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Network-on-Chip (NoC) has been proposed to replace traditional
bus based architectures to address the global communication chal-
lenges in nanoscale technologies. In future SoC architectures, min-
imizing power consumption will continue to be an important de-
sign goal. In this paper, we present a novel heuristic technique
consisting of system-level physical design, and interconnection net-
work generation that generates custom low power NoC architec-
tures for application specific SoC. We demonstrate the quality of
the solutions produced by our technique by experimentation with
many benchmarks. Our technique has a low computational com-
plexity, and consumes only 1.25 times the power consumption, and
0.85 times the number of router resources compared to an optimal
MILP based technique [1] whose computational complexity is not
bounded.
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The high performance requirements of future System-on-Chip
(SoC) designs, and long signal propagation delays in nanoscale
technologies will make traditional synchronous bus based com-
munication unattractive. Network-on-chip (NoC) has been pro-
posed as an alternative to bus based communication in nanoscale
technologies [2] [3]. In simple terms, a NoC is a set of intercon-
nected routers that communicate in globally asynchronous and lo-
cally synchronous (GALS) manner. NoC architectures are scal-
able, provide high bandwidth by distribution of signal delay among
routers, and support concurrent communication. These character-
istics make them particularly attractive as a solution to global com-
munication challenges in deep submicron technologies. Power re-
duction will continue to be a first order design goal in nanoscale
technologies. Hence, a NoC design framework must aim to mini-
mize the power consumption of the architecture, subject to perfor-
mance constraints.

A NoC designer has to choose between utilizing a regular NoC
architecture like a mesh or torus, or a custom architecture optimized
for a given application. Regular architectures offer lower design
time, and are useful when implemented in a generic multiprocessor
environment such as the MIT RAW [4]. On the other hand, custom
NoC architectures are designed with the given application in mind.
For example, a NoC may be optimized for the MPEG-4 decoder
application. Application specific architectures have been demon-
strated to be superior to regular architectures in terms of power,
performance and area [1] [5]. In this work, we focus on design
of low power custom NoC architectures optimized for application
specific SoC.

Figure 1 plots the power consumption of various components of
the NoC for two technologies (100, and 180 nm) obtained by utiliz-
ing the NoC power and performance evaluator proposed by Baner-
jee et al. [6]. In the figure, the X axis denotes the various com-
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Figure 1: Component power consumption in NoC

Routers

INTERCONNECTION ARCHITECTURE

SYSTEM−LEVEL FLOORPLAN AND

r2r1

1) Bandwidth constraints
2) Power per unit bandwidth for each port
3) Power per unit bandwidth per unit length 
     for physical links

NETWORK SYNTHESIS
SYSTEM−LEVEL INTERCONNECTION

P/M
n6

P/M
n5

P/M
n4

P/M
n3

P/M
n2

Links

ROUTES

1) C1: n1, r1
2) C2: n1, r1, r2, n3
3) C3: n4, r1, n1
4) C4: n2, r1, r2, n3
5) C5: n3, r2, n5
6) C6: n1, r1, n4
7) C7: n4, r1, r2, n5
8) C8: n5, r2, n6

P/M
n4

P/M
n5

P/M
n6

P/M
n3

P/M
n2

P/M
n1

P/M
n1

Characterized NoC components

Figure 2: System-level Communication Architecture Design
ponents, and the Y axis denotes the corresponding dynamic power
consumption. At 180nm, the contribution of link power is about
25% of the total communication power. As technology shrinks fur-
ther to less than 100nm, the contribution of link power to the over-
all communication power increases. For example, at 100nm, the
physical link consumes more than 30% of the total communication
power. The power consumption of the physical links is dependent
on its length, and the bandwidth of traffic flowing through it. The
length of the link in turn is determined by the system-level floor-
plan. Therefore, the design of the NoC architecture must jointly
address system-level floorplan and interconnection network gener-
ation. In this paper, we present a novel integrated technique that
addresses system-level floorplanning, as well as application spe-
cific interconnection topology generation.

