
A Low-Complexity and Low Power Design of 2D-Median Filter 89

A Low-Complexity and Low Power Design of
2D-Median Filter

Takeaki Matsubara1 , Vasily G. Moshnyaga2 , and Koji Hashimoto3 , Non-members

ABSTRACT

Impulse noise removal is a very important prepro-
cessing operation in many computer vision applica-
tions. Usually it is accomplished by median filter with
excessive sorting and therefore large power. This pa-
per presents a new design of 2D median filter that uti-
lizes a simple conditional filtering technique, executes
fewer computations than related designs while achiev-
ing superior image quality. Experimental FPGA im-
plementation of the proposed filtering scheme is com-
pact, fast and low-power consuming.

Keywords: Impulse Noise, Median Filter, FPGA
Implementation, Image Processing

1. INTRODUCTION

Median filter [1] is a non-linear digital filter widely
used in image processing for image smoothing and
suppression of impulse noise, which frequently cor-
rupts images during picture acquisition or transmis-
sion. In general two types of impulse noise exist:
fixed-valued impulse noise and random valued im-
pulse noise. The fixed value impulse noise [2] is usu-
ally reflected by a pixel which has either a minimum
or a maximum value in gray-scale image. In con-
trast, the values of randomvalued noisy pixels are
distributed uniformly in the grayscale image within
the range of [0, 255]. The median filter removes im-
pulse noise signals by changing the luminance value
of the target pixel with the median value of those pix-
els in the filtering window. However, as the number
of corrupted pixels in the image increase, the median
filter produces poor results. Namely, it blurs image
details and causes loss of the useful information in
the image. Besides, since most median filters require
sorting or inserting/deleting procedures, they become
very computationally expensive.

Over the years, various adaptive techniques for im-
pulse noise reduction have been proposed [3-20]. The
common idea is to split the noise processing into two

Manuscript received on March 2, 2011 ; revised on May 12,
2011.
1,2,3 The authors are with the Department of Electronics

Engineering and Computer Science, Fukuoka University, 8-19-
1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan Tel/Fax:
(+81) 92-801-0833 Email: matsubara, vasily, khashi@fukuoka-
u.ac.jp
The work was sponsored by The Ministry of Education,

Culture, Sports, Science and Technology of Japan under the
Knowledge Cluster Initiative (The Second Stage) and Grant-
in-Aid for Scientific Research (C) No.21500063

parts: noise detection and noise removal by filter-
ing. The incoming data is checked and if a noisy
pixel is found, the adaptive filter is applied to repair
the corrupted pixel. Otherwise, the original pixel is
kept. In comparison to median filtering, the adaptive
techniques do not process the noise-free pixels and so
reduce the computational load.

In general, the adaptive techniques proposed for
impulse noise removal can be classified as lower com-
plexity techniques and higher-complexity techniques.
The lower complexity techniques [3-18] use fixed size
windows and simplified computations in order to
achieve high-speed processing. The higher complex-
ity techniques [19-22] target excellent visual quality
by adaptively enlarging window sizes or increasing
computing iterations. In this paper we focus only on
the low complexity techniques because of their im-
plementation simplicity, low processing time and low
power consumption.

Existing lower-complexity noise removal tech-
niques differ by detection of noise pixels and their
de-noising. In [3],[4], weights are applied to con-
trol filtering while preserving features of given shapes
and sizes. [5],[6],[7] achieve fast filtering by single
thresholding and so limit themselves to lower noise
density levels. The combination of simple threshold-
ing with center-weighted median filtering is given in
[8][9]. Zhang and Karim[10] use 1-D Laplacian op-
erators to compute four 5x5 convolution kernels and
apply them to separate impulses from edges. Jiang
[11] propose to truncate each noise pixel by the max-
imal or minimal values of its surrounding pixels. An-
dreadis and Louverdis [12] multiply the minimal and
the maximal values of pixels in the search window by
a predefined real number and use them as the noise
thresholds. Aizenberg and Butakoff [13] advocate
identifying the noise pixel based on both rank and
absolute value. Their differential rank impulse detec-
tor defines a pixel (i,j) noisy if (R(i,j)≤k) (R(i,j)≥N-
k+1)∧(F(i,j)≥Q), where R(i,j) is the rank of pixel
(i,j), i.e. its position from 1 to N; k and Q are two
thresholds; and ∨ and ∧ are disjunction and conjunc-
tion operators, respectively. Alpha-trimmed mean
based impulse noise detection is reported by Luo in
[14], [15]. A pixel is considered noisy if it matches
one of the peak locations in the image histogram. In
this case, the detector calculates the minimum of ab-
solute differences between the pixel value and the val-
ues of its eight neighbors and generates a fuzzy map
S(i,j), which indicates how much each pixel looks like

