
A Low Complexity Motion Compensated
Frame Interpolation Method

Jiefu Zhai1*, Keman Yu2, Jiang Li2, and Shipeng Li2
1Institute of Computing, Chinese Academy of Sciences, Beijing, China, jeff@ict.ac.cn

2Internet Media Group, Microsoft Research Asia, Beijing, China, {kmyu; jiangli; spli}@microsoft.com

Abstract—In low bit-rate video communication, temporal sub-
sampling is usually used due to limited available bandwidth.
Motion compensated frame interpolation (MCFI) techniques
are often employed in the decoder to restore the original frame
rate and enhance the temporal quality. In this paper, we
propose a low-complexity and high efficiency MCFI method. It
first examines the motion vectors embedded in the bit-stream,
then carries out overlapped block bi-directional motion
estimation on those blocks whose embedded motion vectors are
regarded as not accurate enough. Finally, it utilizes motion
vector post-processing and overlapped block motion
compensation to generate interpolated frames and further
reduce blocking artifacts. Experimental results show that the
proposed algorithm outperforms other methods in both PSNR
and visual performance, while its complexity is also lower than
other methods.

I. INTRODUCTION
Low bit-rate video compression techniques play an important

role in multi-user videoconferencing applications. When people
deliver real-time video contents over the Internet, they often use
temporal sub-sampling as well as frame size reduction in order to
decrease the bandwidth requirement. To restore the original frame
rate and improve the temporal quality, people usually reconstruct
the skipped frames using interpolation in the decoder. How to
accurately reconstruct the skipped frames using interpolation
without introducing significant computational overhead is a key
challenge.

Some simple interpolation methods such as frame repetition and
frame averaging are often used because of their simplicity and low
complexity. However, these simple methods might introduce
annoying jerky or blurry artifacts to which human eyes are very
sensitive. In recent years, there has been a special interest in motion
compensated frame interpolation (MCFI), which takes motion into
account to improve interpolation performance. Although MCFI
techniques were formerly used to convert frame rate between PAL,
NTSC and HDTV, many MCFI methods have been proposed for
video streaming and conferencing applications [1]-[4].

General MCFI methods are based on the assumption that
motion in video is smooth, continuous, and translational. This
assumption is true for most video sequences, especially for
sequences with relatively small motions. The general approach is to

do motion estimation on the previous frame and the current frame,
and then generate the interpolated frame by averaging the pixels in
the previous frame and the current frame pointed by the half of
obtained motion vectors. Consequently, most research efforts aim to
improve the accuracy of estimated motion vectors. Because residual
information of the skipped frames is unavailable, the more accurate
the motion vectors are, the better the result that can be achieved.

Block-based motion estimation and pixel-wise motion
estimation are the two main categories of motion estimation
methods. In general, pixel-wise motion estimation can attain
accurate motion fields, but needs a substantial amount of
computation. Thus, it is often used in off-line MCFI rather than
real-time processing. In contrast, block matching algorithms (BMA)
can be efficiently implemented and provide good performance.
Most MCFI methods are based on BMA. A comparison between
pixel-wise and block based motion estimation for MCFI is
discussed in [9].

It is well known in video coding that using a smaller block size
might reduce the energy of residual images and consequently
improve the coding efficiency. Although small block sizes, such as
8×8, 4×4 have been widely used in the state-of-art video coding
standards such as H.264 [5], to our knowledge, by far most existing
MCFI methods use a block size of 16×16 in motion estimation. The
reason is that using small block sizes in general BMA methods
usually results in motion vectors with minimized residual energy
rather than true motion vectors. In our study, we found that using an
appropriate motion estimation method together with a small block
size works better than existing methods.

For real-time video applications, reducing the complexity of a
computing process is significant. If the motion vectors embedded in
a bit-stream can be utilized, the computations of motion estimation
can be significantly reduced. However, some embedded motion
vectors might bring serious artifacts if they are used directly. A
motion vector post-processing method is proposed in [7] to smooth
the motion field and improve the subjective perception, but some
artifacts still remain.

In this paper, we propose a low-complexity and high efficiency
MCFI method. We first examine the motion vectors embedded in
the bit-stream, and then carry out overlapped block bi-directional
motion estimation on those blocks whose embedded motion vector
is regarded as not accurate enough. Finally, we utilize motion vector
post-processing and overlapped block motion compensation to
generate interpolated frames and further reduce blocking artifacts.