Application specific NoC architecture design is shown in Fig-
ure 2 [1]. The input to the NoC architecture design problem is the
computation architecture specification, characterized library of in-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



terconnection network components, and performance constraints.
The computation architecture consists of processing and memory
elements shown by rectangular blocks labeled as “P/M” in the top
of the figure. Each ”P/M” block is uniquely identified by a node
number ”n i” as denoted within each rectangle. The physical di-
mensions of the blocks are also specified as part of the inputs.

The directed edges between any two blocks represent the com-
munication traces. They are annotated as “Cm(B,L)” where ‘m”
represents the trace number, “B” represents the bandwidth require-
ment, and “L” is the average latency constraint. The bandwidth and
latency requirements of a communication trace can be obtained by
profiling the system-level specification in the context of overall ap-
plication performance requirements. The traffic model that we as-
sume for synthesis abstracts away the transaction based mechanism
to derive a continuous stream model. Burstiness of traffic can be
captured by initially allocating a higher bandwidth requirement on
the traffic [7]. Applications in multimedia and network processing
domains demonstrate fairly well defined communication character-
istics and hence can be easily modeled in the trace graph.

The left hand side of the figure depicts the characterized library
of NoC components. We characterized the power consumption
of the unit router in 100 nm technology with the help of a cycle
accurate power and performance evaluator [6]. In the interest of
space, we have omitted the complete details of the experiments.
The power consumption of the input and output ports varies lin-
early with the injection rate [1]. We estimated the power consump-
tion of the router ports to be 328nW/Mbps for the input port, and
65.5nW/Mbps for the output port. The power consumption of the
physical links varies linearly with both the supported bandwidth,
and the length of the link. We estimated the power consumption of
the links to be equal to 79.6nW/Mbps/mm [1].

The output of the NoC architecture design problem is a system-
level floorplan of the final design, topology of the network, and
static routing of the communication traces on the network such that
the performance constraints are satisfied, and the power consump-
tion is minimized. Accurate estimation of power consumption due
to the physical links requires estimates for link lengths. Conse-
quently, system-level floorplanning is performed as part of the com-
munication architecture design. The topology of the network spec-
ifies the number of routers, and their interconnections. The static
routing of a communication trace is shown on the right hand side
of the figure. For example , C2 begins from “n1”, passes through
“r1” and “r2”, and ends at “n3”.

It has been shown that the average network latency remains con-
stant as long as the network is not congested [6]. Our design tech-
nique prevents network congestion by static routing of the com-
munication traces subject to the peak bandwidth constraint on the
router ports. Since the network is always operated in the un-congested
mode, we can represent the average network latency constraint in
terms of router hops (such as 1 or 2) instead of an absolute number
(such as 100 cycles). In the following section, we formally define
the NoC synthesis problem.
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Given [1]:
• A directed communication trace graph (CTG) G(V, E), where

each vi ∈ V denotes either a processing element or a mem-
ory unit (henceforth called a node), and the directed edge
ek = {vi, vj} ∈ E denotes a communication trace from vi

to vj . For every vi ∈ V , the height and width of the core is
denoted by Hi and Wi, respectively.

• For every ek = {vi, vj} ∈ E, ω(ek) denotes the bandwidth
requirement in bits per cycle, and σ(ek) denotes the latency
constraint in hops.
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• A router architecture, where Ω denotes the peak input and
output bandwidth that the router can support on any one port.
Two quantities Ψi and Ψo that denote the power consumed
per Mbps of traffic bandwidth flowing in the input and out-
put direction, respectively for any port of the router.

• A physical link power model denoted by Ψl per Mbps per
mm.