90 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

an impulse noise. The value of pixel (i,j) is then re-
placed by a linear combination of its original value
F(i,j) and the median value of its neighbors. Srini-
vasan and Ebenezer[16] sort pixels in the window to
obtain minimum, maximum and

Fig.1: An overview of the proposed technique

mean values and then use them to make decisions on
weather to remove the corrupted pixel either by me-
dian or by its neighboring pixels. Ibrahim, et al [17]
modify the histogram-based method [15] by count-
ing the number of noisy pixels at the noise detection
stage in order to estimate the level of impulse noise
that corrupts the image. The obtained level is then
used for the window size control at the noise can-
celation stage. The edge preserving image de-noising
proposed by Chen et al, [18] detects noise pixels based
on the minimal and maximal values computed for
the current and the previously processed windows,
respectively. To preserve edges, the detector calcu-
lates 12 absolute differences and adds them in pairs
to compute directional differences around the central
pixel F(i,j). Then it determines the minimum value
along those directional differences, checks four denois-
ing conditions, and estimates eight arithmetic func-
tions (16 additions, 8 shifts (divisions) and 8 compar-
isons in order to reconstruct the corrupted pixel.

Despite difference in implementation, all existing
solutions have one feature in common. Namely their
efficiency strongly depends on the thresholds used
for noise detection. On the one hand, fixed or im-
age independent thresholds yield fast results but lead
to loss of detail and smoothing of edges. On the
other hand, the use of dynamic or image-dependent
thresholds reduces misdetection but requires compu-
tationally expensive operators (e.g. multiplications,
divisions, etc.) and large memory resources which
increase cost, processing time and power consump-
tion of implementation hardware. Therefore dynamic
thresholds, which can be computed by simple and
compact hardware, are very important.

In this paper, we present a novel lower-complexity
adaptive filter that achieves high quality process-
ing under low cost requirements on image de-noising
hardware. The paper’s contribution is twofold. The
first one is noise detector which exploits dynamic

thresholds, optimized to reduce the number of oper-
ations while maintaining the high visual quality. The
second contribution is hardware implementation of
adaptive filter, which in comparison to related de-
signs requires less resources and power.

The rest of the paper is organized as follows. The
next section presents the proposed technique. Section
3 describes hardware architecture. Section 4 shows
experimental results. Section 5 gives conclusion and
outlines work for the future.

Fig.2: The relative position of current processing
pixel (i,j)

2. THE PROPOSED NOISE DETECTOR

2.1 Main idea

The proposed technique aims at removing random-
valued impulse noise. Similarly to the other adaptive
filtering methods, we assume that the filter contains
two components: noise detector and noise remover,
as shown in Fig.1. The noise detector determines
whether the pixels are corrupted by the impulse noise
or not. Each noisy pixel is processed by median fil-
tering for reconstruction. Otherwise, there is no fun-
damental reason to modify the value of a non-noisy
pixel, so the filtering is skipped. Below we discuss the
technique in details.

2.2 The noise detector

The noise detector uses two dynamically defined
conditional thresholds (TLOW , THIGH) to distinguish
corrupted pixels from the noise-free pixels. Let fij
be the value of the pixel with coordinates (i,j) and
W(i,j) the set of pixels that surround the (i,j) within
the test window of (N×N) pixels in size. Fig.2 shows
the relative position of the pixel (i,j) and its (3×3)
test window.

