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ABSTRACT In Digital Video Broadcasting-Handheld (DVB-H) devices for cyber-physical social systems,
the Discrete Fractional Fourier Transform-Orthogonal Chirp Division Multiplexing (DFrFT-OCDM) has
been suggested to enhance the performance over Orthogonal Frequency Division Multiplexing (OFDM)
systems under time and frequency-selective fading channels. In this case, the need for equalizers like the
Minimum Mean Square Error (MMSE) and Zero-Forcing (ZF) arises, though it is excessively complex due
to the need for a matrix inversion, especially for DVB-H extensive symbol lengths. In this work, a low
complexity equalizer, Least-Squares Minimal Residual (LSMR) algorithm, is used to solve the matrix
inversion iteratively. The paper proposes the LSMR algorithm for linear and nonlinear equalizers with
the simulation results, which indicate that the proposed equalizer has significant performance and reduced
complexity over the classical MMSE equalizer and other low complexity equalizers, in time and frequency-
selective fading channels.

INDEX TERMS Least-squares minimal residual (LSMR), digital video broadcasting-handheld (DVB-H),
orthogonal frequency division multiplexing (OFDM), zero-forcing (ZF) and cyber-physical social systems.

I. INTRODUCTION

The Digital Video Broadcasting-Handheld (DVB-H) tech-
nology is the superset of the Digital Video Broadcasting-
Terrestrial (DVB-T) systems for handheld devices applied
in a cyber-physical human organization to share multime-
dia content. It adopts Orthogonal Frequency Division Mul-
tiplexing (OFDM) in its physical layer (as to the OFDM
capability to diagonalize the circulant time-invariant chan-
nel matrix that allows the use of a single tap equalizer).
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Indeed, applying a single tap equalizer is considered manda-
tory for the DVB-H, due to the need for reducing the
power consumption to meet the particular requirements of the
handheld and battery-powered receivers, taking into consid-
eration that the simplicity feature is achieved only under sta-
tionary communication channel conditions. However, in the
presence of the carrier frequency offset or Doppler shift
(doubly dispersive channel) [1], which is the case in com-
munication channel for DVB-H; the circulant property of
the effective channel matrix is no more valid, and there-
fore the optimality of OFDM against Inter-Carrier Interfer-
ence (ICI) is lost because the OFDM becomes unable to
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FIGURE 1. OFDM block diagram.

diagonalize the channel matrix anymore. Hence, the need for
complex equalizer arises. Replacing the Discrete Fractional
Fourier Transform (DFrFT) with the Fast Fourier Trans-
form (FFT) in multicarrier systems reduces the effects of
Doppler frequency spreads [2], because the chirped nature
of the DFrFT subcarriers mitigates the Doppler shift, and
reduces the ICI. However, although DFrFT provides better
performance than OFDM under the doubly dispersive fading
channel, but yet the complex equalizer is still required [3].
The equalizer complexity is initiated from the need to inverse
the channel matrix, which could reach a matrix order up
to 8k * 8k in DVB-H typical applications used in
Cyber-Physical-Social Systems. Simple equalizers proposed
in [4]-[6], rely on iterative methods, or banded matrix inver-
sion to solve the inversion problem. One of the most recent
approaches to address the inversion matrix complicatedness
is the LSMR algorithm [7], [8], which is an iterative algorithm
for sparse least-squares problems that promises better numer-
ical stability, and faster convergence compared to LSQR [9].

In this paper, DFrfFT-OCDM and OFDM systems equal-
ization problem will be stated, and a comparison between
well-implemented complicated equalizers will be provided.
Finally, a novel linear and nonlinear equalization methods
will be introduced based on LSMR.

The rest of the paper is organized as follows. Section 2 pro-
vides a comprehensive introduction to DFrFT-OCDM
and OFDM systems. On the other hand, OFDM and
DFrFT-OCDM equalization techniques under doubly disper-
sive fading channel are introduced in section 3. In section 4,
the linear and nonlinear low-complexity LSMR equalizers are
explained. Sections 5, illustrates the simulation results with
clear justification, and finally, the conclusion is presented in
section 6.