Let R denote the set of routers utilized in the synthesized archi-
tecture, Er represent the set of links between two routers, and
Ev represent the set of links between routers and nodes. The ob-
jective of the NoC design problem is to generate a system-level
floorplan, and a network topology T (R, V, Er, Ev), such that: i)
for every ek = (vi, vj) ∈ E, there exists a route p ={(vi, ri),
(ri, rj), . . . (rk, vj)} in T that satisfies ω(ek), and σ(ek), ii) the
bandwidth constraints on the ports of the routers are satisfied,, and
iii) the total system-level power consumption for inter-core com-
munication is minimized.
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Many researchers [8] [9] [10] have presented mapping and rout-
ing techniques for regular mesh based NoC architectures. Recently,
researchers have begun to address the problem of automated syn-
thesis of application specific NoC architectures. Pinto et al. [11]
presented a technique for constraint driven communication archi-
tecture synthesis of point to point links by utilizing deterministic
heuristic based k-way merging. Their technique results in network
topologies that have only two routers between each source and sink.
Hence, their problem formulation does not address routing. In our
previous work, we have proposed custom NoC design techniques
for best effort traffic [12] [13], and guaranteed throughput [14].
Umit et al. [15] presented an application specific NoC synthesis
technique based on graph decomposition. The above cited papers
do not accurately account for link power. In contrast, we integrate
floorplanning in the NoC design flow to account for link power.
Our work in [16] presents a linear programming based technique
for the NoC design problem. The computational complexity of the
technique presented in this paper is much lower than [16].
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In this section, we present our application specific NoC design
technique. The overall technique is shown in Figure 3. It takes
a communication trace graph, and a characterized library of NoC
components as input. Our technique operates in two phases. In the
first phase, it invokes a power and performance aware floorplanning
technique to obtain an initial physical layout of the nodes constitut-
ing the SoC. The second phase is a novel technique that generates a



low power interconnection architecture based on the floorplan from
the first phase. In the following sections, we discuss each phase in
detail.
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The objective of system-level floorplanning is to generate a lay-
out that would minimize the power consumption of the intercon-
nection architecture. We utilize two existing system level floorplan-
ning techniques, and invoke them with our unique cost function to
minimize communication power under performance constraints.

At the floorplanning stage the power consumption due to the in-
terconnection architecture can be abstracted as the power required
to perform communication via point to point physical links between
communicating cores [1]. Since the power consumption of the NoC
is directly proportional to the bandwidth of traffic, it is desirable
to place cores communicating with high bandwidth close to each
other, so that they are routed with minimum number of routers.
At the same time, it is also necessary to place cores communi-
cating with tight latency constraints close to each other to satisfy
the performance constraints. Bandwidth requirements on the com-
munication traces can be satisfied by finding alternative routes or
adding more interconnection architecture resources. However, sat-
isfying latency constraints is more difficult if the cores are placed
wide apart. Hence, the cost function should give a higher priority
to latency over bandwidth. We specify our minimization goal as a
power aware cost function represented by

P
∀e(u,v)∈E dist(u, v) ·

Ψl · ω(e)

σ2(e)
, where dist(u, v) is the distance between the cores u and

v.
We invoke two system level floorplanning techniques that min-

imize the above mentioned cost function. First, we invoke an ex-
isting mixed integer linear programming (MILP) formulation that
minimizes the given cost function. MILP formulations for system
level floorplanning have been proposed in the literature [17] [18]
[19].

The second floorplanning technique that we invoke is based on
a slicing tree based recursive partitioning technique proposed in
[16].The slicing tree is formed by recursively partitioning the lay-
out area into vertical and horizontal sections. At each partition, the
floorplanner invokes a graph equicut algorithm proposed by Fiduc-
cia and Mattheyses (FM) [20] to generate the partitions. The parti-
tioning technique assigns nodes to one of the sub-planes such that
the total weight of the edges across the cut is minimized. Finally,
the technique incorporates a compaction algorithm that moves the
nodes toward the center of the floorplan by iterative displacement
along X and Y axis, respectively.
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In this section, we present the topology generation and rout-
ing algorithm employed by our communication architecture design
technique. For explanation purposes, we utilize the CTG and the
corresponding floorplan depicted in Figures 4 and 6(a), respec-
tively. Our topology and route generating algorithm takes a SoC
floorplan as input, and generates an interconnection network that
minimizes power consumption subject to bandwidth constraints.
Latency constraints are addressed by the following observations.
First, since the floorplanner assigns a higher weight to latency than
bandwidth, traces with tight latency constraints are placed close to
each other, and hence, routed through minimum number of router
hops. Second, the traces are routed through minimum number of
hops, subject to bandwidth constraints.

Our technique operates in three stages. In the first stage, it re-
cursively bisects the channel intersection graph (CIG) of the given
floorplan to determine physical links, and maps traces on the links.