In order to consider edges we propose to calculate
thresholds based on the difference between the pixel
of interest and its closest neighbors in the variation se-
ries (the neighbor is chosen from the interval between
the pixel of interest and the median). Namely, our
noise detector sorts the values of pixels within W(i,j)
in ascending order and evaluates values of three im-
age pixels (i, j − 1)(i, j)(i, j + 1) in the middle. Let
the values of these pixels be f4i,j , f5i,j , f6i,j+1, and
f4i,j ≤ f5i,j ≤ f6i,j That is f5i,j is the median value
of N2 values in W(i,j). Then the thresholds TLOW

and THIGH are defined as following:

A Low-Complexity and Low Power Design of 2D-Median Filter 91

Table 1: The ranges of α and β at which the PSNR difference from PSNR MAX was less than 0.5dB

Table 2: The PSNR values observed for different α and β on tested images (512×512 pixels in size)

THIGH =

{

f6i,j + α, iff6i,j + α < f5i,j + β

f5i,j + β, otherwise
(1)

TLOW =

{

f4i,j − α, iff4i,j − α < f5i,j − β

f5i,j − β, otherwise
(2)

where α and β are empirically predefined parame-
ters, which set the difference in brightness between
the pixel (i,j) and its close neighbors in the variation
series. The upper conditions in (1) and (2) determine
the thresholds in the presence of an edge; the low ones
define the thresholds in its absence.
If the detector finds that the value fi,j of pixel (i,j)
is larger than THIGH or lower than TLOW , it sets a
binary flag S to one. Otherwise, the S is 0. That is,

Thus, the flag (S = 1) points out that the pixel
(i,j) is corrupted. If S = 0, the pixel has a noise-free
value.

2.3 The Median Filter

The median filter is activated if and only if the flag
S is set. The filter replaces the corrupted value of

current processing pixel (i,j) with the median value
of those pixels in W(i,j). In contrast to traditional
median filters [1] as well as the adaptive center-weight
filters[3-4], which replace the central pixel intensity
value fi,j in the

Fig.3: PSNR variation with α and α

window N times, our filter replaces fi,j only once,
namely if S=1. Otherwise, the pixel value remains
unchanged. This allows the noise filter to be tuned to

92 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

Fig.4: An illustration of visual quality: (from left to right) original image; 20% noisy image; standard median
filter; the proposed technique on standard test images (from top to bottom): Lena, Bridge, Boat, Parthenon,
Airplane

A Low-Complexity and Low Power Design of 2D-Median Filter 93

the expected noise characteristics (unlike the center
weighted median filter) and also provides significantly
less change to the original noiseless pixels (unlike the
traditional median filter). It should be noticed that
the proposed conditional median filter turns to the
standard median filter for TLOW = THIGH .

2.4 Evaluation

To examine the properties of the proposed noise
detection technique, we performed several tests. The
first test was dedicated to computing the parameters
(α and β) of the thresholds (THIGH and TLOW),
which lead to the best picture quality in terms of
Peak-Signal to Noise ratio (PSNR) and mean squared
error (MSE). We used nine standard gray-scale test
images (Lena, Barbara, Bridge, Baboon, Airplane,
Parthenon, Pentagon, Temple and Boat) each of each
was evaluated at 512×512 and 256×256 pixels in size
as well as at 10% and 20% density of impulse noise,
respectively. The noisy images were then repeatedly
processed by the proposed technique (3×3 window
size) with α varying from 0 to 65, while for each value
of α the value of β was changing from 0 to 150. Fig.3
illustrates the PSNR variation with α and β observed
for Lena image (512×512 pixels in size, 10% noise).
As one can see, the PSNR peaks at 20 < α < 34
and 54 < β < 118 with the maximum at α=28 and
β=118. The results also revealed that the values of
α and β which bring peak PSNR depend on both
the image content and the noise density but do not
depend on the image size. (The PSNR variation for
512×512 and 256×256 image sizes had the same vari-
ation pattern).

