 & x4) + (x4 & x6) + (x2 & x1)
+(x2 & x6) + (x6 & x1)

c2 = (x6 & x1) +(x2 & x6) + (x3 & x6) + (x7 & x6) + (x1 & x0) + (x2 & x0) + (x3 & x0) + (x4 & x0)
+(x6 & x0) + (x7 & x0) + (x5 & x2) + (x5 &x3) + (x2 & x4) + (x3 & x4) + (x5 & x7)
+(x7 & x2) + (x5 & x6) + (x3 & x2) + (x7 & x3)

c1 = (x2 & x1) +(x2 & x4) + (x5 & x4) + (x3 & x6) + (x5 & x6) + (x2 & x0) + (x3 & x0) + (x5 & x0)
+(x7 & x0) + x1 + (x5 & x2) + (x7 &x2) + (x5 & x3) + (x5 & x7) + x7 + x2 + (x3 & x2) + x4
+x5

c0 = (x1 & x0) +(x2 & x0) + (x3 & x0) + (x5 & x0) + (x7 & x0) + (x3 & x1) + (x6 & x1) + (x3 & x6)
+(x5 & x6) + (x7 & x6) + (x3 & x4) + (x7 &x4) + (x5 & x3) + (x4 & x1) + x2 + (x3 & x2)
+(x4 & x6) + x6 + x5 + x3 + x0

(9)

From the three 4-bit values (a, b & c) of stage-1, the value of c0 − c3 is taken as input
for stage-2. Similar to stage-1, stage-2 is also processed with AND and XOR arrays. This
stage-2 provides the one 4-bit value i.e., d0 − d3 as shown in the Equation (10).

(c3 & c2 & c0) + (c3 & c0) + (c3 & c2 & c1) + (c2 & c1) + c2
d1 = (c3 & c2 & c1) + (c3 & c1 & c0) + c3 + (c2 & c0) + c2 + c1

d0 = (c3 & c2 & c0) + (c3 & c1 & c0) + (c3 & c2 & c1) + (c3 & c1) + (c3& c0) + d3 =
(c3 & c2 & c1) + (c3 & c0) + c3 + c2

d2 = (c2 & c1 & c0) + c2 + (c2 & c1) + c1 + c0

(10)

This stage-3 receives three 4-bit values as input a0 − a3, b0 − b3 & d0 − d3 from the
stage-1 and stage-2. Similar to the stage-1 and stage-2, stage-3 also processed with AND
and XOR arrays. Further, this stage-3 provides the 8-bit output (y0 − y7) as shown in
Equation (11).
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y7 = (d3 & a0) +(d2 & a1) + (d1 & a2) + (d0 & a3) + (b2 & d3) + (b3 & d2) + (b2 & d2)
+(d3 & a3) + (d3 & a1) + (d1 & a3) + (b0 & d2) + (b2 & d2) + (b2 & d0) + (d3 & a2)
+(d2 & a3) + (b0 & d3) + (b1 & d2) + (b2 & d1) + (b3 & d0)

y6 = 1 +(a0 & d2) + (a2 & d0) + (d3 & a3) + (a0 & d1) + (a1 & d0) + (d3 & a2) + (d2 & a3)
+(a0 & d0) + (d3 & a0) + (d2 & a1) + (d1 & a2) + (d0 & a3)

y5 = 1 +(d3 & a3) + (d3 & a1) + (d1 & a3) + (d3 & a2) + (d2 & a3) + (b2 & d2) + (b0 & d2)
+(b2 & d0) + (b3 & d3) + (b1 & d3) + (b3 & d1) + (d3 & a0) + (d2 & a1)
+(d1 & a2) + (d0 & a3)

y4 = (d3 & a1) +(d1 & a3) + (a0 & d0) + (b3 & d3) + (b0 & d1) + (b1 & d0) + (d3 & a0)
+(d2 & a1) + (d1 & a2) + (d0 & a3) + (a1 & d1) + (b2 & d2) + (b0 & d0)

y3 = (b0 & d1) +(b1 & d0) + (b0 & d2) + (b2 & d0) + (b1 & d3) + (b3 & d1) + (b0 & d0)
y2 = (a0 & d2) +(a2 & d0) + (a0 & d1) + (a1 & d0) + (b1 & d1) + (b2 & d2) + (d3 & a1)