ANOC (CIG, CTG)
1 map traces(CIG, V)
2 generate topology()
end

generate topology()

1 for e ∈ E

2 get route(E)

3 end for

4 for core c ∈ V

5 assign router(c)

6 end for

7 for node n ∈ CIG

8 if (merge diverge(n))

9 place router(n)

10 end if

11 end for

12 remove redundant routers()

end

map traces(cig, dir)

1 if |cig| == 1)

2 return

3 end if

4 {lg, rg} = get cut(cig, dir)

5 L = get links(cig, dir)

6 C = get traces(cig,dir)

7 for tr ∈ C

8 get bb(tr)

9 l = map link(tr, L)

10 update locations(tr, l)

11 end for

12 if (dir == V) cd = H

13 else cd = V

14 end if

15 map traces(lg,cd)

16 map traces(rg, cd)

end
Figure 5: Interconnection network generation
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Figure 6: Floorplan and channel intersection graph
In the second stage, it generates a NoC topology by incorporating
routers at the nodes of the CIG of the floorplan. Finally, the tech-
nique incorporates a router merging stage to further minimize the
power consumption and number of router resources in the archi-
tecture. The application specific NoC (ANOC) design algorithm is
shown in Figure 5.

3.2.1 Link placement and trace mapping

Our technique generates an interconnection network by recur-
sively bisecting the CIG [17] of the given floorplan. To define a
CIG, we introduce the notion of a bounding box. A bounding box is
a rectangular enclosure of the core such that the bounding boxes of
two adjacent cores abut each other. A CIG is defined on the bound-
ing boxes, and is defined as a graph in which the boundaries of the
bounding boxes form the edges, and the intersection of two perpen-
dicular boundaries forms a node. Figure 6(b) depicts the CIG of the
floorplan depicted in 6(a). The dotted lines denote the edges of the
graph, and the dark circles denote the nodes. The edges of the CIG
denote the physical links [17] on which traffic traces are routed,
and the nodes represent possible locations for router placement.

We define a vertical cut as a line from top to bottom of the floor-
plan. Similarly, we define a horizontal cut as a line from the left to
right of the graph. Initially, a vertical cut divides the graph into left
and right sub-graphs of almost equal span in the X axis. All traffic
traces crossing the cut are mapped on the links that are intersected
by the cut. For each of the sub-graphs thus formed, a horizontal cut
divides it into top and bottom sub-graphs of almost equal span in
the Y axis. As before, all traffic traces crossing the cut are mapped
on the links that intersect the cut. The horizontal and vertical cuts
are recursively repeated until each traffic trace is mapped to a link
incident on the respective nodes of the CIG that define the bounding
box of the source and sink cores.

The actual mapping of traffic traces to links is a bin packing
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problem, which is known to be NP Complete. Hence, we invoke
a heuristic algorithm to map traces to the links. For each traffic
trace crossing the cut, the technique selects a link that minimizes
power. Figure 7(a) shows the cuts, links and the corresponding
traces mapped on the links. Figure 7(b) shows the cross-section for
the first cut denoted as X-Y. As shown in the figure, traces C3, C4,
C6, and C9 are mapped on the links that are shown by dark lines.
The links that do not map any traces are shown by dotted lines.

Link placement and trace mapping is performed by function called
map traces of algorithm ANOC shown in Figure 5. The function
takes the CIG, and the direction of cut dir as input. The function
returns if the number of nodes in the CIG is 1, denoting that no cuts
are required. Line 4 determines the left and right sub-graphs by
bisecting the CIG in the direction given by dir. Line 5 determines
the physical links that intersect the cut and adds them to a list L.
Line 6 determines the crossing traces. Lines 7 through 11 map the
crossing traffic traces to the physical links. Lines 12 through 14
set the direction of cut of the sub-graphs to be complementary to
the current direction of cut. Lines 15 and 16 recursively invoke the
function for each of the sub-graphs.

