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Abstract—Orthogonal frequency-division multiplexing with
cyclic prefix enables low-cost frequency-domain mitigation of
multipath distortion. However, to determine the equalizer coeffi-
cients, knowledge of the channel frequency response is required.
While a straightforward approach is to measure the response
to a known pilot symbol sequence, existing literature reports
a significant performance gain when exploiting the frequency
correlation properties of the channel. Expressing this correlation
by the finite delay spread, we build a deterministic model param-
etrized by the channel impulse response and, based on this model,
derive the maximum-likelihood channel estimator. In addition to
being optimal (up to the modeling error), this estimator receives
an elegant time–frequency interpretation. As a result, it has a
significantly lower complexity than previously published methods.

Index Terms—Equalizers, orthogonal frequency-division multi-
plexing (OFDM).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has become increasingly popular during

the last decades, mainly because it provides a substantial
reduction in equalization complexity compared to classical
modulation techniques. Indeed, OFDM with cyclic prefix (CP)
can be equalized by a single low-rate complex multiplication
on each carrier. For this reason, it has been adopted in the
upcoming standards for high data-rate wireless networks, such
as ETSI Hiperlan II and IEEE 802.11a. These standards use
some “zero-carriers” for spectral shaping; for example, some
carriers are not used to allow smooth decaying of the spectral
power on the border of the bandwith. Hence, these standards
(and possible variations) will be referred to asspectral shaping
systems.

As opposed to former standards using OFDM modulation,
the new standards rely on coherent quadrature amplitude modu-
lation (QAM), and thus require channel estimation. Hence, the
complexity of channel estimation is of crucial importance, es-
pecially for time-varying channels, where it has to be performed
periodically or even continuously.

Existing literature recognizes that, due to the structure of
OFDM signals, the channel can be estimated by using the
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time and frequency correlation of the channel. This frequency
correlation has inspired three different approaches. Edfors
et al. [1] use the frequency correlation explicitly and derive
a linear minimum mean-squared error (LMMSE) estimator.
Using optimal rank reduction, they develop a low-complexity
algorithm which computes an approximated LMMSE es-
timator. This approximation is limiting the performance at
high signal-to-noise ratios (SNRs). Raleigh and Jones [2] link
the frequency correlation to the maximum delay spread and
estimate the channel from a part of the carriers only. These
carriers must be regularly spaced, which limits the application
of their method. Vandenameeleet al. [3] also use the length
of the channel impulse response explicitly and derive anad
hoc constrained least-squares estimator. Their method allows
nonregular spacing of the carriers, with a small limitation on
their number (there should be at least as many nonpilot carriers
as the length of the channel impulse response).

To avoid the shortcomings of aforementioned methods (high
SNR performance limitation for LMMSE, limitation on the
spacing/number of pilots for the others), we use the finite delay
spread of the channel and develop a low-complexity algorithm
capable of estimating the channel from part of the carriers only.
We introduce a deterministic model and derive the associated
maximum-likelihood (ML) estimator. This ML estimator can
be interpreted as a transformation from frequency domain to
time domain and back to frequency. The actual estimation is
done in the time domain, where the number of parameters (i.e.,
the channel length) is small. The estimator is obtained by min-
imizing a quadratic criterion, which, combined with the small
number of parameters, leads to a low-complexity algorithm.
As such, we have obtained an exact low-complexity solution.
We extend our approach to pilot symbol-assisted modulation
(PSAM) and link it to the constrained least squares (CLS)
solution proposed in [3]. It is worth noting that although our
estimator is based on a parametric model, the only parameter
is the channel length (by channel, we mean the concatenation
of the front-end filters and the propagation channel). The only
condition is then that the global channel length (which can
be significantly longer than the propagation channel itself)
has to be smaller than this one parameter. As a result, the
method is rather robust against channel modeling errors, the
main disadvantage being that the length parameter of the ML
estimator can be rather large, leading to a loss in performance.

After introducing the OFDM system model in Section II,
we present the statistical model and channel estimator in
Section III, along with the extension to PSAM and the link
with the CLS estimator. The time–frequency interpretation
of the ML estimator is given, and the benefits provided by a
combined PSAM/decision-feedback (DF) system are indicated.
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Fig. 1. OFDM system.

Section IV analyzes the complexity of the algorithm, while
Section V presents and discusses simulation results for indoor
PSAM and spectral-shaping systems.