* The work presented in this paper was carried out in Microsoft
Research Asia.

49270-7803-8834-8/05/$20.00 ©2005 IEEE.

The rest of the paper is organized as follows. In Section II, we
describe the proposed method in details. Experiment results are
given in Section III. We conclude our work in Section IV.

II. THE PROPOSED METHOD
The proposed method comprises several steps, as shown in Fig.

1. First, the motion vectors embedded in a bit-stream are classified
into two groups: one group contains those motion vectors that are
considered to represent true motion, thus could be directly used in
interpolation; the other group contains “bad” motion vectors. Then,
overlapped block bi-directional motion estimation (OBBME) is
carried out on the second group. After that, a motion vector post-
processing technique is used to smooth the motion field. Finally,
overlapped block motion compensation (OBMC) is employed to
generate the interpolated frame.

Figure 1. A block diagram of the proposed MCFI algorithm.

A. Motion Vector Classification
Generally, for most sequences, the majority of motion vectors

embedded in the bit-stream are close to the true motion. However,
some other embedded motion vectors may result in serious blocky
artifacts if they are directly used in frame interpolation, because
motion vectors embedded in the bit-stream are obtained for the
purpose of minimizing rate-distortion cost.

In the video coding literature, the sum of absolute differences
(SAD) is used to detect zero motion; while in the error concealment
literature, people use the boundary absolute difference (BAD) to
measure the accuracy of motion compensation [8]. Unfortunately,
neither SAD nor BAD is efficient in picking out bad motion vectors.
SAD often fails to point out true motion when local variation is
small, while BAD often fails when local variation is large. In
experiments, we found that combination of these two measurements
can provide a better performance.

1−nF inF nF

1B
2B

3B

4B
2

4BMV

2
4BMV

−

Figure 2. The judgement of the correctness of the motion vector.

As shown in Fig. 2, there are three frames in the discussion.
They are the previous frame, the interpolated frame and the current
frame. For an 8×8 block in the interpolated frame, e.g. block B1, we
firstly get the motion vector of the block at the same location in
current frame (Block B4 in Fig. 2). Then following the trajectory
pointed by MVB4/2, we can obtain two blocks, B2 and B3. If MVB4/2
is close to the true motion of block B1, the SAD between B2 and B3
is expected to be small, and likewise the BAD between B2 and
pixels surrounding B3 is also small.

Assume that T1, T2, T3 and T4 are four thresholds and T3 > T1,
T4 > T2. We determine whether a motion vector is good or bad as
follows.

 Calculate SAD and BAD
 If SAD < T1 or BAD < T2
 MV is considered to be good
 Else if SAD < T3 and BAD < T4
 MV is considered to be good
 Else
 MV is considered to be bad

The percentages of blocks that need motion estimation are listed
in Table I. We can see that only a small fraction of the blocks need
motion estimation. The computational complexity is greatly
reduced by motion vector classification.

TABLE I. PERCENTAGE OF BLOCKS THAT NEED MOTION ESTIMATION

Sequence Percentage
Foreman 24.2%
Coastguard 18.5%
Carphone 27.1%
Mother 3.0%
Salesman 2.7%
Mobile 63.0%
Clair 2.0%

In the above discussion, we use embedded motion vectors at the
8×8 level. In some video standards such as H.264, block sizes vary
from 16×16 to 4×4. A straightforward way to obtain a motion
vector for each 8×8 block is “splitting and merging”. For block
sizes larger than 8×8 (such as 16×16, 8×16 and 16×8), each
constituent 8×8 block may have the same motion vector as that of
the original block. For any 8×8 block which has been split into
several sub-blocks, we regard the motion vector of the 8×8 block as
the average of the motion vectors of all its sub-blocks. In this way,
the proposed MCFI scheme can be applied to a bit-stream that is
coded by almost any video coding standard.

B. Overlapped Block Bi-directional Motion Estimation
As we have described before, embedded motion vectors do not

always represent the true motion. For bad motion vectors we
should perform true motion estimation for the corresponding
blocks.

An 8×8 block size is used in our scheme instead of 16×16,
which is widely used in other MCFI schemes. Using a smaller
block size leads to a denser motion field and consequently brings
two advantages: i) The neighboring motion vectors are more
highly correlated thus the motion vector prediction will be more
effective. ii) Better motion estimation especially at the boundary of
moving object is obtained if the motion vector is accurate. Both
advantages will be discussed more specifically below.