Initially, the algorithm sets the variables cur loc(tr, tr.src), and
cur loc(tr, tr.sink) for each traffic trace tr ∈ E to be the respec-
tive locations on source and sink cores in the layout, such that the
two points define the bounding box (BB) containing the cores. The
routing of the traffic trace is performed by utilizing links within
BB. The algorithm selects traffic traces one by one, and performs
the following steps. It maps the trace to a link in BB such that i)
the sum of the shortest distance from the source to the link, and the
link to the sink, is minimized, and, ii) the bandwidth constraint on
the link is not violated. Without loss of generality, assume that the
cut is vertical, and the source lies in the left partition. After map-
ping the trace on a link, the algorithm updates cur loc(tr, tr.src)
for the right partition, and cur loc(tr, tr.sink) for the left parti-
tion to be the co-ordinates of the point of intersection of the link
that maps the trace, and the cut. The updated locations are utilized
to determine the bounding box of the trace in subsequent cuts. For
example, for the cut X-Y, trace c9 is mapped on link l2. For the
subsequent horizontal cut that has c9 as a crossing traffic trace, the
bounding box is generated with the first end being the intersection
of l2 and X-Y, and the second end being node F. The algorithm
recursively performs the link placement and traffic trace mapping,
and thus establishes a route for all traffic traces.

3.2.2 Topology generation

The mapping of traces on links by recursive partitioning of the

floorplan generates a route for each traffic trace. A route can easily
be determined by starting from the source node, and following the
links that map the trace to the sink node.

Once the routes are determined, the technique proceeds to gen-
erate the interconnection network topology. Intuitively, if a node
of the CIG is a point of merging or diverging of three or more
edges with some traffic flow, a router is required at the location of
the node. We assume that the dimensions of the routers are much
lower than the sizes of the cores. This assumption is supported by
the observation of Dally et al. [2] that the entire NoC places an area
overhead of 6.6% on the SoC architecture. Therefore, the floor-
plan before and after the introduction of routers does not vary by
a significant amount. Hence, the technique considers the nodes of
the CIG as possible locations for the routers. The introduction of
routers in this manner generates the NoC topology, as discussed in
the next paragraph.

For each processing core, the technique inspects the closest links
that carry traffic traces with the processing core as a source or sink,
and places a router at the location of the node of the CIG on which
the link containing maximum bandwidth flow is incident. The pro-
cessing core is connected to the router, and all traces that has the
processing core as a source or sink, are routed through that router.
The technique then proceeds to place a router at all locations of the
nodes in the CIG that are merging or diverging points for 3 or more
links with some traffic flow. Figure 8(a) shows the topology gen-
erated by our technique. Note that the nodes of the CIG have been
replaced by black squares, denoting routers.

3.2.3 Router merging

In the final stage, we incorporate a merging technique to fur-
ther minimize the power consumption, and reduce the number of
routers in the topology. The technique examines pairs of adjacent
routers, and merges them if they are i) close to each other, ii) merg-
ing them does not violate bandwidth constraints, and iii) the total
power consumption is minimized. The minimum distance between
two routers is determined by the maximum link length that can sup-
port single clock cycle data transfer between the routers. This dis-
tance is specified by the designer. If two routers are further than
the specified maximum distance, they are not merged. Merging is
performed by collapsing one router into another. The router with
higher bandwidth flow is retained, and the one with lower band-
width flow is collapsed. Figure 8(b) presents the topology after
merging. In the figure, the two routers close to node B are merged
into a single router. Figure 9 presents the final floorplan and inter-
connection network architecture for the given CTG.
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Benchmark ID Nodes Edges
mp3 decoder G1 5 3
263 encoder G2 7 8
mp3 encoder G3 8 8
263 decoder G4 8 9

MPEG4 G5 12 13
MWD G6 12 13

263 enc mp3 dec G7 14 12
mp3 enc mp3 dec G8 15 12
263 enc mp3 enc G9 15 17
263 enc 263 dec G10 16 17

Table 1: Benchmarks

Floorplanning Interconnection ID
generation algo

MILP MILP MM

MILP ANOC and merging MSm
MILP ANOC no merging MSnm

Slicing Tree ANOC and merging SSm
Slicing Tree ANOC no merging SSnm

Table 2: Techniques

The generate topology function of the ANOC algorithm per-
forms the topology generation, and merging operations. In the
function, lines 1 through 3 generate traffic for each traffic trace.
Lines 4 through 6 assign a router for each node, lines 7 through 11
places routers at nodes of the CIG that merging or diverging points
of three or more edges, lines 9 through 11 generate routes for each
trace by following the links on which trace is mapped, and finally,
line 12 performs the merging of routers.