Il. DFrFT-OCDM AND OFDM SYSTEMS EQUALIZATION
The OFDM block diagram system is shown in Fig. 1 and its
received symbols are given by:

rn = HF*d, + z, (D

where r_n is the received sequence, H is the NxN chan-
nel matrix that is a linear time-invariant frequency-selective
Additive white Gaussian noise channel (AWGN), N is the
number of subcarriers, F is the DFT matrix, F* is the Inverse
Discrete Fourier Transform (IDFT) matrix, d_n is the trans-
mitted data vector in the n™ OFDM symbol, and z_n is
the noise in the time domain. After applying the demodula-
tion using a Discrete Fourier Transform (DFT), the received
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vector becomes:
7, = FHF*d, + Fz, )

Due to the Cyclic Prefix (CP), H becomes a circulant
matrix, and FHF2* becomes a diagonal matrix [10]. Accord-
ingly, the phase and amplitude of the received sequence can
hence be equalized by a simple adjustment.

When the channel is time and frequency selective, or there
is a frequency offset in the receiver; the simple equalization
procedure fails because the DFT cannot diagonalize the chan-
nel matrix any longer, resulting in appearing the ICI; conse-
quently, a complicated equalizer is required that depends on
the inversion of the estimated channel matrix [11]-[13], such
as an MMSE equalizer. Martone [2] proposed the Fractional
Fourier Transform as a new base for the OFDM that can
improve the system performance under time and frequency
selective fading channel, due to its chirp carrier’s nature
that can compensate the effect of the Doubler shift [14].
DFrFT-OCDM system will be discussed carefully in the next
section.

A. DISCRETE FRACTIONAL FOURIER TRANSFORM (DFrFT)
The FrFT maps a function into an intermediate domain
between the time and frequency that may be understood
as a rotational operator in the time-frequency plane. The
FrFT has an order of «; at which the value of @ =0, there will
be no changing after applying DFrFT, while for « = n/2,
FrFT becomes a conventional Fourier transform. For other
values of o, the DFrFT rotates the time-frequency distribution
according to . The transformation kernel of the continuous
FrFT is defined in equation [15], the derivation for [15] is
given as follows:

Ky (t, 1) = Ay o (2+u?)cota—j2 tucsca (3)
where « is the rotational angle for the transformation process

and

e{—jﬂsign[sina]/4+jot/2}
Ay = 4
‘ JTsinal @

The forward FrFT is defined as,

Jo {x (D} ) = Xo () =/ x (DKo (t,w)dr— (5)
x(1) = /oo Xo )K_q (1, u) du (6)

The domains of the signal for 0 < |«| < 7 are defining the
fractional Fourier domains. Substituting the value of @ = /2
in (5) and (6) yields the well-known Fourier transform. There
are various DFrFT algorithms with different accuracies and
properties. Still the DFrFT proposed in [16] is chosen in this
proposed work because of its transformation kernel, and its
inverse transform is orthogonal and reversible.

Assume that the input function f (¢) and the output function
Fy(u) of the DFrFT have the chirp period of an order p,
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FIGURE 2. The DFrFT-OFDM system with a complicated equalizer.

a period of 7, = NAt,F, = MAu, and sampled signals
are with the intervals of Ar and Au as:

x (n) =f (nAt),

wheren =0,1...N-1,and m=0,1... M-1.
When o # Dxm (D is an integer), (6) can be converted to:

Xo (m) = Fo (mAu) (N

N—-1
n=0
%cota.nzAtze/'cscoz.n.m.At.Aux (n) (8)

I 2 2
X, (m) = AaAtezcola.m Au Z
X e

The transformation becomes reversible when M = N, and
maintain the condition of (9),

27 sino

AtAu = &)
Equation (8) can also be written in a matrix-vector multi-
plication form,

X = Fox (10)

where X = [Xa(0), Xa(D), . Xa(N=D]T, x = [x(0),
x(1),... .,x(N—l)]T, and F, is an N *N matrix. Accordingly,
the IDFrFT can be written as:

x = F_oX (11)

where F_o = FH

To remove the Inter-Symbol Interference (ISI), CP is added
at the beginning of The DFrFT-OCDM symbol. However,
in DVB-H, a larger ICI is introduced. Hence, complicated
equalizers are needed, such as in the case of OFDM systems.

The complexity of the DFrFT-OCDM system is almost
the same as the OFDM system [2], [8], [17], and both can-
not diagonalize the time-variant channel matrix. However,
the DFrFT-OCDM can compress the power spreading in the
channel matrix much more efficiently than OFDM.