II. SYSTEM MODEL

A. Notations

Normal letters represent scalar quantities, boldface represents
vectors, and boldface capitals represent matrices. Slanted (resp.
roman) letters indicate time (resp. frequency) domain quanti-
ties. , and , respectively, mean transpose, conju-
gate transpose, and Moore–Penrose pseudoinverse of. If
is full column rank, then and

is the orthogonal projection onto the space
spanned by the columns of.

B. Transmission Model and Training Setup

OFDM modulation consists in multiplexing QAM data sym-
bols over a large number of orthogonal carriers. To this end,
the QAM symbols of an OFDM symbol are passed through
an inverse fast Fourier transform (IFFT). In the presence of
a time-dispersive channel, a CP is prepended to each OFDM
symbol to preserve orthogonality between carriers and elimi-
nate intersymbol interference (ISI) (for a global overview, see
[4]).

We consider a single user/single channel communication
setup (see Fig. 1), with OFDM modulation, described by

, where denotes Hadamard (i.e., ele-
ment-wise) product of the columns of with . For a single
OFDM symbol, it boils down to

(1)

Notations in the model are detailed here: The QAM
source is written as , where

is an OFDM symbol. denotes
the number of carriers, is a time index (often omitted
for clarity), and is the number of OFDM symbols.
After IFFT and CP insertion, the transmitted signal is

, where
is the size of the prefix and .

For a channel , where , the re-
ceived vector is, after prefix removal and FFT, ,
where is the FFT of the channel. Equa-
tion (1) further takes the additive (possibly colored) Gaussian
noise into account. Equalization is then done by a complex di-
vision on each carrier.

Two types of training (pure PSAM and spectral-shaping sys-
tems) are considered. In classical training-based estimation, all

components of are known. Spectral-based systems use a minor
modification of the classical training, zeroing a small number of
carriers (named zero carriers) at the edges and in the middle of
the band used. PSAM, on the other hand, bases its channel esti-
mation on a small fraction of the carriers, usually evenly spaced
on the whole band, and possibly on varying positions from one
OFDM symbol to the next, which allows adapting the channel
estimate continuously at the cost of a small overhead. Note that
PSAM and spectral shaping are usually combined in bandlim-
ited systems.

III. ML E STIMATION

The ML estimator is first derived, based on a reduced-order
model. It is then extended to PSAM, linked to the CLS method,
and interpreted in terms of time–frequency transformations. Fi-
nally, it is also applied on a combination of PSAM and DF esti-
mation.

A. Reduced-Order Model

As (1) shows, the OFDM system can be described as a set of
parallel Gaussian channels. Because the time-domain channel
has a finite length (smaller than the prefix length in a well-de-
signed OFDM system), these parallel channels feature corre-
lated attenuations. Considering, without loss of generality,

, the model expressed in (1) becomes

(2)

where is a FFT matrix. The vector is a Gaussian
random variable with mean and covariance .
However, the signal part of is contained only in the space
spanned by its mean. Separating the “signal subspace” from the
“noise-only subspace,” the received signal can be rewritten as

(3)

Relying on this, the reduced space signal is defined as

(4)

where is a zero-mean Gaussian noise of covariance
. If , is a white Gaussian noise of

covariance matrix . The reduced space (Gaussian) signal
has a log-likelihood function expressed by

(5)
Maximizing this log-likelihood with respect to leads to the
ML estimator given by

(6)

where denotes the orthogonal projection on the column
space of . Before performing the ML estimation, must
be determined, and we denote its estimation as.

B. Extensions to PSAM and Spectral-Shaping Systems

In the case of PSAM and spectral-shaping systems, not all
symbols in are known, and only a subset of measured
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carriers can be used. Only this part of the signal (noted) will
be used, and the reduced space signal (4) becomes

(7)

where has been decomposed as

(8)

and where measured pilots have been grouped together. Un-
grouped pilots can be handled by straightforward permutations
in columns and lines of the vectors and matrices.

The ML estimator for spectral-shaping systems, corre-
sponding to (7), is (only the measured carriers
are estimated, as they are the only ones carrying data) and, for
PSAM, it is (the whole channel is estimated).