Possible deadlocks in the final topology can be removed by in-
troducing virtual channels as a post processing step [21].
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In this section, we present an analysis of the complexity of the
ANOC algorithm. Since links are placed by recursively partition-
ing the CIG, there are K = O(|V |) links. Since each trace is
mapped at most O(log(|V |)) times, mapping of traces takes at
most O(K|E|log(V )) operations. Hence, the complexity of the
function is O(|V ||E|log(|V |)). The complexity of the topology
generation function is given by O(|E||V | + |V |2), where |E||V |
is for topology generation, and |V || is for router merging. Hence,
the overall complexity of the ANOC technique can be represented
as O(|V ||E|log(|V |)).
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We first discuss the benchmark applications, the experimental
setup, and finally, we present and discuss the results.

Benchmark Power(µW) Routers
MM MSm Ratio MM MSm Ratio

G1 2.62 3.3952 1.29 1 1 1
G2 108.3 162.19 1.49 2 2 1
G3 5.7 6.8709 1.20 2 2 1
G4 5.7 8.2988 1.45 3 2 0.66
G5 3672 5929.2 1.61 4 4 1
G6 6056 11125 1.91 4 3 0.75
G7 179.5 144.05 0.80 5 4 0.8
G8 8.635 11.490 1.33 5 5 1
G9 170.7 138.11 0.80 5 4 0.8
G10 245.4 177.58 0.72 7 4 0.57

Table 3: Comparison of MM and MSm
Benchmark Power(µW) Routers

MSm MSnm Ratio MSm MSnm Ratio
G1 3.3952 3.7980 0.89 1 3 0.33
G2 162.19 228.21 0.71 2 5 0.4
G3 6.8709 7.9698 0.86 2 6 0.33
G4 8.2988 9.6370 0.86 2 4 0.5
G5 5929.2 6482.3 0.91 4 6 0.66
G6 11125 11183 0.99 3 8 0.37
G7 144.05 214.76 0.67 4 12 0.33
G8 11.490 12.454 0.92 5 12 0.41
G9 138.11 184.92 0.74 4 6 0.66
G10 177.58 180.96 0.98 4 10 0.4

Table 4: Comparison of MSm and MSnm

Benchmark applications: We generated custom NoC architec-
tures for several combinations of multimedia benchmarks namely,
i) MP3 audio encoder ii) MP3 audio decoder iii) H.263 video en-
coder, and iv) H.263 video decoder [9]. In addition, we obtained
results for two other benchmarks namely, MPEG4 decoder, and
multi-window display (MWD) applications [5]. The description
of the benchmarks is shown in Table 1.

Experimental setup: We estimated the power consumption for
the input and output traffic of a port in 100 nm technology to be
328µW/Mbps and 65.5µW/Mbps, respectively. We estimated
the physical link power consumption to be 79.6µW/Mbps/mm
[16]. All results were obtained on a 950 MHz dual sparc processor
.

Discussion: Table 2 summarizes the different techniques utilized
to compare our results. In the table, the first column represents the
floorplanning technique (Phase I), the second column represents
the interconnection network generation technique (Phase II), and



Benchmark Power(µW) Routers
SSm SSnm Ratio SSm SSnm Ratio

G1 3.7487 3.7487 1 2 2 1
G2 128.97 239.61 0.53 1 6 0.16
G3 6.8709 7.9698 0.86 2 6 0.33
G4 8.2988 9.6370 0.86 2 4 0.5
G5 5857.7 8013.9 0.73 3 11 0.27
G6 10381 10756 0.96 3 8 0.37
G7 187.78 190.81 0.98 3 7 0.42
G8 12.190 16.119 0.75 4 11 0.36
G9 200.14 223.44 0.89 5 7 0.71

G10 202.08 242.47 0.83 5 14 0.35

Table 5: Comparison of SSm and SSnm

Benchmark Power(µW) Routers
MSm SSm Ratio MSm SSm Ratio

G1 3.3952 3.7487 0.92 1 2 0.5
G2 162.19 128.97 1.25 2 1 2
G3 6.8709 6.8709 1 2 2 1
G4 8.2988 8.2988 1 2 2 1
G5 5929.2 5857.7 1.01 4 3 1.3
G6 11125 10381 1.11 3 3 1
G7 144.05 187.78 0.76 4 3 1.3
G8 11.490 12.190 0.94 5 4 1.2
G9 138.11 200.14 0.69 4 5 0.8
G10 177.58 202.08 0.87 4 5 0.8

