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Abstract—On-board real-time anomaly detection has always
been a challenging task in hyperspectral imaging analysis as it re-
quires low computational complexity. Most of the existing anomaly
detection algorithms inevitably trade off intensive computational
complexity for high detection accuracy. This article presents a fast
spectral–spatial anomaly detection algorithm with low complexity
in hyperspectral images (HSIs) using morphological reconstruction
and a simplified guided filter (Fast-MGD). Since the simple filtering
techniques are applied, it is therefore feasible to achieve a field
programmable gate array (FPGA)-based hardware implementa-
tion. More precisely, an effective deeply pipelined acceleration
scheme is developed adopting high-level synthesis to support HSIs
that are acquired over different scenes with different sizes and
spectral bands. Experimental results show strong advantages of
the proposed FPGA-based Fast-MGD in processing speed and
resource consumption, while a high detection accuracy is remained.
Its applicability in on-board real-time processing is demonstrated
and verifie.
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I. INTRODUCTION

O
WING to the richness and abundance in spectral–spatial

information, hyperspectral images (HSIs) acquired by

hyperspectral imaging have been widely used in various ap-

plications including classification [1], target or anomaly detec-

tion [2], etc. Benefiting from the fact that anomaly detection

neither requires any prior information nor relies on the complex

preprocessing like atmospheric and radiometric correction, hy-

perspectral anomaly detection shows its high applicability for

real-time processing on satellites. It is expected as an effective

cutting-edge technology for military and civilian tasks, such

as precision agriculture [3] and civilian search–rescue opera-

tions [4].

Conducting real-time anomaly detection from satellites has

always been a challenging task. On-ground computing plat-

forms of high performance involving multicore processors and

GPUs generally display their inabilities of being applied on

satellites. In contrast, field programmable gate array (FPGA)

is a better alternative to be adopted in the harsh environment

of outer space for three reasons. First, FPGA can provide much

more competent levels of performance while sustaining lower

power consumption compared with GPUs [5]. Second, FPGA

offers high-level flexibility due to the inherent ability to change

functionality through partial or full reconfiguration. Third, the

increasing characteristics of ionizing-radiation tolerance make

FPGA the most extensive solution for on-board processing at

earth observation satellites. Unfortunately, the hardware imple-

mentations on FPGA for on-board anomaly detection are few so

far.

Aiming at solving problems of on-board real-time processing

of hyperspectral anomaly detection, the motivation of our work

is to develop an algorithm and hardware structure for both

high accuracy and low complexity. In this article, we propose

a fast spectral–spatial anomaly detection algorithm based on

morphological reconstruction and the simplified guided filtering

(Fast-MGD). The proposed Fast-MGD is a segmentation-based

method that can sequentially actuate operations of average fu-

sion, feature location, feature extraction, and feature clustering.

The whole process can ensure high detection accuracy while

avoiding complex matrix operations. Through studying the par-

allelism of Fast-MGD, FPGA-based hardware implementation

is, therefore, proposed. In particular, a relatively mature high-

level synthesis (HLS) [6] is especially utilized in obtaining better

portability, higher flexibility, and shorter development period

against the conventional register transfer level (RTL)-based
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design method, contributing a minor proportion to the above

method’s overall superiority.

The key contributions of this article can be recapitulated as

follows.

1) To satisfy low complexity while maintaining detection

performance, a simple but effective combination of the ad-

vantageous morphological reconstruction and self-guided

filtering is designed. Especially, self-guided filtering is

further optimized by removing redundant mean operations

on the intermediate coefficients to reduce memory require-

ments.

2) A novel and effective deep pipelined architecture is pre-

sented to accelerate our algorithm on FPGA by adopting

HLS, which can be easily reconstructed by modifying

several parameters for different scenes of various sizes

featured with different numbers of spectral bands, offering

strong feasibility for on-board real-time processing.

3) An efficient parametric configurable sharing architecture

is designed for both morphological reconstruction and

self-guided filtering.

The remainder of this article is organized as follows.

Section II conducts an overall review of related work. Section III

elaborates the principle of morphological filtering and guided

filtering as well as the difficulties of implementing these two

techniques. Section IV introduces the proposed Fast-MGD.

Section V presents the FPGA implementation of Fast-MGD.

Section VI provides experimental assessment on detection accu-

racy and processing performance of the proposed Fast-MGD and

its hardware implementation on FPGA. Section VII concludes

this article.

II. REVIEW OF RELATED WORK

Various anomaly detection algorithms have been proposed in

recent decades. The Reed–Xiaoli (RX) algorithm [7] proposed

by Reed and Yu is regarded as a milestone in hyperspectral

anomaly detection. Under the assumption that the background

follows a single Gaussian normal distribution, the RX detector

detects anomalies by calculating the Mahalanobis distance be-

tween the pixel to be tested and the background obtained through

estimating the sample mean and covariance matrix. Various

variants of RX algorithms have been investigated to realize better

detection performance [8], [9]. For instance, a concentric dual

sliding window around each image pixel is adopted to estimate

the background in the local RX (LRX) detector [10] proposed

by Molero et al. However, the RX-based algorithm does not

perform satisfactorily in complicated scenarios due to the linear

assumption of the background.

Despite a kernel RX proposed by Kwon and Nasrabadi

[11] further exploited the nonlinear characteristics of HSIs and

mapped the spectral information of the original hyperspectral

data to the high-dimensional feature space, yet the performance

of this method is not, therefore, improved noticeably, in which

the required computation of high-order Gram matrix and its

inverse matrix is far beyond affordability.

In addition, diverse methods of non-RX algorithms

in terms of representation-based, projection-based, and

segmentation-based have been proposed [12]–[16]. For in-

stance, collaborative-representation-based detector (CRD) [13]

employs the concept that each pixel in the background can be

approximately represented by its spatial neighborhoods whereas

anomalies cannot be. The collaboration of representation is re-

inforced by L2-norm minimization of the representation weight

vector, in which a Euclidean distance-weighted regularization

matrix is included to adjust the contribution of each neighboring

pixel. However, the configuration of bi-window size in the algo-

rithm is characterized with high sensitivity, posing detrimental

impacts on its detection performance and processing speed.