Table 1 summarizes the results obtained for im-
ages of 512×512 pixels in size in terms of the maximal
PSNR and ranges of α and β at which the PSNR vari-
ation from the maximum value was less than 0.5dB.
Based on these ranges, we derived combinations of
α and β and selected those, which maximized PSNR
across all tested images. Table 2 exemplifies the re-
sults in terms of PSNR, the average PSNR value for
corresponding α and β and the difference (∆) with
MAX PSNR accumulated over all the test images.
Thus we selected α=35 and β=80.

Table 3: PSNR and MSE for different filter sizes

Parameter
10%noise 20%noise

PSNR(dB) MSE(db) PSNR(dB) MSE(db)
MF(3×3) 15.05 2032.3 12.07 4040.08
Our(3×3) 37.33 11.99 34.32 24.04
MF(5×5) 29.7 69.62 28.33 95.59
Our(5×5) 34.56 22 31.57 45.25

Having the values of α and β set, we compared the
performance of the proposed filter with conventional
median filter [2]. Table 3 shows the PSNR and MSE
values after processing the image Lena (512×512 pix-
els in size) corrupted by 10% and 20% noise by stan-

dard median filter (MF) and the proposed technique
for two window sizes: 3×3 and 5×5, respectively. No-
tice, the quality of results (in terms of PSNR and
MSE) produced by the proposed technique is con-
siderably better than those of the standard median
filter.

Fig.4 illustrates the visual quality of correspond-
ing images for 3×3 window size and 30% noise den-
sity. Because our method relies on dynamically com-
puted image-dependent thresholds, it is able to pre-
serve edges, which are blindly blurred by traditional
median filter. Clearly, the picture quality achieved
by the proposed method is close to the original one.

Next, to access the effectiveness of the proposed
technique, we compared the results obtained by our
technique with those produced by related methods.
Totally five de-noising methods have been tested:
1) standard median filter (MF) of size (3x3) [1];
2) the differential rank impulse detector (DRID) [13];
3) the alpha-trimmed mean based method (ATMBM)
[14],
4) the edge-preserving image de-noising method
(EPID) [17] and
5) the proposed technique.
The threshold parameters of the related methods
were set as described in the corresponding papers.

Table 4 shows the PSNR values of the images with
noise densities varying from 10% to 50%. As one can
see, our technique achieves better results than related
methods, yielding only to a more computationally ex-
pensive edge preserving (EPID) method [17] by less
than a half dB. However, if we consider the visual
quality, this PSNR difference is almost invisible (see
Fig.5).

Table 4: Comparison on PSNR

Noise ratio MF DRID ATMBM EPID Our
10% 32.65 36.95 36.88 37.85 37.33
20% 31.28 32.86 34.28 34.58 34.32
30% 29.51 28.94 31.95 32.15 31.98
40% 27.59 25.28 29.87 30.03 29.94
50% 25.54 23.73 26.35 27.25 26.86

Table 5: Comparison on computational complexity

Parameter MF DRID ATMBM EPID Our
Comp/abs 28 144 144 59 40
Add/sub 0 31/70 27/47 23 8
Mult 0 0 16 0 0

Proc.time 0.22 1.32 3.03 0.68 0.33
Buffer size 2lines 512×512 512×512 2lines 2lines

Table 5 compares the related methods in terms of
required operations, processing time and the buffer
size. Here, comp shows comparisons; abs - absolute
value computations; add additions; sub subtractions,
and mult multiplications. The processing time was
obtained from the PC with 2.8GHz Pentium CPU

94 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

and 512MB memory. Based on the results, we con-
clude that our noise detection technique requires less
arithmetic operations than the DRID, ATMBM, and
EPID, i.e. has less computational complexity, while
utilizing the minimum number of memory buffers.