Ill. OFDM AND DFrFT-OCDM EQUALIZATION
TECHNIQUES UNDER DOUBLY DISPERSIVE

FADING CHANNEL UNITS

In an OFDM and DFrFT-OCDM systems; the loss of subcar-
rier orthogonality occurs as a result of the receiver mobility,
because the resulted Doppler frequency and time-variation in
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FIGURE 3. The OFDM design.

the frequency fading channel over a Multiple Constant Mul-
tiplication (MCM) block period, produces ICI that degrades
the OFDM and the DFrFT-OCDM system performance. The
ICI increases significantly with the increase of the MCM
block size, which is the case in the DVB-H, carrier frequency
and velocity. Numerous techniques have been suggested to
counter such ICI effects in the OFDM system, and in the
DFrFT-OCDM system, such as in [4]-[6], [12], [18]-[23],
and [8], [13], [14], respectively.

It has been shown in [11], [18] that nonlinear equaliz-
ers based on ICI cancellation generally outperform linear
approaches. However, the linear schemes still preserve their
importance for the following reasons:

1) Linear equalizers are usually simpler, and therefore less

complicated systems are in need of them.

2) Nonlinear schemes usually apply a linear equalizer to

obtain the temporary decisions to cancel out the ICI.

Consider the OFDM system in Fig. 3. The transmitted
data vector in the n" OFDM symbol is sampled by d, =
[do,dy ... dNa,l]T in the frequency domain, and permuted
by the binary matrix P that assigns a data vector d,, € C« to
N subcarriers, of which only N, are active according to:

P = [On,x(v—No/2IN,  ONgx(N—Nw)/2] (12)

where Ox«y is a X x Y matrix with zero entries, and Ix is
a X x X identity matrix. The vector s, = [s051 syl s
calculated from:

spn = F*Pd, (13)

where F* is used to denote to the N-point unitary
IDFT matrix.

The doubly dispersive channel can be modelled by the
time-variant discrete impulse response /(n, v), where n is the
time instant, and v is the time delay. The model justification
can be found in more details in [1], [24], [25] and it can be
expressed in the form of (time-variant, circular) convolution
matrix by:

(Hlp,y :=h(n, (n—v)N) (14)

Assuming causal channel and the cyclic prefix L is longer
than the maximum delay spread Nj, < L, the received samples
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for the n" OFDM symbol after discarding the CP can be given
by:

rn = Hydy + 2, (15)

where z, are the samples of AWGN with variance 2. In sta-
tionary conditions, H,, is circulan and can be decoupled by
the DFT matrix. Received subcarriers are demodulated using
the DFT

y=Fry, (16)

where F' is the DFT matrix, and y is the received signal
after demodulation by the DFT matrix. The Equalizer matrix
W, € CNexNa gperates on the input:

7, = PFH,F*Pd, + P! F7 = U,d,— (17)

with a system matrix U, eCNo*Na where U,, = P* FH,F*P.
The purpose of the binary matrix P is not only to act as a
frequency guard band and help lower out-of-band emissions,
but also to eliminate components that would appear in the
upper right and lower left corners in U,, [4]. The estimated
data vector is given by:

d, = Wi, (18)

where W is the Equalizer matrix, N, x N, is the equiva-
lent subcarrier coupling matrix (frequency domain channel
matrix), and the noise vector in the frequency domain are
given by H = FHF*; and Z = Fz, respectively.
It is straight forward to show that [I:I] L= h(m—k, k),
m,

where
N—1N-1
1

il (m’ k) — N Z Z h (l’l, V)e—f2n(vk+mn)/N (19)
n=0 v=0

From (19), it can be shown that {71(0, :)} appears on the main
diagonal of [f] Tk {71(—1, :)} on the first super-diagonal,
{fz(l, )} on the first sub-diagonal and so on, accordingly,
h (m, k) can be considered as the frequency-domain response,
at subcarrier k + m, to a frequency-domain impulse centred
at subcarrier k, where m can be understood as the Doppler
index, and k is the frequency index. Similarly in & (n, v), n
can be interpreted as the time index and v as the lag index.
Now consider the DFrFT-OCDM system in Fig. 4, it is almost
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the same as the OFDM system except for the fact that the
modulation and demodulation blocks are replaced by the
Inverse Fractional Fourier Transform (IDFrFT) and the Frac-
tional Fourier Transform (DFrFT), respectively. Applying the
same procedure over the transmitted and received data trans-
mitter is straight forward, which shows that the Equalizer
matrix W,, € CNe*Ne operates on the input:

Fo=PYF H,F_oPd,+ P Fyz = Upod, +%, (20)

where F,, is the DFrFT, F_, is the IDFrFT, « is the fractional
angle in the fractional domain, and U, 4 is the system matrix
with U, o € CNa*Na_ The equivalent N, x N, channel matrix
and the noise vector in the fractional domain are given by
Hy, = F,HF _y and Z = F,z, respectively.