Table 6: Comparison of MSm and SSm

the third column gives a unique name for each combination.
Comparison with MILP formulation : We compared our

technique with an optimal ILP formulation proposed in [1]. The
computational complexity of the ILP formulation is exponential
in the number of inputs. On the other hand, the technique pre-
sented in this paper is based on deterministic algorithms, and we
show in Section 4 that the computational complexity of the tech-
nique is low. The results are presented in Table 3. In the table,
the first column describes the benchmark application, the second
column presents the power consumption of ILP based technique,
the third column presents the power consumption of our technique,
the fourth column presents that ratio of our technique to that of
the ILP based technique in terms of power, and the fifth, sixth,
and seventh columns present the corresponding values for router
resources. Our technique was able to generate topologies that on
average consumed only 1.25 times the power, and 0.85 times the
router resources, compared to the corresponding topologies gener-
ated by the MILP formulation. We set the timeout period of the
MILP formulation at 12 hours. The MILP formulation took several
hours to generate results. In many cases, the formulation timed out
before generating optimal results. Since our design technique has
a low complexity, our technique was able to generate results for all
benchmarks in negligible time (< 1sec).

Comparison of the techniques with and without merging :
Table 4 compares results for the ANOC algorithm with and with-
out merging respectively, on the floorplan generated by the MILP
formulation. The organization of the table is similar to Table 3.
Table 5 presents a similar comparison for slicing tree based floor-
plan. On average, the merging of routers resulted in 15% reduc-
tion in power consumption and 45% reduction in consumption of
router resources for the MILP based floorplan. The corresponding
values for slicing tree based floorplan were 17% and 46%, respec-
tively. The reduction in router resources due to merging was much
more than the reduction in power. The technique merges redundant
routers, thus generating topologies that have higher router utiliza-
tion. Although this paper does not address leakage power reduc-
tion explicitly, higher router utilization results to reduced leakage
power.

Comparison between MILP and slicing tree floorplan : Ta-
ble 6 compares the power and router resource consumption of the
topologies generated by our technique with merging for MILP and
slicing tree floorplans. On average, the topologies for MILP floor-
plan consumed 0.95 times the power and 1.05 times router resources,
compared to the slicing tree floorplan when merging was applied.
The corresponding values when merging was not applied were 0.92,
and 1.02, respectively. Since our technique minimizes power as a

primary goal, and the floorplans generated by the MILP floorplan-
ner are better than the slicing tree based floorplanner, the topologies
for MILP floorplans consumed lesser power than the corresponding
slicing tree based floorplans

Topologies : The communication trace graph for MPEG4 de-
coder, and MWD applications are shown in shown in Figures 10,
and 13, respectively. In the graph, the circles denote the processing
or memory cores, and are annotated by their respective types. The
edges denote the communication between cores, and are annotated
by bandwidth requirement in Mbps. Figures 11, and 14 present the
corresponding physical layout, and interconnection network topol-
ogy of the applications for the MILP floorplan. Figures 12, and
15 present the corresponding physical layout, and interconnection
network topology of the applications for the slicing tree floorplan.
In the figure, the black squares denote the router elements. Our
floorplanning technique places highly communicating nodes close
to each other. For example, in the MPEG4 decoder benchmark, the
nodes labeled mem1 and upsp are placed close to each other as the
bandwidth of the trace between mem1 and upsp is high. The ANOC
algorithm then routes the trace in minimum number of hops.
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In this paper, we proposed a novel low complexity technique for
design of application specific custom on-chip interconnection ar-
chitectures. We experimented with many representative multime-
dia benchmarks to demonstrate the superior quality of our design.
Due to their low complexity, our technique was able to generate
results for all benchmarks in less than one sec. We compared our
technique with an optimal MILP based technique whose computa-
tional complexity is not bounded. Overall, our technique consumes
less than 1.25 times the power consumption, 0.85 times the router
resources, and generates results in less than one second compared
to the MILP technique that took hours to generate results.
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