Fig.5: The Lena image produced by [17](top) and
by our technique (bottom)

3. HARDWARE IMPLEMENTATION

Fig.6 outlines hardware architecture for imple-
menting the proposed technique. The architecture
consists of three major blocks: register bank, sort-
ing unit, and threshold generation and noise detec-
tion unit. In every processing step, the architecture
reads image data from memory (not shown for sim-
plicity) and shifts two line buffers to the right, placing
the incoming pixel X and its two neighboring pix-
els into the register bank and the shifter, while two
of de-noising pixels are written into the line shifters
and memory, respectively. With each odd clock cycle
the shifter sends a new pixel into the sorting circuit,
which takes two clock cycles to sort all N×N pixels
in the filtering window and detect the median and
its left and right neighbors (see Section 2.2). Based
on these three values, the threshold generation logic
produces signal S to control the multiplexor and re-
place the pixel (i,j) currently located in the center
of the register bank by new (median) value or keep
the pixel value unchanged. Below we briefly describe
each of the architectural blocks in more details.

Fig.6: The proposed hardware architecture

3.1 Register bank

The register bank consists of N×N registers to store
all pixel values of the current window. When the
window is shifted from the current location to the
next one, only N new values are read into the Regis-
ter Bank (RB) and the rest (N-1)×N pixel values are
shifted to their right registers, respectively. Eventu-
ally, N values are loaded into the shifter in parallel.
The shifter operates at N times higher clock frequency
than the register file, moving the received data one
position to the right in every clock cycle. With each
data move one pixel sample enters the sorting unit.
Thus its takes N machine cycles (or N×N clock cycles
of the shifter) to process all pixels in the window.

3.2 Sorting Unit

To implement sorting in hardware, we use 1D-
structure proposed in [23]. The circuit consists of
M = N2 cascaded blocks, one for each window rank,
as shown in Fig.7. Each block i is composed of one
n-bit register (Ri), one k-bit (k = log2M) counter
(Pi), n-bit comparator (C) and a simple data-transfer
logic. All blocks are connected to the Reset line
and the global input, X, through which they receive
the incoming sample. The data-transfer logic allows
blocks to receive and transmit the content of their R
and P values from/to their neighbors. The registers
R1, R2, . . . , RM store samples in descending order; so
at time t the maximum value is always at the left (in
R1); the minimum value at the right (in RM), and
the median is in the register Ri. We assume the sort-
ing unit runs at the twice higher clock frequency than
the shifter: i.e. it performs two clock cycles for each
clock cycle of the shifter. At the odd clock cycle, the
sorter increments all the counters (Pj) to maintain
sample aging while removing from the window (W)
that datum whose value exceeds M . At the even
clock cycle, it compares the input datum, xt, to all
samples stored in the registers Rj , and moves those
samples, whose values are less than xt, to the right
while putting the input datum, xt, into the vacant
place within the already ordered sequence.

To illustrate the circuit operation, assume that reg-
isters R1, R2, R3, R4 and R5 store 152, 140, 135, 31,
and 0, respectively, while counters P1, P2, P3, P4 and

A Low-Complexity and Low Power Design of 2D-Median Filter 95

Fig.7: Logic structure of the sorting unit (M=5)

P5 have 1, 4, 3, 2, and 0, respectively. Let the incom-
ing input sample is (X = 145). At any odd clock
cycle, the counters are incremented. The counter P2

reaches 5, which is the limit for M = 5, and overflows
sending the request signal z3 to all the blocks on its
right. By receiving this signal, the blocks

3,4 and 5 move their values to the adjacent blocks
on the left, while the values of R5, P5 are reset to
zero. Thus R1 becomes 152, R2=135, R3=31, P4=0,
R5=0, P1=2, P2=4, P3=3, P4=1, P5=0 while the
aged sample 140 is removed from the window.