Both of A and H, are nondiagonal subcarrier channel
matrices resulting of introduce ICI, which is the case when
the dispersive channel comprises multipath doubly dispersive
channel. Accordingly, the symbol estimation task particularly
complicated due to the necessity of a complicated Equalizer.

The linear ZF [26] and MMSE estimates [4] can be found

by minimizing E {||d, — Wr,||}, yielding:

N - - - —1

dgp = A7y = AY (HaHgl ) 7 Q1)
. o (e~ -1
dumse = H,fl (HaHf + V_IIN,,) Tn (22)

where H, can be reduced to H when « = /2 and
the fractional domain will reduce to the frequency domain,
LAIZF and cAlMMSE are the estimated data after ZF and MMSE
equalization, respectively, Hé{ is the channel matrix conju-
gate transpose in the fractional domain, Iy, is the identity
matrix with N, x N, elements, y is the signal-to-noise ratio
(SNR), and I:Io‘f is the Moore-Penrose pseudo-inverse of the
channel matrix in the fractional domain [8], [14], [23]. In (21)
and (22), perfect knowledge of the channel matrix H, is
assumed, so the Equalizer does not use guard subcarriers. Fur-
thermore, it is supposed E {d,} = E {Z,} = 0, E {d,d?} =
LLE{d,7} =0,E |z} =0l

Taking into consideration that ZF Equalizer performance
is usually regarded as low due to the highly expected noise
enhancement. On the other hand, the MMSE Equalizer
gives the best performance in all linear Equalizers [18];
however, it is very complicated due to the existence of
the channel matrix inversion, which needs O(Nj) complex
operations [27], accordingly, ZF is regarded as unpractical for
high values of N,, which is the case DVB-H.

Moreover, it is essential to mention that many Equalizers
are proposed for reducing the MMSE Equalizer’s complex-
ity [4]-[6], [12], [19], [20], [22]. In [4], a serial MMSE
Equalizer is proposed, and in [20] banded Equalizers were
offered. All these low complexity Equalizers give almost the
same or near performance as block MMSE while reducing
the complexity of calculations.

As stated in [4], doubly dispersive channels produce a
nearly banded channel matrix in the frequency domain and
fractional domain, according to this criteria, more complexity
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reduction can be achieved by LDL factorization [10], [20]
instead of direct matrix inversion. In the following sec-
tions, low complexity Equalizers will be examined with
DFrFT-OCDM and OFDM based on the LSMR iterative
algorithm.

IV. LOW-COMPLEXITY LSMR EQUALIZATION

MMSE Equalizer complexity comes from the matrix inver-
sion in (22), so solving the matrix inversion iteratively is
regarded as a smart idea to reduce the MMSE Equalizer’s
complexity. In [9, [28]-[30], authors use the iterative LSQR
algorithm, such as in [31], which has superb performance
in solving the channel matrix inversion problem (typically
ill-conditioned matrix) by early termination of the iterations
at low complexity. The complexity order per iteration is
O(N,4Ny) operations, where Ny, is the maximum delay of the
channel. Thus, the method is mostly smart when the chan-
nel’s maximum delay is not too long. Recently, an iterative
algorithm called LSMR was proposed in [7].

LSMR is an iterative algorithm for solving linear sys-
tems of Ax = b, Least-Squares (LS) problems of
min || Ax-b||,, and Regularized Least Squares (RLS) of
(/@)x— <g) , with A being sparse or a fast
linear operator [7]. LSMR is based on the Golub-Kahan
bi-diagonalization method, and it is analytically equivalent to
the MINRES [32], which is applied to the standard equation
of ATAx = ATb. LSMR is similar in style to the well-
known method LSQR in being based on the Golub-Kahan
bi-diagonalization of A.

LSQR is equivalent to the Conjugate Gradient (CG)
method applied to the standard equation, where (ATA +
A2Nx = ATb, which has the property of reducing ||r||
monotonically, where r, = b — Axy is the residual for the
approximate solution x;. On the other hand, LSMR has the
property of reducing both ||r|| and ||ATrk H monotonically.
Although LSQR and LSMR ultimately converge to similar
points, however, LSMR converges faster at fewer amounts of
iterations. LSMR can solve the inversion matrix problem in
MMSE Equalizer more effectively with less computational
cost due to its higher conversion speed of solution.

min

A. LSMR ALGORITHM
LSMR algorithm aims to solve the linear equation approxi-
mately given by:

ATAx = ATh (23)
min || Ax-b||, 24)

and the regularized least-squares are given by:
ATA+ 2’ Dx =ATbh (25)