C. Link With CLS

Vandenameeleet al. [3] derived a CLS estimator by ex-
pressing the reduced channel length in the following equation:

(9)

where and are parts of an IFFT matrix. From this equa-
tion, we can write a constraint equation as

(10)

leading to the CLS solution

(11)

where is an orthogonal projection matrix (Hermitian and
such that ) which can be further simplified to

. However, finding an explicit expression foris not
straightforward.

When (otherwise is not full rank and
the CLS solution is not defined) and taking into account that

, the following equations show that
. Indeed, the combined projection onand is shown

to be a projection on

(12)

Hence, the two spaces are the same and the estimators are
identical.

D. Time–Frequency Interpretation

As , the channel estimator is the
cascade of a partial IFFT, a weighting matrix, and a partial FFT.
Indeed, if all pilots are present, or if they are regularly spaced,
this boils down to going from the frequency domain to the time

Fig. 2. Comb spectrum forN =N = 8.

domain, forcing the time channel estimator to be of length,
and going back to the frequency domain [2]. For an arbitrary
number of pilots ( ), the same global scheme is applicable,
with the following modifications.

• The initial IFFT is partial, as only part of the carriers are
measured.

• The nontrivial part of the channel impulse response is
weighted by .

E. Combination of PSAM and DF

The classical ML solution can be applied to a combination
of PSAM and DF. Indeed, suppose we use the pilot symbols
along with decisions taken on the other carriers, then
remains valid, with a given , which leads to .
Hence, if the designer can afford the increment in complexity,
the combination of PSAM and DF is desirable. Indeed, Fig. 2
shows that a difference in performance of 2–3 dB can be ex-
pected between an all-pilot system (which is equivalent to com-
bined PSAM/DF if decision errors are neglected) and a PSAM
system with eight pilot carriers.

IV. COMPLEXITY

The complexity of the ML estimator is significantly lower
than [1], both for spectral shaping and PSAM systems. This
low complexity relies on the time–frequency interpretation and
pruning of the (I)FFTs.

A. Spectral-Shaping Systems

By construction, is a low-rank matrix (of rank ).
Taking its Hermiticity into account, it can be written as

(13)

where is a matrix of size that can be precomputed.
Hence, the complexity for computing the estimator is

complex multiplications for the global ML estimator. This
complexity is about the same as for [1]; however, while [1] uses
an approximation, (13) is exact.
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Fig. 3. FFT-based approaches outperform the SVD-based approaches by an
order of magnitude for spectral-shaping systems.

Fig. 4. FFT-based approaches outperform the SVD-based approaches by an
order of magnitude for PSAM-based systems.

Further complexity reduction can be obtained by using the
time–frequency interpretation. Indeed, the projection operation
can be expressed by the cascade of two partial FFTs, weighted
by an matrix (if all carriers are used as pilots, it is an
identity matrix). With a radix-4 implementation of the FFT, the
complete estimator would require
complex multiplications. Furthermore, some additional com-
plexity gain can be achieved by using FFT pruning or transform
decomposition [5]. Such techniques lead to a significant gain for
the Fourier transforms. However, the last term (), due to the
weighting matrix ( ), remains unchanged (Figs. 3
and 4).

B. PSAM

When using PSAM, a comb spectrum (Fig. 5) has to be mea-
sured, and only the teeth of this comb are used for the FFTs. This

particular case has been studied by He and Torkelson [6]. In this
case, the DFT can be computed with

complex multiplications, which represents a large gain for
a large number of carriers.

Figs. 3 and 4 show complexity evaluations of the four algo-
rithmic approaches:

• singular value decomposition (SVD)-based approach of
[1];

• frequency-time approach with plain FFTs;
• frequency-time approach with FFT pruning like Sorensen

[5];
• frequency-time approach with FFT optimized for a comb

spectrum (He and Torkelson [6]).
The complexity for FFT-based solutions is much lower than

for the SVD-based approach, both for spectral shaping and
PSAM systems. Futhermore, simulations (Section V) show
that the ML algorithm can work with a significantly smaller

than the LMMSE, which results in a still larger gain than
appears in Fig. 3.

For a relatively large number of pilot carriers, the main con-
tribution to the complexity is due to the weighting matrix (see
the curves in Figs. 3 and 4). However, for pure PSAM with
regularly spaced pilot carriers, it can easily be shown that the
weighting matrix is proportional to the identity
matrix, and complexity is even lower. This special case of our
algorithm is the frequency correlation part of the algorithm de-
veloped by Raleigh and Jones [2].