At any even clock cycle, the input sample is com-
pared to all values stored in the registers. The com-
parators (Ci) produce true signals Ti=1 if X > Ri;
otherwise Ti=0. Thus, since X = 145 is larger than
the value of the register R2 but lower than that of R1,
the signal T1 generated by C1 becomes 0 while T2

(from C2) is 1. These signals enforce the multiplexor
in front of R2 to select input 1 while all the multiplex-
ors at the right side of R2 select input 2. Thus the
contents of registers R2-R5 is moved one position the
right and the sample X is written to the R2. Due to
this partial data movement left and right, the circuit
preserves the sample ordering obtained at the present
cycle, while resorting only the new incoming sample
at a new clock cycle.

3.3 Threshold generator and noise detector

Fig.8 shows the internal structure of the threshold
generation and the noise detection unit. Here C de-
notes comparators and + denotes adders. The circuit
implements equations (1)-(3) in one clock cycle, pro-
ducing the signal S=1, when the pixel (i,j) is noisy
and S=0, otherwise.

Based on this signal, the multiplexer in Fig.6 se-
lects either the median or the original pixel value and

writes it to the location (i,j) in the register bank, as
well as to the sorting circuit, to replace the noisy pixel
with the median value. After that the content of the
RB is shifted left and the processing repeats.

Overall the proposed hardware architecture shown
in Fig.6 takes six cycles of internal (sorting) clock to
process three new pixels and two extra clock cycles
to replace the noisy pixel in the sorting window.

Fig.8: The threshold generator and noise detector

3.4 Hardware evaluation

To evaluate the filtering hardware, we experimentally
designed two FPGA implementations by using Altera
Design Tools: one is the conventional median filter,
proposed in [24], and the other one is our filter. Both
designs have 3 × 3 window size, 8-bit word-length of
samples, and are implemented in Altera Cyclone II
FPGA IC board (EP2C20F484C7N, 20K logic cells,
234K memory cells, 1.2V power supply, 50MHz clock
frequency).

Fig.9 illustrates the quality of pictures produced
by the implemented hardware from the 10% noisy
image (Lena, 640×480 pixels in size). Clearly, the
image produced by our hardware is better than those
generated by the existing median filter design [24].

96 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

Fig.9: Hardware results: original Lena image
(640×480 pixels) corrupted by 10% noise (top); Im-
age produced by existing median filter hardware [2]
(middle); image produced by the proposed filter hard-
ware (bottom)

Table 6 summarizes the designs in terms of the to-
tal number of logic cells (LC) and memory cells (MC)
used in the designs, latency, and the power consump-
tion. The power consumption was evaluated based
on Quartus II Power Play Analyzer Tool applied to
the layout generated by Altera. Based on the number
of logic and memory cells used, we conclude that the
proposed design is very compact, fast and low power
consuming. Although the design was automatically
generated, the maximum clock frequency achievable
is high.

4. CONCLUSION

This paper presented a novel noise detection tech-
nique and hardware architecture for adaptive lowcom-
plexity 2D-median filter. Unlike other methods, our
technique utilizes dynamically computed imagede-
pendent thresholds which prevent loss of image de-
tails. Despite of low computational complexity, the
proposed noise detection achieves superior quality of

results in terms of PSNR and image quality in com-
parison to related methods. Prototype FPGA imple-
mentation of the adaptive median filter for the win-
dow sizes of 3x3 has been experimentally compared
to existing median filter hardware. As the results
show, the proposed design requires less hardware re-
sources and power. Currently we are working on cus-
tom VLSI chip implementation of the proposed de-
sign.

Table 6: Comparison on computational complexity

Design

Design parameters

LC MC
Latency Thermal Power (mWatt)

(clocks) Dynamic Static
I/O

thermal
[24] 733 399 6 20.4 52.3 102.7
ours 638 290 8 18.7 49.4 49.5

References

[1] T.Nodes, and N.Gallager, “Median filters:
some modifications and their properties, IEEE
Trans. Acoustics, Speech and Signal Processing,
vol.ASSP-30, no.5. pp.739-746, Oct.1982

[2] R. C. Gonzalez and R. E. Woods, Digital Image
Processing. Boston, MA, USA: Addison-Wesley
Longman, Publishing Co., Inc., 1992..