To compensate the inadequate consideration of the spatial cor-

relation in the above algorithms, a tensor-based method was thus

proposed in [15] to describe the spectral information and spa-

tial information equivalently. In recent decades, morphological

filtering has been widely used as a novel HSI spatial descriptor

for spatial feature extraction [16]–[18]. Based on morphological

attribute filtering and domain transform recursive filtering, Kang

et al. [16] proposed a segmentation-based detector (AED) to

integrate spatial information throughout the feature extraction

process. The area-based attribute filtering is developed to ex-

tract anomalous candidates with specific area properties, yet the

gradient reversal cannot be thoroughly avoided by the domain

transform filtering conducted in the postprocessing operation.

To tackle with the aforementioned problems, Xie et al. [18]

proposed a more efficient strategy based on structure tensor

and guided filtering (STGF), but the preprocessing operation of

structure tensor-based band selection is relatively complicated.

It is worth emphasizing that the global tree-representation-based

strategy for morphological attribute filtering in these methods is

confronted with lots of obstacles in hardware implementation.

In recent years, theories of deep neural network attack detec-

tion have drawn much attention worldwide [19]–[23]. In [20],

the adaptive weight deep belief network (DBN) with an au-

toencoder structure is used to acquire high-level features and

reconstruction errors. Xie et al. [22] proposed an autoencoder

and adversarial-learning-based semisupervised background es-

timation model, which leverages the training spectral vectors

obtained by a specific searching method to learn the background

spectral characteristics. In [23], the generative adversarial net-

work is applied and developed to estimate the background by

means of two effective constraints (a continuity representation

constraint in the latent space and a discriminator-based authen-

ticity constraint). However, these methods need to recover and

store the reconstructed image by the same size as the origi-

nal HSI, thereby imposing enormous pressure on storage. A

spectral–spatial feature extraction method [21] was proposed

by Lei et al. through performing a linear combination of joint

spectral and spatial detection results. However, the designed

DBN extracting reduced number out of spectral features cannot

perform satisfactorily in all HSIs due to the shortage in training

samples.

Obviously, most of the aforementioned anomaly detectors im-

prove their detection accuracy by raising the intensity of compu-

tation complexity; in contrast, lowering the computational cost

is indeed taken into account by certain researchers, which has

so far met with limited success. A huge amount of complicated
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computational operations regarding covariance matrix, inverse

matrix, and eigenvalue decomposition are still unavoidable,

posing negative encumbrance for real-time onboard detection.

Furthermore, on-board anomaly detection has stringent re-

quirements on size, weight, power consumption, and radiation-

hardened of the computing platform, to which FPGA stands

out as a mainstream criterion for on-board hyperspectral data

processing among the existing high-performance computation

devices. For instance, Yang et al. [5] used a streaming back-

ground statistics approach for optimizing the constrained en-

ergy minimization and RX on FPGA. In [24], a lightweight

network based on the quantization and the structured pruning

(P-Q-AD) was proposed by utilizing the potential relationship

between detection accuracy and throughput. However, most of

the cutting-edge algorithms are not sufficiently implemented on

FPGAs due to their intrinsic computational complexity and low

parallelism.

To summarize, developing hyperspectral satellite remote

sensing detection via algorithm and hardware implementation

becomes an urgent must that focus on solving the key problem

about opportune acquisition of abnormal targets.

III. BACKGROUND

A. Morphological Filtering

Morphological filtering is defined between a group of image

points called object and kernel structuring element (SE) [25],

which can be used as a powerful tool for extracting useful

image components representing region shapes. Morphological

operations are developed and further extended based on two

basic operations, erosion, and dilation.

As one of the ingenious morphological operations, morpho-

logical reconstruction requires two input images, which consist

of a marker image functioning as the starting point for transfor-

mation and a mask image constraining the transformation.

In this work, we consider rectangular flat SE b of size r × r.

Let two grayscale images f and g denote the marker image and

the mask image, respectively, to which f is pointwise less than

or equal to g. The morphological dilation reconstruction (RD)

of g from f is denoted by

R
D
g (f) = D

(k)
g (f) (1)

whereD
(1)
g (f) = (f ⊕ b) ∧ g,D

(n)
g (f) = D

(1)
g (D

(n−1)
g (f)) for

2 ≤ n ≤ k, k, n ∈ N+ satisfies D
(k)
g (f) = D

(k−1)
g (f). The

symbol ⊕ stands for the morphological dilation, and ∧ denotes

the pointwise minimum at each pixel of two images.

Similarly, if f is pointwise greater than or equal to g, the mor-

phological erosion reconstruction (RE) of g from f is expressed

as

R
E
g (f) = E

(k)
g (f) (2)

where E
(1)
g (f) = (f ⊖ b) ∨ g, E

(n)
g (f) = E

(1)
g (E

(n−1)
g (f)) for

2 ≤ n ≤ k, k, n ∈ N+ satisfies E
(k)
g (f) = E

(k−1)
g (f). The

symbol ⊖ stands for the morphological erosion, and ∨ denotes

the pointwise maximum at each pixel of two images.

The aforementioned operations can be combined into two

more complex operations used in our work following certain se-

quences: opening and closing reconstructions, which show their

better performance in extracting spatial features. The opening

reconstruction can be conducted through a series of successive

erosions followed by a dilation reconstruction. By duality, the

result of the dilation of the input image followed by an erosion

reconstruction is called closing reconstruction.

The erosion/dilation performed first in the opening/closing

reconstruction is a window-based operation, which aims to find

minimum/maximum among the pixels belonging to the SE that is

characterized by its size and shape. A common method requires

l − 1 comparisons if the SE is a local window containing l pixels,

which results in redundancy of comparison, thereby exposing

its extremely low computational efficiency. Van Herk [27] and

Gil and Werman [28] proposed a recursive algorithm (HGW)

whose complexity is size independent of the SE. However, we

emphasize that the optimal comparison number does not always

guarantee the best overall performance, to which latency and

memory also matters significantly. The parallel architecture [29]

proposed by Mukherjee et al. for rectangular elements reduces

the processing time by simultaneously processing pixels within

adjacent windows of SEs. The xfOpenCV library of Xilinx [30]

provides dilation/erosion kernel being capable of processing SEs

with various shapes, achieving good performance in terms of

memory utilization and processing time. In our work, the data

reuse structure based on SE decomposition is further designed,

which not only reduces the number of comparisons, but also

exhibits excellent performance in terms of latency and memory

through keeping and reusing partial results generated during the

computation process.