+(d1 & a3) + (b0 & d2) + (b2 & d0) + (b3 & d3) + (a0 & d0) + (b0 & d3)
+(b1 & d2) + (b2 & d1) + (b3 & d0) + (b0 & d0)

y1 = 1 +(d3 & a0) + (d2 & a1) + (d1 & a2) + (d0 & a3) + (b1 & d1) + (b2 & d3)
+(b3 & d2) + (d3 & a3) + (d3 & a1) + (d1 & a3) + (b3 & d3) + (d3 & a2)
+(d2 & a3) + (b0 & d0)

y0 = 1 +(d3 & a0) + (d2 & a1) + (d1 & a2) + (d0 & a3) + (a0 & d2) + (a2 & d0)
+(b0 & d1) + (b1 & d0) + (d2 & a2) + (b0 & d2) + (b2 & d0) + (b1 & d3)
+(b3 & d1) + (d3 & a2) + (d2 & a3) + (b0 & d0)

(11)

3.1.2. Mathematical Derivation for MPPRM Architecture

In MPPRM architecture, stage-2 and stage-3 are similar to the PRRM architecture.
Here, the modification is done only at the stage-1. Therefore, the calculation of a0 − a3 and
b0 − b3 is remains unchanged as that PPRM architecture. The calculation process of c0 − c3
is different than the PPRM architecture as shown in the Equation (12).

c3 = ((x5 + x7)&(x1 + x0)) + ((x2 + x6) & (x5 + x1)) + ((x7 + x4)&x5)+
((x3 + x4)&(x1 + x2)) + ((x7 + x6)&x4) + (x2&x6)

c2 = ((x1 + x2)&(x6 + x0)) + ((x3 + x7 + x5) &x6) + ((x3 + x4 + x2 + x7)&x0)+
((x5 + x7) &x3) + ((x3 + x5)&(x2 + x4)) + ((x5 + x2) &x7)

c1 = ((x2 + x5)&x4) + ((x7 + x1 + x3)&x2) + ((x3 + x5) &x0) + ((x5 + x3)&x6)+
((x5 + x0) + (x7 + x2)) + x1 + ((x3&x5) + x7 + x2 + x4 + x5 + x1

c0 = ((x1 + x2 + x7 + x5)&x0) + ((x3 + x5)&(x0 + x6)) + ((x7 + x1)&x6)+
((x1 + x3 + x6 + x7)&x4) + ((x1 + x2)&x3) + x2 + x6 + x5 + x3 + x0

(12)

The architectural difference from PPRM to MPPRM for calculating the c3 value in the
stage-1 is shown in the Figure 6.

From Figure 6, it is known that the PPRM structure requires 17 AND gates and 16
XOR gates whereas the MPPRM requires only 6 AND gates and 13 XOR gates. Therefore,
the changes proposed in the stage-1 are used to reduce the hardware utilization of the
MPPRM architecture. Meanwhile, the operating frequency of the AES-MPPRM architecture
is minimized by increasing the speed of the overall AES architecture.



Electronics 2021, 10, 2023 13 of 22

3 =  ( 5 + 7)&( 1 + 0) + ( 2 + 6) & ( 5 + 1) + ( 7 + 4)& 5 + ( 3 + 4)&( 1 + 2)+ ( 7 + 6)& 4 + ( 2& 6) 2 =  (( 1 + 2)&( 6 + 0))  + (( 3 + 7 + 5) & 6)  + (( 3 + 4 + 2 + 7)& 0) + (( 5 + 7) & 3)  + (( 3 + 5)&( 2 + 4))  + (( 5 + 2) & 7) 1 =  ( 2 + 5)& 4 + (( 7 + 1 + 3)& 2)  + (( 3 + 5) & 0)  + (( 5 + 3)& 6)  + (( 5 + 0)  + ( 7+ 2))  + 1 + (( 3& 5) + 7 + 2 + 4 + 5 + 1 0 =  ( 1 + 2 + 7 + 5)& 0 + ( 3 + 5)&( 0 + 6) + ( 7 +  1)& 6 + ( 1 + 3 + 6 + 7)& 4+ ( 1 + 2)& 3 + 2 + 6 + 5 + 3 + 0 3

(a)                                (b) 

 Figure 6. Architectural diagram, (a) PPRM architecture and (b) MPPRM architecture.