[3] D. R. K. Brownrigg, “The weighted median fil-
ter, Communications of the ACM, vol. 27, no. 8,
pp. 807-818, 1984.

[4] S.-J. Ko and Y. Lee, “Center weighted median
filters and their applications to image enhance-
ment, IEEE Trans. on Circuits and Systems, vol.
38, no. 9, pp. 984-993, 1991.

[5] T.Sun, and Y.Nuevo, “Detail-preserving median
filters in image processing, Pattern Recognition
Letters, vol.15, pp.341–347, April 1994.

[6] D.A. F. Florencino and R.W.Schafer, “Decision-
based median filter using local signal statistics,
Proceedings SPIE Symp. Visual Communica-
tions and Image Processing, vol.2038, pp.268–
275, Sept.1994,.

[7] E.Abreu, M .Lightstone, S.K.Mitra, and
K.Arakawa, “A new efficient approach for re-
moval of impulse noise from highly corrupted im-
ages, IEEE Transactions on Image Processing,
vol. 5, pp. 1012-1025, June 1996.

[8] T.Chen, K-K.Ma, L-H.Chen, “Tri-state median
filter for image denoising, Transactions on Im-
age Processing, vol.8, no. 12, pp. 1834-1838, Dec.
1999.

[9] T.Chen and H.Wu, “Adaptive impulse detection
using centerweighted median filters, IEEE Signal
Process. Letters, vol.8, no.1, pp.1-3, Jan.2001.

[10] S.Zhang and M.Karim, “A new impulse de-
tector for switching median filters, IEEE Sig-
nal Processing Letters, vol.9, no.11, pp.360-363,
Mar.2002.

A Low-Complexity and Low Power Design of 2D-Median Filter 97

[11] X.D.Jiang, “Image detail-preserving filter for im-
pulse nose attenuation, IEE Proceedings Vis. Im-
age Signal Processing. vol.150, No.3, pp.179-185,
June 2003.

[12] I.Andreadis and G.Louverdis, “Real-time adap-
tive image impulse noise suppression, IEEE
Transactions on Instrumentation and Measure-
ments, vol.53, no.3, pp.798-806, June 2004.

[13] I.Aizenberg, C.Butakoff, “Effective impulse de-
tector based on rank-order criteria, IEEE Sig-
nal Processing Letters, vol.11, no.3, pp.363-366,
Mar.2004.

[14] W.Luo, “Efficient removal of impulse noise from
digital images, IEEE Transactions on Consumer
Electronics. Letters, vol.52, no.2, 523-527, May
2006.

[15] W.Luo, “An efficient detail preserving approach
for removing impulse noise in images, IEEE Sig-
nal Process. Letters, vol.13, no.7, 413-416, July
2006.

[16] K.S.Srinivasan, and D. Ebenezer, “A fast and
efficient decisionbased algorithm for removal of
high density impulse noises,” IEEE Signal Pro-
cess. Letters, vol.14, no.3, 189-192, Mar 2007.

[17] P-Y.Chen, C-Y.Yuan Lien, “An efficient edge-
preserving algorithm for removal of salt-and-
pepper noise,” IEEE Signal Processing Letters,
vol.15, pp. 833-836, 2008.

[18] P-Y.Chen, C-Y.Yuan Lien, H-M. Chuang, “A
low-cost VLSI implementation for efficient re-
moval of impulse noise,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
vol.18, no.3, pp. 2005-2008, March 2010.

[19] Z.Wang and D.Zhang, “Progressive switching
median filter for the removal of impulse noise
from highly corrupted images,” IEEE Trans.
Circuits and Systems II, Analog and Digital Sig-
nal Processing, vol.46, no.1, pp.78-80, Jan.1999.

[20] R. H. Chan, C.-W. Ho, and M.Nikolova, “Salt-
and-pepper noise removal by median-type noise
detectors and detail-preserving regularization,
IEEE Transactions on Image Processing, vol. 14,
no. 10, pp. 1479-1485, Oct. 2005.