The subsequent dilation/erosion reconstruction in the open-

ing/closing reconstruction can be essentially explained as con-

strained dilation and erosion operations. Vincent [31] proposed

four effective strategies in 1993 involving standard technique,

sequential reconstruction (SR), reconstruction using a queue of

pixels, and hybrid reconstruction. Furthermore, a single pass

reconstruction algorithm was proposed by Robinson and Whelan

[32], i.e., downhill filtering strategy. Anacona-Mosquera et al.

[33], [34] proposed effective hardware architectures based on SR

and hybrid reconstruction, respectively. In [35], the morpholog-

ical coprocessor unit is proposed for reconstruction operations

based on the standard technique by using large SE pipelines

and interconnective architecture of the pipelines. We choose

the simplest standard technique that can be directly obtained

according to the definitions of (1) and (2). However, this method

is inapplicable for hardware implementation due to uncertainty

of the iterations under idempotence [17]. Specifically, for the

certain missions in hyperspectral anomaly detection, we adopt

fixed iterations through conducting a large number of experi-

ments to avoid the above problem.

B. Guided Filtering

The guided filter [36] computes the filtering output by con-

sidering the content of a guidance image. Here, we will briefly

describe the rationale of guided filters.
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Algorithm 1: Pseudocode of the Guided Filter.

Input: p : input image O : the guidance image

Parameters: r, ǫ
meanp = fmean(p) (1)

meanO = fmean(O) (2)

CorrO = fmean(O. ∗O) (3)

CorrpO = fmean(p. ∗O) (4)

VarO = CorrO − meanO. ∗ meanO (5)

CovpO = CorrpO − meanp. ∗ meanO (6)

a = CovpO./(VarO + ǫ) (7)

b = meanp − a. ∗ meanO (8)

meana = fmean(a) (9)

meanb = fmean(b) (10)

q = meana. ∗O+ meanb (11)

Output: q

Assuming that the output image q is a linear transformation

of the guidance image O in a local window ωj centered at the

pixel j:

qi = ajOi + bj ∀i ∈ ωj (3)

where (aj , bj) are the linear coefficients and ωj is a square win-

dow of a radius r. To determine the linear coefficients (aj , bj),
we need to seek a solution that minimizes the difference between

the input image p and the output image q while maintaining the

linear model (3). Specifically, we minimize the following cost

function in the window ωj :

E(aj , bj) =
∑

i∈ωj

((ajOi + bj − pi)
2 + ǫa2j ) (4)

where ǫ is a regularization parameter penalizing large aj . (4) is

the linear ridge regression model, and its solution is given by

aj =

1
|ω|

∑

i∈ωj
Oipi − µjpj

σ2
j + ǫ

(5)

bj = pj − ajµj (6)

where µj and σ2
j are the mean and variance of O in ωj , and |ω|

is the number of pixels in ωj . pj =
1
|ω|

∑

i∈ωj
pi is the mean of

p in ωj .

After computing (aj , bj) for all window ωj in the image, we

compute the filtering output by

qi = aiOi + bi (7)

where ai =
1
|ω|

∑

j∈ωi
aj and bi =

1
|ω|

∑

j∈ωi
bj are the average

coefficients of all windows overlapping i. We compute the filter

output q from its definition (5)–(7) according to Algorithm 1.

In addition to the edge-preserving property without gradient

reversal artifacts, guided filtering naturally has a fast and non-

approximate linear time algorithm that can be decomposed into

a series of mean filters (fmean in Algorithm 1) with windows

radius r.

It is obvious to note that the mean filter is also a window-based

operation that is similar to the aforementioned erosion/dilation in

Fig. 1. Mean filtering processing in [26].

the previous subsection. At present, one of the widely used tech-

niques utilizes a custom mean filter derived from the approach

in [26], [37], and [38], of whose main idea lies in maintaining

a sum for each column in the image to be filtered. The detailed

process of mean filtering is shown in Fig. 1. In specific, through

subtracting its topmost old pixel and adding the bottom new

pixel, the column sum is updated first. Then, through subtracting

its leftmost column sum and adding the updated column sum,

the window, therefore, moves to the right and its sum is updated.

In our work, we further optimize the above architecture by

studying the commonness between erosion/dilation and mean

filter and design a general frame, which can be available for

erosion/dilation and mean filter simultaneously.

According to Algorithm 1, it can be observed that there is

strong data dependence in guided filtering, which limits the

improvement of processing speed. Consequently, we design a

high-throughput hardware architecture that eliminates data de-

pendence, imposes reasonable simplification and segmentation

for matrix operations.

IV. PROPOSED APPROACH

In this section, the proposed algorithm is described in detail.

As shown in Fig. 2, the proposed Fast-MGD approach consists of

four steps. First, average fusion is adopted to reduce dimension

of the HSIs. Second, morphological opening and closing recon-

struction are utilized for feature location. Third, a differential

operation is conducted to extract anomalies in the HSIs. Finally,

the final detection map is, therefore, obtained by means of the

simplified self-guided filtering for feature clustering.

A. Average Fusion

The high dimensionality of the original HSIs will undoubtedly

and inevitably incur extremely high computational complexity,

throughout which massive storage capability is, therefore, re-

quired. The map of correlation coefficients of spectral bands

in Fig. 3(a) shows that the adjacent bands are usually highly
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Fig. 2. Schematic of the proposed Fast-MGD anomaly detection in HSI.

Fig. 3. (a) Maps of correlation coefficients of spectral bands. (b) Curve of
correlation coefficients of adjacent spectral bands.

correlated with each other and contain redundant information.