DI

where A is being sparse or a fast linear operator.
The flow chart for the LSMR algorithm is shown in Fig. 5.

min

2
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For simplicity, consider (23) given A(m x n) and b(m x 1)
starting from Golub-Kahan bi-diagonalization [33], the direct
bi-diagonalization is provided by:

X X 00

T 1 _ 0 x x 0
U(bA)<V “ 10 0 x x
0 00 x

= (bAV) = U (B1e1B) 27

using iterative bi-diagonalization Bidiag (A, b):

b = Uk+1 (Bre1) (28)
AV = Ur41Bx (29)
AU = viBY (Ié‘) (30)
where
o 0 0 0
’3] [6%) 0 0
Br=| o0 - 0 (31)
0 0 Br Ok
0 0 0 Br+1
and

UkZEul uk)
Vi = (1 ...vk)

Vi spans the Krylov subspace:
span {vi, ..., v}
k—1
— span {ATb, (ATA) ATb, ., (ATA) ATb} (32)
Define x;y = Vi yx, sub-problem to solve:
- BLB,
T 33
b (A8)] o

where ry = b — Axy, ,51( = oy B

min HATrk ” = min
vk vk
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TABLE 1. Storage and computational requirements for various
LS methods.

Storage Work
m n m n
LSMR Av,u x,v,h,h 316
LSQR Av,u x,v,w 3 5
MINRES 8
On Av X, V1, V2, Wy, W2, W3
ATAx=A"b

B. LSMR COMPLEXITY
The storage requirement and computational complexity can
be compared for LSMR and LSQR on Ax & b, and MINRES
on the normal equation A”Ax = ATb. The vector storage
(excluding the storage of A and b) was listed in Table 1.
Taking into consideration that A is (m x n) for LS systems,
where m might be considerably larger than n. Moreover,
Av denotes to the working storage for the matrix-vector prod-
ucts, Ay and; i_zk are scalar multiples of wy, wg, respectively,
and the work represents the number of floating-point multi-
plications required for each iteration.

From Table 1, it can be shown that the complexity of the
LSMR is slightly more than the LSQR.

C. LINEAR LSMR EQUALIZERS

1) LINEAR LEAST SQUARES LSMR EQUALIZER

The doubly dispersive channel matrix is characterized by
large maximum delay and Doppler shifts. So the system
matrix (Fractional domain channel matrix) Hy, might have
a very high condition number, and the linear least squares
(LLS)-LSMR can be used for equalization with “implicit
regularization.”

Using the LLS-LSMR equaliser directly on H, will be
complex. However, applying LLS-LSMR on B,, produces
a major complexity drop, taking into consideration that the
banded properties of H, and using B, = M O H, where
O represents element-wise multiplication, and

1 0<|mn|<Q

M (m, n) =
=10 0 < Jmon| < N,

Accordingly, the typical equation for LLS-LSMR Equalizer
is then given by:

BB,dzr = B7, 34)

This standard equation is obtained from (20) when ignor-
ing the noise z,,, substituting H, with B, and left-multiplying
by BnH . One can show that in the i LSMR iteration,
an approximate solution for the linear least squares problem
is obtained by min HB" EZZF — Ty ‘

In zero-forcing equalizer, ignoring the noise effect results
in noise and modelling errors amplification that degrades
the system’s performance. The same can be considered for
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LLS-LSMR Equalizer, because there is no account for noise
effect. However, LSMR depends on the number of iterations
as aregularization parameter, accordingly; an efficient way of
avoiding the amplification of errors and noise can be ensured
by early termination of the amount of the iterations. Con-
sequently, using the optimal number of iterations in LSMR
can reduce the system’s errors to a comparable limit with
the MMSE equalisation. In practice, LSMR inputs are known
approximately, and using the maximum number of iteration
amplifies the noise and modelling errors.

2) REGULARIZED LEAST SQUARES LSMR EQUALIZER
The estimated data EIMMSE from (30) in the MMSE sense is

given by:

R [~ —1_

duse = HE (BB +y7'In,) 7 G9)
which is equivalent to:

. R P

dymse = (HfHa + V_IINa> a7, (36)

by multiplying the left side of (36) by (I:Iof] Hy + y_IINH>;
(37) is obtained:

(Hfga + VﬁllNa> dymse = HE 7, 37
which is equivalent to the regularized least-squares problem
(ATA + 22I)x = ATb to minimize min H <?)x — (8)
RLS-LSMR Equalizer.