4. Detailed Hardware Implementation Architectures

Optimized architectures for all the stages of AES encryption and decryption are
presented in detailed nature which increases speed and reduce the total area occupied
by the existing architecture. An efficient key expansion, mixcolumn and invmixcolumn
structure is also provided in this section.

4.1. Subbytes/Invsubbytes Transformation

In Subbyte and Invsubbyte transformation stage, multiplicative inversion operation
takes a large number of gates to give the correct output. It takes approximately 620 gates
to find the multiplicative inverse in GF(28). As it is known that multiplicative inverse in
GF(28) can be found out in GF((24)2), then it can be decomposed into GF(22) and then
finally into GF(2). Multiplicative inverse in GF(2) is a simple logical AND operation. An
efficient method to find the multiplicative inverse is to find the inverse of each bit i.e.,
{y3, y2, y1, y0} = {y3

−1, y2
−1, y1

−1, y0
−1}. It is illustrated in the following Equation (13).

Y−1
3 = y3 + y3y2y1 + y3y0 + y2

Y−1
2 = y3y2y1 + y3y2y0 + y3y0 + y2 + y2y1

Y−1
1 = y3 + y3y2y1 + y3y1y0 + y2 + y2y0 + y2

Y−1
0 = y3y2y1 + y3y2y0 + y3y1 + y3y1y0 + y3y0 + y2 + y2y1 + y2y1y0 + y1 + y0

(13)

Multiplicative inverse found from the above equation requires only 14 XOR gates
and 9 AND gates only. Three XOR gates and two AND gates are in the critical path. This
architecture can be shared by encryption and decryption operation if both the operations
are to be implemented in the same device.

4.2. Mixcolumns/Invmixcolumns

Since subpipelining is employed in subbyte transformation, a suitable architecture
for the mixcolumn and inverse mixcolumn that shares common structure is proposed. In
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mixcolumn transformation it is essential to calculate multiplication of 02 and 03 operations.
Generally, mixcolumn operation is modified as shown in Equation (14).

S′0, j = 02(S0, j + S1, J) + S1, j + S2, j + S3, j or
S′0, j = 02(S0, j + S1, J) + S0, j + X
S′1, j = 02(S2, j + S1, J) + S0, j + S2, j + S3, j or
S′1, j = 02(S2, j + S1, J) + S1, j + X
S′2, j = 02(S2, j + S3, J) + S1, j + S0, j + S3, j or
S′2, j = 02(S2, j + S3, J) + S2, j + X
S′3, j = 02(S3, j + S0, J) + S1, j + S2, j + S0, j or
S′3, j = 02(S3, j + S0, J) + S3, j + X

(14)

where X = S0, j + S1, j + S2, j + S3, j.
By the above expressions, 03 multiplications are avoided and the following Figure 7

shows the 02 multiplication process in GF.

{
− − − −= + + + = + + + +  =  +  + +  +  +   = + + + + + + + + +

’0,  =  02( 0,  +  1, ) +  1,  +  2,  +  3,       ’0,  =  02( 0,  +  1, )  +  0,  +   ’1,  =  02( 2,  +  1, ) +  0,  +  2,  +  3,        ’1,  =  02( 2,  +  1, )  +  1,  +   ’2,  =  02( 2,  +  3, ) +  1,  +  0,  +  3,        ’2,  =  02( 2,  +  3, )  +  2,  +   ’3,  =  02( 3,  +  0, ) +  1,  +  2,  +  0,        ’3,  =  02( 3,  +  0, )  +  3,  +   =  0,  +  1,  +  2,  +  3,

0        0           0           0909        0           0           00         09          0           00         0           09          0 = 02        03          01          0101        02          03          0101        01          02          0303        01          01          02   

Figure 7. Multiplication process of 02 in GF.

From the above Figure 7, it is clear that 02 multiplications in GF can be implemented
with only 3 XOR gates. Like mixcolum, invmixcolumn structure can also be modified
to a structure that suits better for subpipelining architecture. Matrix used in the inverse
mixcolumn is rewritten as shown in Equation (15).









0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e









=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









+

[02][04]









01 01 01 01
01 01 01 01
01 01 01 01
01 01 01 01









+ [04]









01 00 01 00
00 01 00 01
01 00 01 00
00 01 00 01









(15)

In the invmixcolumn, it is enough to find the multiplication operations of 02 and 04.
04 can multiplication can be computed by cascading 02 multiplication process or by the
process shown in the following Figure 8.