Besides, the correlation coefficient between adjacent bands can

be calculated by the following equation:

ρi,j =
Cov(gi ,gj )

√

Var(gi)Var(gj )
(8)

where cov and var are the covariance and variance. gi and gj

refer to the ith and jth hyperspectral bands. i = 1, 2, . . ., R−
1. As shown in Fig. 3(b), the highest correlation coefficient is

0.99996 and the lowest is 0.89014. Therefore, it is preferable to

exploit specific methods for feature reduction.

Based on this observation, the original HSI is, therefore, first

partitioned into Q subsets of adjacent bands as follows:

C
q =

{(

g⌈R/Q⌉(q−1)+1, . . . ,g⌈R/Q⌉q

)

1 ≤ q ≤ Q− 1
(

g⌈R/Q⌉(q−1)+1, . . . ,gR

)

q = Q
.

(9)

In the above expression, C q (q = 1, 2, . . ., Q) indicates the qth

hyperspectral subset. g = (g1,g2,g3, . . .,gR) denotes an HSI

with R spectral bands and M ×N pixels in the spatial domain.

⌈R/Q⌉ represents the smallest integer greater than or equal to

R/Q.

Then, a simple and effective average fusion method [39]

is adopted to reduce spectral dimension by combining the

Fig. 4. Visualization of intermediate results on the San Diego dataset (using
ra = 3 and k = 20). (a) HSI. (b) First fused image S

1. (c) and (d) are the
intermediate results of the opening reconstruction. (e) and (f) are the intermediate
results of the closing reconstruction. (g) and (h) are the result of |φ1 − S

1| and
|S1 − γ1|, respectively.

complementary information of adjacent bands in each subset.

Specifically, the fused band Sq is obtained by the following

equation:

Sq =

∑Nq

i=1 C
q
i

Nq

(10)

whereC
q
i represents the ith band in the qth hyperspectral subset,

and Nq is the total number of spectral bands in the qth subset.

As shown in Fig. 4(b), the fused image retains the anomalies

while effectively removing noise and redundant information to

some extent.

B. Feature Location

In this stage, the opening and closing reconstruction are

applied for feature localization, in which a basic operand, a rect-

angular SE b, of size ra × ra is therefore defined. The erosion

and dilation of S by b are first calculated as the marker images

for dilation and erosion reconstruction, respectively. Let γ and

φ denote the opening and closing reconstruction, respectively.
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Fig. 5. (a) Results of the differential operation (φ1 − γ1). (b) Results of the
self-guided filtering (V1). (c) Reference map.

The operations performed at this stage can be expressed by the

following equations:

γq = RD
Sq (eq) = D

(k)
Sq (S

q ⊖ b)

= D
(1)
Sq (D

(k−1)
Sq (Sq ⊖ b))

φq = RE
Sq (dq) = E

(k)
Sq (S

q ⊕ b)

= E
(1)
Sq (E

(k−1)
Sq (Sq ⊕ b))

(11)

where q = 1, . . ., Q and SE b is also used to perform erosion

and dilation reconstruction. However, the morphological recon-

struction following its definition [see (1) and (2)] is an iterative

procedure that is performed until reaching idempotence, which

results in unpredictable time performance on hardware imple-

mentation. Fortunately, we experimentally proved that fixed iter-

ations (k) can guarantee high accuracy in Section VI. Compared

with the area-based attribute filtering applied in STGF [18] and

AED [16], the morphological opening and closing reconstruc-

tion are easier to implement.

As shown in Fig. 4(c)–(f), the intermediate results on the San

Diego dataset are visual, and the number of iterations in both

opening reconstruction and closing reconstruction is set to 20.

Taking the opening reconstruction operation as an example, the

erosion operation [see Fig. 4(c)] is first performed to remove

bright features smaller than the size of SE. However, the size of

the dark feature is increased and the background is darkened.

Subsequently, the reprocessing of the dilation reconstruction

[see Fig. 4(d)] removes the bright features while reducing its

impacts imposed on dark features and background. In other

words, opening reconstruction only removes bright features on

a constant background. Conversely, the closing reconstruction

only removes dark features within a constant background.

C. Feature Extraction

Considering that anomaly objects in HSIs usually appear

as small-area objects compared with the background [16], the

anomaly objects [see Fig. 5(a)] are extracted through the differ-

ential operation, which merges the dark [see Fig. 4(g)] and light

[see Fig. 4(h)] features from the above stage. For q = 1, . . ., Q,

the process can be expressed as the following equation:

Iq = |φq − Sq |+ |Sq − γq | = φq
− γq. (12)

Algorithm 2: Pseudocode of the Self-Guided Filter.

Input: I

Parameters: rb, ǫ
meanI = fmean(I)(1)

CorrI = fmean(I. ∗ I) (2)

VarI = CorrI − meanI. ∗ meanI (3)

a = VarI./(VarI + ǫ) (4)

b = meanI − a. ∗ meanI (5)

V = a. ∗ I+ b (6)

Output: V

D. Feature Clustering

Although morphological reconstruction can effectively ex-

tract small-sized bright and dark objects in the image, it is

difficult for the reconstruction to filter out some background

interference and random noise, which may increase the false

alarm rate of anomaly detection. However, as a local linear

model that sufficiently utilizes the local spatial information of

the image, guided filtering is a better alternative in solving the

aforementioned problems.

The guided filter computes the filtering output by considering

the content of a guidance image, which can be the input image

itself or another different image. In this article, we consider the

special case in which the input image is used as the guide. The

results of self-guided filtering can be defined as follows:

V
q
i = aqjI

q
i + bqj ∀i ∈ ωq

j . (13)

The coefficients can be calculated as

aqj =

1
|ωq |

∑

i∈ωq

j
(Iqi )

2
− (µq

j)
2

(σq
j )

2
+ ǫ

bqj = µq
j − aqjµ

q
j

(14)

where µq
j and σq

j
2

are the mean and variance of Iq in the local

window ωq
j of size (2rb + 1)× (2rb + 1), ǫ is a parameter

that controls the smoothness of the filtering, and q = 1, . . ., Q.