Again, the obtained system is complex when working for
the entire H, matrix, which justifies using the banded prop-
erties of H, that leads to the banded matrix B,,, the MMSE

Equalizer problem applying the band approximation will be
given by:

2

(BuBt + v 71, ) dvanse = B (38)

It is can be shown that an approximate solution of the regular-
ized least-squares equation can be reached using the LSMR.

In this method, RLS-LSMR has two regularization param-
eters: the number of iterations and the signal to noise ratio (y)
parameter, which limits the noise and modelling errors ampli-
fication, and improves the system performance.

The optimal number of LSMR iterations depends on:

1) The noise level.

2) The maximum Doppler spread and the maximum delay
spread as they affect the distribution of the singular
values of the channel matrix.

However, the number of iterations does not depend on the

number of subcarriers, which appears clearly in simulation.

LSMR is particularly attractive due to its numerical sta-

bility, inherent potential for regularization, and low compu-
tational complexity of O(N,(Q + 1)i) complex operations in
total [7], where i denotes to the number of iterations used,
N, number of subcarriers, and Q is the number of sub - and
super-diagonals that define the banded matrix limits.

Thus, the complexity is just linear in N,, Q, and the number

of iterations i.
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FIGURE 6. BDFE structure.

D. NONLINEAR LSMR EQUALIZERS

1) LOW COMPLEXITY LSMR-BASED BLOCK DECISION
FEEDBACK EQUALIZER (LSMR-BDFE) FOR DFrFT-OCDM)

The Block decision feedback Equalizer (BDFE) was pro-
posed in [34] to improve the MMSE Equalizer performance
by detecting the data recursively (one-by-one) instead of
detecting all of them concurrently. Hence, the consecutive
detection technique was used, which is extensively adopted
in DS-CDMA systems for multi-user detection.

An Equalizer based on the LSMR and the MMSE-BDFE
was designed to reduce the MMSE-BDFE Equalizer com-
plexity and to improve the performance. Unlike the previ-
ously mentioned techniques; the proposed Equalizer uses the
LSMR algorithm to minimize the band approximation error,
and uses the band LDL factorization method with DFE to
obtain better performance without increasing the complexity.
The MMSE methodology in [34] was adopted to design the
feed-forwarded (FF), and feedback (Fp) filters as shown
in Fig. 6. This methodology minimizes the error e = d,, — d,,.
Considering that Fp is strictly the upper triangular, resulting
to enable the feed-back process to be performed by successive
cancellation.

Using the standard assumption of correct past decisions,
that is d n = d; the error vector can be expressed as below.

e=Frr, — (FB—}-INa) d, 39)
which leads to the relation between Fr and Fp according to
the mean square error (MSE) minimization criterion in [34]:

-y~ -1
Fr = (Fp + Ino) (B o+ v~ Iva) Y
= (Fp + INa) Wyumse (40

by applying the band approximation H, = B,

H -1 ~ o
Fr=(Fp+Ivo) (BuBY +v7'Ia) B 4

The feed-forwarded filter is the cascade of the low-
complexity MMSE Equalizer and an upper triangular matrix
Fp + Iy, with unit diagonal. Designing the feed-forwarded
and the feed-back filters were carried out in details in [34],
where the autocorrelation matrix of the error vector e is given
by:

-1
Ree=0? (Fa+1x,) (BB +77'I,)  (Fo+in,)"  42)
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where o2 is the noise variance. Using the LDL :
M = B,B" 4y~ Iy, = LDLY (43)

where L is the lower triangular with unit diagonal, and D is
the diagonal matrix. It is straight forward now to minimize
the error expectation E {e} by setting:

Fg=L" — Iy, (44)

which reduces Re. diagonal. Using (41) and (44); Fr can be
expressed by:

H Hays—1pH —1y—1pH
Fr=L"Wyyse = LM~ 'BY =D~ 'L='BY  (45)

Although (45) and (44) looks complicated but using the
LSMR algorithm with the fact that D is diagonal, B is banded,
and L is lower triangular and banded; it turns out that the
resulting banded LSMR-BDEFE is then characterized by very
low complexity. For the feed-forwarded filter:

dy, = Frfy (46)
o = Fz'd, = BHDLd, (47)

from (43) it can be shown that:
DL = (BB +y 1y, ) L7 (48)
7, =BH (Ban n y_lINa) L4,

— (Bn + B_Hy_l) L Hq, (49)

n

which can be solved efficiently using the LSMR algorithm.

The complexity of the proposed LSMR-BDFE Equalizer
is almost the same as the RLS-LSMR Equalizer with a total
of O(N(Q + 1)i) complex operations.