[21] P.-E.Ng and K.-K. Ma, “A switching median fil-
ter with boundary discriminative noise detection
for extremely corrupted images,” IEEE Transac-
tions on Image Processing, vol.15, no.6, pp.1506-
1516.

[22] N.I. Petrovic and V.Crnojevic, “Universal im-
pulse noise filter based on genetic programming,”
IEEE Transactions on Image Processing, vol. 17,
no.7, pp. 1109-1120, July 2008.

[23] V.G.Moshnyaga, K.Hashimoto, “An Efficient
implementation of 1-D median filter,” IEEE
Midwest Symp. On Circuits and Systems, 2009.

[24] C. Chakrabarti: “Sorting network based archi-
tecture for median filter,” IEEE Trans. Ana-

log and Digital Signal Processing, vol.40, no.11,
pp.723-727, Nov.1993.

Takeaki Matsubara received the B.E.
.degree in Electronic Engineering and
Computer Science from Fukuoka Uni-
versity, Japan in 2008. He is now a mas-
ter student of Graduate School of Elec-
tronics Engineering and Computer Sci-
ence, Fukuoka University, Japan. His
current research interests are in the ar-
eas of video and image processing and
VLSI design.

Vasily G. Moshnyaga received the
Computer Engineering Degree with
Honors from Technical State University,
Sevastopol, USSR in 1980 and Ph.D.
in computer engineering from Moscow
Aviation Institute in 1986. Till 1992
he was a faculty of Technical University
of Moldova, Chisinau, Moldova. From
1992 to 1998 he was a lecture at the De-
partment of Electronics and Communi-
cation of Kyoto University, Japan. Since

1998 he has been with Fukuoka University, Japan, where he is
currently a Professor at the Department of Electronics Engi-
neering and Computer Science. In 2005-2006 he was a visiting
scientist of Computer Science Department, UCLA. His current
research interests are in the areas of computer architecture,
video processing, VLSI design and design methodologies with
a particular emphasis on energyefficient design techniques. He
has authored or co-authored over 170 referred journal and con-
ference publications and holds five patents. Dr. Moshnyaga
served as Vice-Chair of the IEEE CAS Society, Fukuoka Chap-
ter from 2008 to 2010, Associate Editor of the IEICE Trans-
actions on Fundamentals of Electronics, Communication and
Computer Sciences (from 2005 to 2008), and a member of orga-
nizing committees of the Asia-Pacific Design Automation Con-
ference, Asia Pacific Conference on Chip Design Languages.
He is now a member of IEEE CAS Technical Committee on
VLSI and a member of Technical Program Committees of sev-
eral conferences and symposia including IEEE International
Symposium on Circuits and Systems, ACM/IEE International
Symposium on Low-Power Electronics and Design, IEEE Sys-
tem on Chip Conference, etc. Dr. Moshnyaga received the
Nikkei LSI IP Design Award in 2001, and SCI’2000/ISAS2000
Best Paper Award in 2000. He is a member of IPSJ, IEICE
and a senior member of IEEE.

Koji Hashimoto received the B.E and
M.E. and Ph.D. Degrees in computer
science from Kyushu University, Japan
in 1997 and 1999, and 2002, respectively.
From 2002 to 2005 he was with Seiko
Epson Corp., Japan working as an en-
gineer in Semiconductor Division. Since
2005 he has been with Fukuoka Univer-
sity, Japan, where he is currently an As-
sistant Professor at the Department of
Electronics Engineering and Computer

Science. His research interests are in the areas of computer ar-
chitecture, computer arithmetic, VLSI design, and application
specific processors. He has authored or co-authored over 30
referred journal and conference publications and holds three
patents

Dr. Hashimoto received the Nikkei LSI IP Design Award
in 2001. He is a member of Technical Program Committees of
IEEE COOL-Chips, Asia-Pacific Design Automation Confer-
ence, etc. He is a member of IEICE and IEEE.