Inspired by [40], we eliminate two redundant mean filters (steps

(9) and (10) in Algorithm 1). In order to prove the effectiveness

of this method, we conducted a lot of experiments in MATLAB

using a and b instead of their mean. Our experimental results in

Section VI showed that this modification imposes small impact

on accuracy while greatly reducing the memory consumption.

The self-guided filter applied in this article is described in Algo-

rithm 2. As shown in Fig. 5(b), it can be observed that the local

spatial strong intercorrelation amidst adjacent pixels is utilized

efficiently in feature clustering. Moreover, the background noise

is removed in contrast to Fig. 5(a).

Finally, we perform the following operation to obtain the

detection map:

O =

Q
∑

q=1

ωqV
q (15)
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Fig. 6. Overall hardware structure of Fast-MGD.

where ωq = 1/Q (q = 1, . . .Q) is the set, meaning that the pro-

cessed result of each fused band contributes equally to finding

anomaly objects.

V. FPGA IMPLEMENTATION

This section discusses the detailed implementation of

our proposed algorithm. An overall hardware structure of

Fast-MGD is given in Section V-A. Section V-B describes

the microscopic hardware architecture of Fast-MGD in detail.

Section V-C explains our design optimization strategies in

FPGA implementation.

A. Overall Hardware Architecture of Fast-MGD

As shown in Fig. 6, the framework of Fast-MGD is mainly

composed of two components including an off-chip memory

(DDR3 SDRAM) for caching the HSI data and a processor core,

which can be directly used for on-board real-time processing.

The processor core that encompasses three modules is used for

the major purpose of data processing. The first module is the av-

erage fusion unit (AFU), which is in charge of reducing the spec-

tral dimensions of a given HSI. The second module is the feature

location and extraction unit (FLEU), which is designed to extract

anomalies based on morphological reconstruction. The last mod-

ule is the feature clustering unit (FCU) being applied to further

rectify the detection map through the self-guided filtering. Each

module contains Q identical processing elements (PEs) that

work in parallel. It is emphasized that only deep pipelined design

highlighted by GRAY in the figure is concerned, while the rest

of the figure only helps us to verify the function and performance

of the proposed Fast-MGD hardware implementation.

B. Microscopic Hardware Architecture of Fast-MGD

1) AFU: The Data Loader and Distributor reads HSIs from

the DDR3 SDRAM through the AXI interconnect bus and loads

pixel vectors by bands for AFU. The data width of DDR3

SDRAM is set to 512 bit, which is the maximum available

bit width of the device. Considering the case of an HSI with

a pixel width by 16 bits, each address can store 32 successive

bands of a pixel vector. The pixel derived from the Data Loader

and Distributor is first stored in FIFO performing with 512 bit

width, and then, the high-bit data are transferred to theQSpectral

Integration units, thereby reducing processing time through full

use of the bandwidth of DDR3 SDRAM.

The Spectral Integration conducts sum and average operations

along the spectral dimension during the data-width conversion

(512-bit data are split into 16-bit data). The final result is stored

in the FIFO and is delivered to the next module.

2) FLEU: As shown in Fig. 6, the opening and closing re-

construction (the erosion/dilation followed by dilation/erosion

reconstruction) first work in parallel, and then, the differential

operation is executed for feature extraction. The two stages

transmit the data stream through a memory buffer, whereby a

task-level pipeline architecture is, therefore, designed.

As can be seen from (11) in Section IV, the two basic image

processing pipelines, referred to as erosion and dilation, are the

core of the morphological reconstruction. Specifically, the two

pipelines can be configured with registers and memory buffers

to design more complex dilation/erosion reconstruction utilizing

standard techniques.

The dilation/erosion computes the maximum/minimum for

each pixel within a customizable rectangular SE. As depicted

in Fig. 8, the dilation/erosion can be further subdivided into the

row processing unit (RPU) and column processing unit (COPU).

The RPU reads the pixel in sequence from the FIFO as the

dilation is initiated. Within each cycle, the new pixel and the

pixels involved in the current shift registers of size ra − 1 are first

compared in the row diversity unit (RDU); then, the pixels in the

registers are updated via reading the new pixel and removing the

old one. We point out that the array_partition directive in HLS

is utilized to completely decompose the array into individual

elements. The comparison result is passed to COPU through the

shift register.

When the COPU starts to work, the new result pixel from

RPU is first compared with a column of pixels (ra − 1 pixels)
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Fig. 7. Sample code used for implementing morphological closing operation.

Fig. 8. Sharing architecture for dilation, erosion, and mean filter.

being read from the BRAMs of size (ra − 1)×N . The width

of the image is represented by N . Then, the pixels of the current

column in BRAM are updated via reading the new pixel and

removing the old one. The array_reshape directive we use

can reduce the consumption of BRAMs while accessing data

in parallel. It should be emphasized that a result pixel can be

obtained by 2× (ra − 1) comparisons for the optimized struc-

ture of dilation/erosion, throughout which the computational

efficiency is, therefore, improved.

With respect to its definition, the optimized dilation recon-

struction consists of k identical stages, where k is set to 20.

The i stage uses the output of the i− 1 stage as the marker

input together with the buffered mask image, in which dilation

and pointwise minimum (Min in Fig. 6) are performed at each

stage. Similarly, erosion reconstruction is, therefore, designed

with the same structure. Fig. 7 shows the sample code used to

implement morphological closing operation in HLS. The ori,

ori_1, ori_2, and ori_3 in the figure is mainly used to cache the

mask image that is used for morphological closing operation.

HLS_UNROLL directive is added to implement k instances

of erosion reconstruction.

Finally, the subtraction is performed on the results of the

opening and closing reconstruction, by which the final results

are stored in the FIFO for the FCU.

3) FCU: This section describes how to effectively imple-

ment the self-guided filter used for feature clustering in hard-

ware, of whose pseudocode is shown in Algorithm 2. As the

fundamental operation of the self-guided filter, the mean filter is

a windowed operation with radius rb, which undertakes the main

computational burden. Particularly, the sharing architecture of

erosion and dilation is also applicable for the mean filter, in

which only the RED color highlighted RDU and CDU need to

Fig. 9. Hardware structure of self-guided filter (the mean filter is represented
by mean).

be redesigned. Specifically, the RDU and CDU in mean filter

perform sum operation instead of comparison. Consequently,

the mean value is computed by multiplying the window sum

(column sum) by the value of 1/(2rb + 1)2.