+ 02 04 01        01          01          0101        01          01          0101        01          01          0101        01          01          01 +  04 01        00          01          0000        01          00          0101        00          01          0000        01          00          01

Figure 8. Multiplication process of 04 in GF.

From the above structure, 5 XOR gates are needed to implement 04 multiplications.
From equation it is clear that it is possible to implement invmixcolumn by adding some
extra logics with the mixcolumn structure. Therefore, the same architecture can be shared
with mixcolumn and inverse mixcolumn operations.
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5. Results and Discussion

The proposed fully subpipelined AES architecture for 128-bit key is implemented
on Xilinx FPGA. For synthesis, timing, and power analysis, Xilinx ISE 5.1 is used. For
each clock cycle, data blocks of 128 bits are accepted in the fully subpipelined encryptor.
Next, a 128-bit output data is taken for each input block as the cipher text in an each
clock cycle. A hardware description language (HDL) is used to design and implement the
AES-MPPRM architecture. The designed AES-MPPRM architecture is used to process the
128 bit of cryptography.

5.1. Performance Analysis

The performance of the AES-MPPRM architecture is analyzed in five different FPGA
devices such as Kintex 7, Spartan 3, Spartan 6, Virtex 5, and Virtex 6. The performances
of the AES-MPPRM architecture are analyzed in terms of number of slice registers, flip
flops, number of slice LUTs, number of logical elements, slices, bonded IOB, operating
frequency, and delay. Moreover, the performance of the proposed AES-MPPRM architecture
is analyzed with the AES-PPRM architecture.

Tables 3–5 shows the hardware utilization analysis for the AES-MPPRM architecture
of Kintex 7, Spartan 3, Spartan 6, Virtex 5, and Virtex 6 FPGA devices. Additionally, the
frequency and delay analysis of the AES-MPPRM architecture is given in Table 6. Here, the
results of the AES-MPPRM architecture are evaluated with the AES-PPRM architecture.
The results of the AES-MPPRM architecture for the encryption and decryption processes
are taken for the 128-bit of cryptography. The LUT, slices, and flip flops for the AES-
MPPRM architecture designed in the Spartan 6 FPGA device are 197, 79, and 88, which
are less when compared to the AES-PPRM architecture. From the performance analysis, it
is concluded that the AES-MPPRM architecture achieves the better performance than the
AES-PPRM architecture. The reason for the AES-PPRM architecture with higher hardware
resource utilization is that it used high amount of AND and XOR gates during the Sub
Bytes transformation. However, the AES-MPPRM architecture uses only less amount of
AND and XOR gates in the Sub Bytes transformation. More specifically, the AES-MPPRM
architecture designed in the Kintex 7, Spartan 3, Spartan 6, Virtex 5, and Virtex 6 FPGA
devices consumes only less than or equal to the 70% of resources. Therefore, the proposed
AES-MPPRM architecture consumes less hardware resources based on the MPPRM Sub
Bytes transformation and its subpipelinining architecture.

Table 3. Hardware utilization analysis of AES-MPPRM for Kintex 7 FPGA device.

FPGA Performances
Total

Resources

Occupied Resources % of Utilization

AES-PPRM AES-MPPRM AES-PPRM AES-MPPRM

Number of slice registers 82,000 8180 7120 9.97% 8.68%
Flip Flops 82,000 8178 7119 9.97% 8.68%

Number of slice LUTs 41,000 10,110 8129 24.65% 19.82%
Number of logical elements 41,000 10,110 8129 24.65% 19.82%

Slices 10,250 860 467 8.39% 4.55%
Bonded IOB 300 267 211 89% 70.33%
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Table 4. Hardware utilization analysis of AES-MPPRM for Spartan FPGA devices.