E. RLS-LSMR SLIDING WINDOW EQUALIZER

Sliding window Equalizer was proposed in [35] to reduce
the complexity of the MMSE Equalizer by dividing the large
matrix inversion to a multiple of smaller matrix inversions,
for example, the complexity of inverting N x N matric
equal O (N 3). So, choosing N = 96 gives a complexity equal
884736 complex operations. In comparison, if the inversion
was sub-divided to calculate the 96 symbols using a window
of 9 so the total complexity will equal 9° x 96 = 69984,
which is less complicated.

Accordingly, the main idea to estimate transmitting a sym-
bol on a particular subcarrier is to consider a small window
from the entire banded system matrix B, in which all the
energy corresponding to the symbol of interest is concen-
trated in this window while ignoring the rest. This method is
then repeated by sliding the window over all the subcarriers
of the received multicarrier symbol. Using this technique
reduces the dimension of the system under consideration,
resulting in reducing the complexity considerably, without
decreasing the system’s performance significantly.

Based on above, the complexity can be reduced more by
merely using the LSMR algorithm in solving the reduced
dimension system.
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Consider the case where the data symbol d , has to be
detected; almost all the di , symbol energy is located on the
subcarrier k and its neighbours. di , can be estimated using:

di.n = WaMsE k7 (50

where the vector 7 = [fk—p- --7k+D]T is a part of the
received vector 7, which is related to the symbol dy , and
its neighbours, P = 2D + 1 is the number of the related
symbols that equal to the size of the sliding window matrix
(P xK),K =20+ 1), Q is the number of sub- and super-
diagonals that defines the banded matrix limits, and Wasysk «
is the MMSE Equalizer for the k symbol window:

-1
Wumse x = (Bn,kB,,H,k + V_11k> BY, (51)

where B, ; matrix is a part of the equivalent banded system
matrix B, with P x K size and can be defined by:

Bn,k
Bi-pk—0  Bk-Dk-0+1 Bi_pk+o
Bi—D+1,k—0 Bk—D+1,k—0+1 © Br—p+1,k+0
Bi+pk—0 Bik+Dk—0+1 © Br—pi+o

(52)

Using this approach turns the complexity of inverting the
N, x N, matrix into N inversions of P x K matrices, which
could be reduced even more by using the LSMR algorithm to
solve the regularized least-squares problem:

(Bn,anH’k + ]/_llk) Elk = Br[zf,k;k (53)

Reduction in the system’s complexity depends on the width
of the sliding window matrix P, taking into consideration that
choosing a minimal P does not affect the system’s perfor-
mance significantly. Another hidden benefit from this algo-
rithm is the reduction of the effort for perfect channel matrix
estimation, as it is no longer needed because only a limited
number of the channel elements are required. The complexity
of the sliding window equalizer is given by O(N,P(Q +
1)ipx k). Though the first glance may show that the obtained
complexity exceeds the complexity of the other LSMR low
complexity Equalizers, however, the number of iterations
ipxx needed to solve the smaller matrix P x K is much fewer
than the number of iterations i needed to solve the matrix
N, x N, which means that the complexity is reduced in
reality.

V. SIMULATION RESULTS

The non-encoded BER performance of the DFrFT-OCDM
and the OFDM system with the different LSMR Equalizers
are investigated by means of simulation over 10° multicarrier
blocks. DFTFT-OCDM and OFDM systems with N = 128,
Nj =96, L =8, and QPSK modulation are assumed. Simula-
tions are performed over an ensemble of 10° Rayleigh fading
channels defined by an exponential power delay profile with
an RMS delay spread of three sampling periods. The channel
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model uses the same statistics as in [20], including a maxi-
mum Doppler spread f; equal to 15% of the carrier spacing.
The carrier frequency is fc = 10 GHz, and the subcarrier
spacing is Af = 20kHz. This Doppler frequency corresponds
to a high mobile speed V = 324 Km/h.

1) LINEAR LSMR EQUALIZER SIMULATION RESULTS

Fig. 7 shows a comparison between the DFrFT-OCDM and
the OFDM using = 5, Banded MMSE (BMMSE), and
RLS-LSMR Equalizers. From this figure, it can be seen that
the DFrFT-OCDM outperforms the OFDM system with both
the LSMR and the MMSE Equalizers, though the complex-
ity of the DFrfFT-OCDM system is almost the same as the
OFDM system.