As shown in Algorithm 2, the simplified self-guided filtering

in each PE only includes two mean filters, which compute the

values ofmeanI andCorrI . The remaining values described in

Algorithm 2 are computed using a set of arithmetic units, such

as fixed-point multipliers, adders, subtractors, etc. We perform

reasonable segmentation and sorting adjustments on complex

coefficient operations and propose a deep pipelined design to

make the entire module with higher throughput. As shown in

Fig. 9, the entire module is divided into eight pipeline stages.

Seven memory buffers of depth 1 are configured to resolve data

dependencies amidst operations.

C. Highlight

First, it is worth noting that different optimization strategies

concerning arrays, loops, latency, and throughput are utilized to

achieve a tradeoff between area and processing speed through

adding directives provided in HLS. For instance, the entire hard-

ware implementation employs global deep pipelining, which

takes advantage of the dataflow directive to raise the con-

currency of the RTL implementation and overall throughput.

The three units are connected by FIFO memories with a depth

of 1. The C++ template class hls :: stream <> is adopted for

mapping these data to FIFOs.

Second, we design a sharing architecture for the core units of

FCU and FLEU (erosion, dilation, and mean filter), as shown in

Fig. 8, which only requires reconfiguration of the RDU and CDU

highlighted by RED. The general pipelined architecture based

on row and column decomposition further simplifies the overall

hardware implementation, thereby achieving high throughput

performance.

Third, the type of the input data is 16-bit unsigned fixed-point

(15-bit fractional part), and the type of intermediate data needs

to be taken into account seriously due to its significant impact

on detection accuracy and resource consumption. In particular,

a large number of arithmetic units are designed in the FCU.

As listed out in Table I, the appropriate data types provided

by HLS are applied to different intermediate data by balancing

detection accuracy and resource consumption. W and I in the

table represent the word length in bits and the number of bits

above the decimal point. ap_ufixed<> refers to the unsigned

fixed point.
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TABLE I
DATA STRUCTURE FOR FAST-MGD IN FPGA IMPLEMENTATIONS

Fourth, it needs to be emphasized that the proposed FPGA-

based hardware architecture does not depend on any specific

underlying physical devices of FPGA and vendor-provided IP

cores. In addition, the framework supports HSIs with different

bands and sizes. The parameters of each unit, the number of

fused bands Q, the size of SE ra, the radius of mean filter rb,

the iteration k, and the smoothness of the guided filtering ǫ in

HLS can be adjusted to adapt to various complicated scenarios.

This parameter-configurable architecture improves scalability

and portability of the whole structure.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section is organized as follows. The hyperspectral

datasets used for different scenes in the experiments are first

introduced in Section VI-A. Section VI-B describes the param-

eter settings of the detection algorithms used for comparison and

the proposed Fast-MGD. Section VI-C evaluates the detection

accuracy of the software version using MATLAB of the pro-

posed Fast-MGD by comparing the widely used detectors men-

tioned above. The effects of morphological reconstruction on

feature localization and self-guided filter for feature clustering

in Fast-MGD are further analyzed in Section VI-D. Section VI-E

shows a comparison of the proposed hardware implementation

evaluated on a Xilinx Virtex7 FPGA with the corresponding

software version.

A. HSI Dataset

1) San Diego Dataset: The first dataset used in the exper-

iments has been widely applied for target detection, which is

captured by the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) sensor over the San Diego airport area, CA, USA.

The original image contains 100 × 100 pixels with 224 bands,

ranging from 400 to 2500 nm. Due to dense water vapor and

atmospheric influence, 189 bands are retained after removing the

noise bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224).

Three aircraft are treated as the anomaly objects that need to

be detected in the image. The sample image and the reference

detection map is shown in Fig. 10(a), respectively.

2) Urban-Beach Dataset: The Urban-Beach database col-

lected by the AVIRIS Sensor was accessible on the website

(http://xudongkang.weebly.com). The visualization images and

corresponding maps are shown in Fig. 10(b)–(e), respectively.

These scenes consist of 100 × 100 [see Fig. 10(b)–(d)] or 150

× 150 [see Fig. 10(e)] pixels with different bands, in which the

noise bands have been removed. The different spatial resolutions

of these scenes are described in Table IV.

3) EI Segundo DataSet: The third dataset collected by the

AVIRIS Sensor describes an area that is composed of oil refinery,

several residential areas, parks, and a school zone in EI Segundo,

CA, USA, which includes 224 spectral channels in the range of

366–2469 nm. The picture contains 2048 anomalous pixels with

a spatial size of 250 × 300 and a ground resolution of 7.1 m.

The visualization images and corresponding maps are shown in

Fig. 10(f), respectively.

B. Comparison of Methods and Parameter Settings

The detection accuracy of different algorithms can be eval-

uated by the receiver operating characteristic (ROC) through

commonly used measurement [41]. Meanwhile, in order to fur-

ther quantify the magnitude of the detectors’ accuracy, the area

under a ROC curve is adopted, being referred to as the area under

the curve (AUC) [42]. As shown in Fig. 11, the true positive rate

(TPR) on the vertical axis is defined as the proportion of correct

positive results in all positive samples when a set of threshold (T)

for the detection map is determined. Similarly, the false positive

rate (FPR) on the horizontal axis indicates the proportion of

false positive results in all negative samples. When the values

of FPR are identical, the increase in the TPR value makes the

AUC scores of TPR and FPR approaching the unity value,

indicating that the detection accuracy is positively correlated

with the performance of the algorithm. In this article, the AUC

score of FPR and T also functions as a critical indicator to reflect

the false alarm rate of the detection algorithm. Conversely, the

AUC score of FPR and T approaching to zero implies lower

false alarm rate, with which the detection accuracy is negatively

correlated.