Spartan FPGA
Devices

FPGA Performances
Total

Resources

Occupied Resources % of Utilization

AES-PPRM AES-MPPRM AES-PPRM AES-MPPRM

Spartan 3 FPGA

Number of slice registers 3840 642 585 16.71% 15.23%
Flip Flops 3840 650 591 16.92% 15.39%

Number of slice LUTs 3840 2205 1903 57.42% 49.55%
Number of logical elements 3840 2205 1903 57.42% 49.55%

Slices 1920 1026 985 53.43% 51.30%
Bonded IOB 141 82 67 58.15% 47.51%

Spartan 6 FPGA

Number of slice registers 18,224 125 83 1% 1%
Flip Flops 18,224 133 88 1% 1%

Number of slice LUTs 9112 256 197 2.80% 2.16%
Number of logical elements 9112 300 200 3.29% 2.19%

Slices 2278 154 79 6.76% 3.46%
Bonded IOB 18,224 211 126 1.15% 1%

Table 5. Hardware utilization analysis of AES-MPPRM for Virtex FPGA devices.

Virtex FPGA
Devices

FPGA Performances
Total

Resources

Occupied Resources % of Utilization

AES-PPRM AES-MPPRM AES-PPRM AES-MPPRM

Virtex 5 FPGA

Number of slice registers 28,800 20,100 18,542 69.79% 64.38%
Flip Flops 28,800 20,101 18,542 69.79% 64.38%

Number of slice LUTs 28,800 14,993 14,210 52.05% 49.34%
Number of logical elements 28,800 14,983 14,208 52.02% 49.33%

Slices 7200 5010 4879 69.58% 67.76%
Bonded IOB 480 150 109 31.25% 22.70%

Virtex 6 FPGA

Number of slice registers 93,120 2984 2109 3.20% 2.26%
Flip Flops 93,120 2990 2110 3.21% 2.26%

Number of slice LUTs 46,560 10,100 8342 21.69% 17.91%
Number of logical elements 46,560 10,100 8341 21.69% 17.91%

Slices 11,640 1010 981 8.67% 8.42%
Bonded IOB 240 123 98 51.25% 40.83%

Table 6. Analysis of operating frequency and delay for AES-MPPRM.

FPGA Devices
Operating Frequency (MHz) Delay (ns)

AES-PPRM AES-MPPRM AES-PPRM AES-MPPRM

Kintex 7 69.214 81.328 4.297 2.982
Spartan 3 70.208 83.247 5.103 3.723
Spartan 6 149.105 172.277 4.761 3.976
Virtex 5 578.114 733.210 3.692 2.095
Virtex 6 198.429 433.281 3.209 2.821

5.2. Comparative Analysis

This section shows the comparative analysis of the AES-MPPRM architecture with
existing AES architectures. There are five AES architectures, including LAES [47], AES-
CTR [48], AES-CFA [49], AES-BSRD [50], and AES-EMCBE [51], which are used to justify the
effectiveness of the AES-MPPRM architecture. The comparison between the AES-MPPRM
with existing AES architectures are given as follows:

The comparison of the AES-MPPRM architecture with LAES [47], AES-CTR [48],
AES-CFA [49], AES-BSRD [50], and AES-EMCBE [51] is shown in Tables 7–11, respectively.
Additionally, the LUT comparison graph among the existing AES architectures and AES-
MPPRM is presented in Figure 9. From the analysis, it is concluded that the AES-MPPRM
architecture outperforms well than the LAES [47], AES-CTR [48], AES-CFA [49], AES-
BSRD [50], and AES-EMCBE [51]. For example, the number of slice LUT is 197 for the AES-
MPPRM with Spartan 6 FPGA, and it is even less when compared to the AES-BSRD [50].
The area of AES-BSRD [50] is increased due to its replication of linear operation during the
encryption/decryption process. The hardware utilization of the AES-MPPRM architecture
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is reduced mainly due to the fact that it doesn’t depend on the LUT while designing
the SubBytes and InvSubBytes stages. Here, the combinational logical circuit is used to
design the SubBytes and InvSubBytes transformation. The MPPRM structure is used to
minimize the hardware utilization during the encryption and decryption processes. Here,
the combination of the subpipelining structure with MPPRM structure is used to minimize
the delay.

Table 7. Comparison of AES-MPPRM and LAES for Kintex 7 FPGA.

FPGA Performances LAES [44] AES-MPPRM

Slice LUTs 9468 8129
IOBs 384 211

Table 8. Comparison of AES-MPPRM and AES-CTR for Virtex 5 FPGA.

FPGA Performances AES-CTR [48] AES-MPPRM

Slice registers 19,123 18,542
Slice LUTs 14,966 14,210

Slices 5974 4879
Operating frequency (MHz) 622.4 733.210

Table 9. Comparison of AES-MPPRM and AES-CFA for Spartan 3 FPGA.