V. SIMULATION RESULTS

To evaluate the performances of the ML estimator, and com-
pare it with the LMMSE algorithm, we simulate a spectral-
shaping system and a PSAM-based system in an indoor radio
channel.

Two OFDM schemes with 64 and 256 carriers are consid-
ered, both with uncoded quaternary phase-shift keying (QPSK)
modulated carriers and a CP of 16. The 64-carriers scheme is
simulated with the Hiperlan II zero carriers, and the 256 car-
riers with PSAM. The data rate is 25 Msamples/s over the air
(i.e., including the CP) with a carrier frequency of 5.6 GHz.

We consider a collection of 120 indoor office-like channels.
The channel is modeled by means of a ray-tracing technique,
considering 20 emitter locations and six receiver locations.
From the ray-tracing results, it appears that the channel length
is of the order of four to six, and can be modeled as having an
exponentially decaying power delay profile with normalized
time constant two (for simulation of [1]). Note that in these
simulations, the channel was not formed exactly by six rays
that were sample-spaced, but rather by about two-three rays,
nonsample-spaced, and then resampled. The influence of
the front-end filters, which significantly lengthen the overall
channel, was not taken into account, except in Fig. 6.

For the spectral shaping system, the bit-error rate (BER) is
simulated for both LMMSE [1] and ML estimators and for
ranging from 4 to 16. BER based on exact channel knowledge
and raw measurements are evaluated for comparison. Simula-
tion results (Fig. 7) clearly show that the LMMSE suffers from
a threshold effect at high SNR, as reported in [1]. To obtain sim-
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Fig. 5. ML estimator behaves better than LMMSE for low-dimension spaces.

Fig. 6. ML estimator behaves better than LMMSE for PSAM with a small
number of pilots.

Fig. 7. ML estimator with an expected channel length of 16 still enhances the
reception by 2 dB with real front-end filters and nonsample-spaced channels.

ilar performances for both algorithms, must be two to four
times larger for LMMSE than for ML.

For the PSAM-based system, we have evaluated both estima-
tors with 8 and 32 tones and (Fig. 2). In this simulation,
“raw measurements” mean measurements on all pilots. As for
the spectral-shaping system, the flooring effect of the LMMSE
estimator is essentially limiting its effectiveness at high SNRs.
Noteworthy, the ML estimator based on eight over 256 tones
gives similar performance as raw measurements on all carriers.

As with all parametric model-based estimators, our estimator
can have problems in the presence of modeling errors. This has
already been partially highlighted in the previous figures, which
were based on a nonsample-spaced channel, and with different
expected lengths of channel. To further assess our methodology,
we have simulated a “real” front-end filter, as designed in [7],
consisting of a Butterworth filter, which is an equivalent base-
band tenth-order low-pass infinite impulse response (IIR) filter
with 3 dB at 10 MHz, maximal passband ripple dB
(between 0–8.3 MHz), and a stopband suppression of 40 dB
( 20 MHz). Obviously, for such a long filter, the equivalent
channel length is much larger than four to six taps, and we have
chosen an expected length equal to the CP length (16). The sim-
ulations have been conducted for a QAM-64 constellation and a
sampling rate of 80 MHz, with perfect channel knowledge, with
our ML channel estimator and with the classical least-squares
(LS) estimator. Simulations show that, even with such a long
front-end filter, there is still about 2 dB to be gained with the
ML estimator.

VI. CONCLUSION

A low-complexity ML OFDM channel estimator is proposed.
It relies on a deterministic model (i.e., no statistical information
on the channel) that takes the finite delay spread of the channel
into account, which is linked to the frequency correlation of the
channel. Our ML estimator can be interpreted as a translation of
some initial estimate of the frequency response of the channel
to the time domain, followed by a linear transformation of this
channel impulse response, and retranslation to the frequency
domain. This interpretation leads to low-complexity algorithms,
derived by combining the partial (I)FFTs involved and a small
weighting matrix. Comb spectrum due to PSAM allows further
pruning of the FFTs.

Based on theoretical grounds that shed a new light on former
solutions [2], [3], the proposed algorithms have a significantly
lower complexity than the low-rank approximation of the
LMMSE estimator [1], while being optimal, up to possible
modeling errors.
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