To verify the advantageous performance of Fast-MGD in

hyperspectral anomaly detection, various detectors are involved

concerning the AED [16], RX [7], LRX [10], and CRD [13]

for comparison. In this case, we select the optimal parameters

for the specific sample image with regard to the corresponding

AUC scores of FPR and TPR. For the LRX algorithm, the proper

size of the sliding window should be selected under scrutiny to

achieve its optimal performance. For the CRD algorithm, Li and

Du confirmed that the regularization parameter λ being set to

106 can achieve the optimal detection accuracy. For the AED

algorithm, the specific parameter settings involved in the AED

algorithm have been described by its authors in detail.

For our proposed algorithm, the parameters Q, ra, k, and rb
used in the operations of feature location and feature clustering

can be adjustably configured to adapt different scenes, thereby

achieving optimal detection results. The AUC score of TPR

and FPR is applied to evaluate the objective performance of the

proposed algorithm by systematically varying the parameter set-

tings one by one. Fig. 12 reports the effects of parameter settings

on six real datasets, respectively. Q = 2 is adopted by finding a

tradeoff between detection accuracy and resource consumption.

While such a setting cannot achieve the best performance for

individual sample images, it is designed for ensuring stable and

acceptable performance for most of the tested HSIs. The size

of SE ra is set to 3 in Fig. 10(a) and (c), to 5 in Fig. 10(b),

(d), and (e), and to 9 in Fig. 10(f). A reasonably large value of

http://xudongkang.weebly.com
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Fig. 10. (a)–(f) Color composites of HSIs and detection maps of the compared methods. The last column shows the reference detection maps, which are obtained
by human labeling.

ra may enable the detection of certain false anomalous objects.

Similarly, a relatively small ra may result in failures to detect

a large area of anomalous information, imposing detrimental

impacts on the performance of the detection accuracy. Both of

the above cases attribute to the low detection accuracy and AUC

scores. However, a default setting k = 20 is applicable for all

sample images. The influence of k can be analyzed with more

detailed descriptions in Section VI-D. rb = 1 is set for most of

the sample images. Exceptionally, rb is adjusted to 5 for the San

Diego dataset to achieve better performance [see Fig. 10(a)].

C. Detection Results

For the San Diego dataset, the AUC score of TPR and FPR

is listed in Table II. The AUC score is 0.98432, which is much

higher than RX (0.94094), CRD (0.96263), and LRX (0.91430).

Compared with the AED method in which the AUC score of TPR

and FPR is ranked the first, the detection map of the Fast-MGD

method contains less background information in Fig. 10(a).

For Urban-Beach datasets, the proposed method in Table II

shows the best AUC scores of TPR and FPR in all scenes.

Compared with the RX, LRX, CRD, and AED, the detection

results obtained by Fast-MGD achieve better visual inspection,

as shown in Fig. 10(b)–(e). Most of the anomalies in urban

scenes [see Fig. 10(b)–(d)] are unable to be detected by the

LRX and CRD methods, and the lousy AUC scores of TPR and

FPR also support this observation. Nevertheless, these two meth-

ods display inadequate performance throughout with respect to

computing time, not to mention the inconvenience induced in

optimal settings of the inner and outer window. As shown in

Fig. 11(e), LRX performs well on the ROC curve of this dataset,

yet it is worth noting that this method cannot have satisfying

detection results on all HSIs. The RX method is merely suitable

for sample images with simple background distribution and for

large area anomalies, which is unsuitable for complex HSIs, as

shown in Fig. 10(c).

For the EI Segundo dataset, the detection maps are shown in

Fig. 10(f). By visualizing the final detection maps, we notice

that the proposed Fast-MGD shows excellent performance on

anomaly detection compared to other methods, whereby most

of the anomalies in the sample image can be clearly observed.

The AUC score of TPR and FPR shown in Table II further

demonstrates the superiority our approach. Although the AUC

score of TPR and FPR of RX is considerable, it does not perform

well on visual effects. In addition, we also compare the ROC

curves of different methods on the EI Segundo dataset. As
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Fig. 11. ROC curves of the compared methods.

Fig. 12. Parameter sensitivity analysis for parameter ra, rb, and Q.

TABLE II
EVALUATION AUC SCORES OF (TPR AND FPR) OBTAINED BY THE FAST-MGD

(MATLAB), FAST-MGD (FPGA), RX, AED, CRD, AND LRX

TABLE III
EVALUATION AUC SCORES OF FPR AND T OBTAINED BY THE

FAST-MGD (MATLAB), FAST-MGD (FPGA), AND AED

shown in Fig. 11(f), the proposed method exhibits higher TPRs

regardless of the FPR fluctuating between 0 and 1.

The AED method comes the second out of the proposed

methods in terms of the average AUC scores of TPR and FPR.

As shown in Fig. 11(a), (c), and (d), the ROC curves of AED

are close to that of the Fast-MGD in these three scenarios. In

order to further compare the performance of AED with that of

Fast-MGD, AUC scores of FPR and T are shown in Table III.

It can be noticed that our algorithm has a lower false alarm

rate while remaining higher detection accuracy. Furthermore, we

emphasize that the proposed Fast-MGD is a hardware-friendly

algorithm featured with lower complexity.

D. Component Analysis

The opening/closing reconstruction performed in feature lo-

calization can effectively describe the spatial information of

HSIs, which requires repeated combining of dilation/erosion and
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Fig. 13. Effect of the number of iterations on each dataset.

pointwise minimum/maximum operations until idempotency is

reached. However, a great many of uncontrollable iterations

sometimes may reach hundreds of times, of whose intricacies

not only require a lot of time to tackle with, but also bring unbe-

lievably high computational costs in hardware implementations.

As shown in Fig. 13, we analyze the impact of the number

of iterations imposed on the AUC scores of TPR and FPR on

each dataset while keeping other parameters remain optimal.