FPGA Performances AES-CFA [49] AES-MPPRM

Flip Flops 680 591
Slice LUTs 2156 1903

Slices 1132 985
IoB 389 67

Operating frequency (MHz) 67.75 83.247

Table 10. Comparison of AES-MPPRM and AES-BSRD for Spartan 6 FPGA.

FPGA Performances AES-BSRD [50] AES-MPPRM

Flip Flops 92 88
Slice LUTs 230 197

Slices 108 79
Operating frequency (MHz) 120 172.277

Table 11. Comparison of AES-MPPRM and AES-EMCBE for Virtex 6 FPGA.

FPGA Performances AES-EMCBE [51] AES-MPPRM

Slice registers 2688 2109
Slice LUTs 9393 8342
Delay (ns) 3.167 2.821

Operating frequency (MHz) 315.806 433.281



Electronics 2021, 10, 2023 18 of 22
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Figure 9. Comparison of slice LUTs for the AES-MPPRM and existing AES architectures. (a) Kintex FPGA device, (b) Virtex

FPGA devices, (c) Spartan FPGA devices.

5.3. Case Study

Cryptographic Process on X-ray Image of a Disjoint in Human Shoulder

This AES-MPPRM architecture is implemented for the secure transmission of the
human shoulder X-ray image. This secure transmission happens as an image encryption
and decryption using modified AES algorithm.

In the image encryption, pixel value of the X-ray image which is to be transmitted
securely is obtained with the MATLAB 6.5 programming software. These pixel values act
as one of the input data to the proposed AES algorithm. The input data can be from 0 to
255 (i.e., Pixel value) and the input pixel values are {27, 25, 26, 28, 27, . . . c, f f }. Figure 10
shows the input and histogram image, where the input pixel values are converted into
binary form using the command of dec2bin. Subsequently, these binary data are given as
the input and it is encrypted using the AES-MPPRM architecture. The output is taken in the
form of hexadecimal values which is in 8-bit. The encrypted values from the AES-MPPRM
architecture are { f c, f c, f d, f f , f f , . . . , 4, 2}. The output of this algorithm is the cipher
text values which can be transmitted across the world securely. With this cipher text value,
unauthorized persons cannot obtain the original information without knowledge of the
secret key. The encrypted image and its histogram are shown in the Figure 11. At the
receiving end, obtained cipher text values are once again converted back into pixel values
of the original images by the using the same proposed architecture. Then this same process
is used for all the pixel values of the image. Then these pixel values are used by MATLAB
to produce the original image at the receiver end.



Electronics 2021, 10, 2023 19 of 22

{27, 25, 26, 28, 27, … , }2
{ , , , , , … ,4, 2}

  
(a) (b) 

  

Figure 10. Input image: (a) X-ray image and (b) histogram.

{27, 25, 26, 28, 27, … , }2
{ , , , , , … ,4, 2}

  

  
(a) (b) 

Figure 11. Output image: (a) Encrypted Image and (b) Histogram.

Decrypted image is obtained with the MATLAB by the process of converting encrypted
pixel values to the images. From the encrypted results and histogram images, it is clear
that the AES-MPPRM architecture achieves higher security.

6. Conclusions

In this paper, the SubBytes/InvSubBytes transformation of the AES architecture was
designed using the MPPRM structure. Subsequently, the designed SubBytes/InvSubBytes
transformation was used to develop an effective subpipelining architecture. This same
subpipeline architecture can be implemented for other versions of the AES such as AES-
192 and AES-256 algorithms, by making slight modifications in the key expansion unit.
Hence, the MPPRM architecture used in the AES helped to reduce the amount of hardware
resources. Moreover, the delay of the overall circuit was minimized using the integration
of subpipelining and MPPRM structure. Accordingly, the lesser delay leads to the higher
operating frequency for the AES-MPPRM architecture. The LUT of the AES-MPPRM
architecture designed in the Spartan 6 is 197, which is much less compared to the AES-
BSRD. In future, the modified key expansion architecture can be developed for minimizing
the time consumption during the key generation. It can also be extended by employing the
cryptanalysis process to check the security of the algorithm by introducing some attacks
(such as a side channel attack).
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