Fig. 8 compares the performance of the DFfFT-OCDM
system using different Equalizers (ZF, LSMR, and LSQR),
taking into consideration that LSMR and LSQR algorithms
will solve the linear system Ax = b with the limited number
of iterations. Fig. 8, illustrates that the LSMR Equalizer
provides the best performance and the LSQR Equalizer
almost achieves the same performance in low SNR and
slightly less than LSMR in higher SNR, which is justified
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by the reason that the LSMR algorithm is more stable than
LSQR algorithm. However, the processing with sparse, pos-
sibly ill-conditioned least-squares problems, also the LSMR
converges faster with a low amount of iterations. On the
other hand, the ZF Equalizer provides the worst performance
due to the matrix inversion of the sparse matrix B as it
amplifies noise. LSMR and LSQR Equalizers reach almost
the same performance, with much less complexity than the
ZF Equalizer. LSQR can provide the same performance as
LSMR using a higher number of iterations, which leads to
more complexity.

Fig. 9 shows a comparison between the performance of
the DFrFT-OCDM using different Equalizers (LSMR, LSQR,
and BMMSE) where LSMR and LSQR will solve the reg-
ularized least-squares problem (38). From here, it is clear
that all Equalizers give almost the same performance, but the
complexity of the LSMR and LSQR Equalizers is much less
than the complexity of the MMSE. Moreover, comparing the
LSMR and the LSQR shows that both algorithms converge to
nearly the same point (though LSMR is better than LSQR).
However, the LSMR converges faster at fewer numbers of
iterations.

From the numerical simulations shown in Fig. 8 and
Fig. 9, it is clear that the minimum achievable BERs for the
LLS-LSMR (34) and the RLS-LSMR (38) are close to each
other even if the noise limits are identified precisely at the
receiver.

However, a key advantage of RLS-LSMR is that the semi-
convergence is many minors; that the BER grows gradually
as the number of iterations increases after reaching the mini-
mum.

2) NONLINEAR LSMR EQUALIZER SIMULATION RESULTS

Fig. 10 shows a comparison between the DFrFT-OCDM
and the OFDM using Q = 5, LSMR-BDFE, and BMMSE
Equalizers. It can be perceived from Fig. 10 that the
LSMR-BDFE Equalizer provides the best performance, and
the BMMSE Equalizer almost give the same performance in
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low SNR. Again according to Fig. 10, the DFrFT-OCDM
outperforms the OFDM system with both the BMMSE and
the LSMR-BDFE Equalizers, though the complexity of the
DFrFT-OCDM system is almost the same as the OFDM
system.
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Fig. 11 also provides a comparison between the pro-
posed RLS-LSMR sliding window Equalizer and the banded
MMSE Equalizer at Q = 5, it can be demonstrated that the
banded MMSE Equalizer achieves the best performance and
the RLS-LSMR sliding window Equalizer almost provides
the same performance in low SNR. Moreover, in high signal
to noise ratio, the performance of the RLS-LSMR sliding
window Equalizer is slightly degraded, which is the penalty
that is paid for reducing the complexity, taking into considera-
tion that the performance degradation depends on the window
matrix dimension.

Fig. 12 describes a comparison between the DFrTFT-OCDM
and the OFDM systems using the proposed RLS-LSMR
sliding window Equalizer with 0 = 5 and P = 9. The
results illustrate that the DFfFT-OCDM significantly out-
performs the OFDM system, which enhances this paper’s
achievement.

VI. CONCLUSION

In this paper, the doubly dispersive channel and its effect on
DVB-H based on OFDM system’s performance were investi-
gated towards the social internet of things and cyber-physical
human system applications [36]-[43]. DFrfFT-OCDM MCM
system was investigated as an alternative MCM system
that can improve the overall DVB-H system’s performance.
Low complexity Equalizers were proposed with OFDM and
DFrFT-OCDM systems. The results show that using sim-
ple Equalizers with DFrFT-OCDM achieves better perfor-
mance than using the same low complexity Equalizers with
OFDM, accordingly, this paper suggest that the offered
DFrFT-OCDM system with the LSMR can be used for reli-
able DVB-H communication. Low complexity Equalizers
were offered using the new LSMR algorithm, which provides
the same performance though the more moderate complexity
when compared to the LSQR and the LDLH factorization
algorithms. Using low complexity equalizer while improving
or maintain the DVB-H system’s performance will increase
the hand-held system battery usage time and over-all system
reliability. Future is planned to improve the proposed system
by applying it to other techniques address complexity, or
the power efficiency, such as Network Coding introduced
in [44]-[47], or utilizing the proposed equalizer over the
optimum number of paths for the realization of multi-path
routing in [48].
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