It is surprising that the continuous increase in the number of

iterations did not induce correlated rise in the curve of AUC;

instead, it continued to rise first and then tended to stabilize. For

example, the AUC score obtained through the proposed Fast-

MGD is 0.99776 in Fig. 10(e) when the number of iterations

increases to 20. Subsequently, the continuous increase in the

iterations does not bring any evident improvements in the AUC

scores, upon which the number of iterations can be set to a

fixed value for all images without considering idempotency. This

operation can significantly reduce the computational costs and

memory consumption at the expense of a merely small loss in

detection accuracy. However, we can observe that the AUC score

of a dataset [see Fig. 10(a)] is the highest (0.98762) when the

iterations is 5. It is worth noting that too small iterations will

lead to a high false alarm rate. For example, when k = 5, the

AUC score of FPR and T is as high as 0.0410 for a dataset. A

large number of experiments have found that a default setting

k = 20 can enable most tested HSIs to perform well in false

alarm rate and detection accuracy.

We also analyze the influence of the simplified self-guided

filtering over additional experiments on each dataset. As shown

in Fig. 14, we calculated the AUC scores of TPR and FPR on

Fast-MGD with simplified self-guided filtering, with self-guided

filtering, and without self-guided filtering, respectively. The

third column clearly shows that self-guided filtering significantly

improves the detection accuracy. Moreover, the beneficial ad-

vantages of using the spatial correlation amidst adjacent pixels

of HSIs for anomaly detection are, therefore, validated. By

observing the first and second columns of the histogram, it can

be concluded that the negative impact of the mean of a and b
on detection performance can be almost ignored compared with

the reduction of memory consumption.

Fig. 14. AUC scores of FPR and TPR on Fast-MGD with simplified self-
guided filtering, with self-guided filtering, and without the self-guided filtering.

E. FPGA Implementation

1) Comparison of Detection Accuracy Performance: It

should be pointed out that the parameter settings in the FPGA

implementation of Fast-MGD are identical with that in the soft-

ware. As shown in Fig. 10, the proposed FPGA implementation

shares almost the same visual effects with the software version.

In Fig. 11, the ROC curves of hardware implementation are

depicted. It is noticeable that the ROC curves of all scenes are

very close to that of the software, which is attributed to the

reasonably sound setting of intermediate data types in the FCU.

Hence, the proposed deep pipelined hardware architecture is

proven to be far more than satisfactory.

2) Performance Evaluation: A Virtex7 XC7VX690 T FPGA

used to evaluate the proposed Fast-MGD hardware architecture

contains 433 200 LUTs, 174 200 LUTRAMs, 866 400 FFs, 1470

Block RAMs, and 3600 DSPs. Table IV shows the resource

utilization corresponding to Fast-MGD for diverse images with

different sizes and resolutions using Vivado 2018.3. Optimal

configurable parameters are set for different HSIs to ensure

excellent detection accuracy.

As illustrated in Table IV, a constant number of DSPs are

mainly used to implement the multiplication of Stage 2, Stage

3, and Stage 6 in FCU. Most FIFOs of depth 1 are inferred

as LUTs and FFs. The consumption of BRAMs is mainly due

to COPU in the sharing architecture. The number of LUTs,

LUTRAMs, FFs, and BRAMs is related to the image size and

the setting of configurable parameters. Also, Table V lists out the

resource summary of dilation using Vivado HLS for fixed image

size (100 ×100) and varied ra to further quantitatively evaluate

the designed sharing architecture. The estimation of the fastest

achievable clock frequency is 3.310 ns. The number of LUTs,

FFs, and BRAMs increases linearly with ra. In summary, our

cost-effective hardware designing philosophy using HLS aims at

supporting HSIs with different sizes and spectral bands through

adjustment of several configurable parameters, including Q, k,

ra, and rb.

Three different platforms, including C++ using OpenMP,

MATLAB, and FPGA for the above six datasets, are adopted in
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TABLE IV
SUMMARY OF RESOURCE UTILIZATION FOR THE FPGA-BASED IMPLEMENTATION IN HSIS WITH DIFFERENT SPATIAL RESOLUTIONS AND SPECTRAL BANDS

TABLE V
MEASURED PERFORMANCE OF DILATION USING 100 × 100 IMAGES

TABLE VI
PROCESSING TIME MEASURED FOR FAST-MGD METHODS IN MATLAB, C++,

AND FPGA IMPLEMENTATIONS

our experiments. The code of software version using MATLAB

R2017b and Visual studio 2017 is executed on the Window 10

operation system equipped with the Intel Core (TM) quad CPU

@2.50 GHz and 8-GB main memory. The hardware architec-

ture is implemented by using Vivado HLS 2018.3. The clock

frequency of the Virtex7 FPGA is set at 200 MHz. As shown in

Table VI, the processing time of FPGA-based implementation

achieved a speedup of more than 161 times higher than that of

the MATLAB and more than 72 times higher than that of C++.

It must be emphasized that the processing time achieved by the

FPGA implementation of Fast-MGD is strictly in real time for all

the above scenarios. In specific, the scanning time of cross-track

line in AVIRIS being referred to as a push-broom instrument

is quite fast (8.3 ms to collect 512 full-pixel vectors) [43],

indicating that the processing time of the scene must be limited

within 0.16 s (in Fig. 10(e) and (f), the values are the exceptional

0.36 and 1.216) to achieve real-time performance thoroughly.

From Table VI, it can be observed that the processing times are

lower than 8 ms, including the load time and the data transfer

time from the CPU to FPGA device.

In summary, the proposed hardware implementation char-

acterized by low resource utilization and real-time process-

ing speed displays its great advantages in on-board anomaly

detection.

VII. CONCLUSION

Most of the existing hyperspectral anomaly detection methods

have so far met with limited success due to high computational

complexity, to which their inability in on-board implementation

is, therefore, proven. In this article, a low-complexity anomaly

detection algorithm and its corresponding cost-effective hard-

ware architecture on FPGA are proposed. Experimental results

on several real HSIs further verified the superiority of the

Fast-MGD and its implementation with respect to computa-

tional complexity, processing speed, detection accuracy, as well

as resource consumption, thereby validating its suitability for

on-board application.

Despite the aforementioned advantages of our method, certain

shortcomings should be pointed out concerning related parame-

ter settings, which may impose encumbrance on its application.

Our future research interests will focus on the adaptive parameter

determination techniques, paving way for the improvement in

the generality and robustness of our model.
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