First, we examine the motion vectors of temporal and spatial
neighboring blocks and select the one with minimal distortion as the

4928

initial search point as done in [1] and [2]. Then, we perform motion
search from the initial point, as illustrated in Fig. 3. Although a
small block size leads to a denser motion field, it is also likely to
obtain inaccurate motion vectors if common BMA methods are
used. The reason is that when the block size becomes small, motion
search tends to fall into a local minimum point.

1−nF inF nF

1B
2B

3B

Figure 3. Overlapped block bi-directional motion estimation.

To overcome this problem, we use overlapped block motion
estimation together with bi-directional motion estimation. For each
8×8 block in the interpolated frame, we firstly enlarge the block size
to 12×12, and then use the enlarged block to do bi-directional
motion estimation and give the computed motion vector to the 8×8
block. A 12×12 block size is used because it provides a good
tradeoff between accuracy and complexity. If the enlarged block
size exceeds 12×12, the computational complexity rises
significantly without bringing obvious improvement to the accuracy
of motion vectors.

As shown in Fig. 3, the aim of bi-directional motion estimation
is to find the mv=(mvx, mvy) that minimizes:

(∑∑
= =

−
++++=

11

0

11

0
001),(

i j
yxn jmvyimvxFD

)),(00 jmvyimvxF yxn +−+−− (1)

where (x0, y0) is the coordinate of the top left point of the enlarged
block in the interpolated frame. Since the motion vector is searched
from the interpolated frame to the previous frame and the current
frame, it does not introduce holes or overlapped areas, as described
in [4]. Similar to general BMA, we can use fast motion estimation
algorithms to speed up the search process.

C. Motion Vector Post-processing and OBMC
It is observed that there are still a few bad motion vectors which

will bring annoying artifacts and degrade video quality significantly.
Most artifacts originate from discontinuities in the motion field. So
it is desirable to find a method to identify such motion vectors
which break the continuity of the motion field. Fig. 4 shows an
example of a single bad motion vector.

Figure 4. Motion vector discontinuity.

We calculate the variation of each motion vector and its
neighboring motion vectors. If the variation exceeds a certain
threshold, the motion vector is regarded as a single bad motion
vector and then vector median filtering is applied. Vector median

filtering [10] finds the one motion vector among the eight
neighboring motion vectors that minimize:

()∑
=

−+−

8

1i
iyyixx mvmvmvmv

 (2)
where (mvxi, mvyi) represents neighboring motion vectors.

After motion vector post-processing, OBMC [4] is finally
applied to generate the interpolated frame, as illustrated in Fig. 5.
Solid lines stand for original blocks and dashed lines stand for
enlarged blocks of size 12×12 which overlap with neighboring
blocks.

A

B CMV3

MV1 MV2

MV4

Figure 5. Overlapped block motion compensation

Suppose the top left four neighboring blocks have separate
motion vectors (mv1x, mv1y), (mv2x, mv2y), (mv3x, mv3y) and (mv4x,
mv4y). For a pixel Fin(x, y) in region A that overlaps four blocks,

∑
=

−
++=

4

1
1),(((),(

i
iyixnin mvymvxFyxF

8/)),(iyixn mvymvxF −−+ (3)

For region B which overlaps two blocks

∑
=

−
++=

4

3
1),(((),(

i
iyixnin mvymvxFyxF

4/)),(iyixn mvymvxF −−+ (4)

For region C

2/)),(),((),(1 yxnyxnin mvymvxFmvymvxFyxF −−+++=
− (5)

III. EXPERIMENTAL RESULTS
In this section, we present some experimental results to

demonstrate the performance of the proposed algorithm. We
implemented the methods described in [1], [2], and [3] and compare
the PSNR results and objective perception with our method. In
these experiments, raw sequences in QCIF format are encoded by
the state-of-art H.264 reference software JM 8.0 [6] with baseline
profile. The quantization parameter (QP) value is set to 25 and rate
control is disabled. Odd frames are skipped by the encoder and they
are interpolated by different MCFI methods respectively in the
decoder. PSNR results are given in Table II. It can be seen that the
proposed method outperforms other methods by 0.2~1.1 dB. For
sequences that possess moderate motion, the proposed method
obviously outperforms other methods. This is owed to using a small
block size and OBBME. For sequences that possess small motion,
the proposed method still slightly works better than other methods.

For subjective evaluation, four frames interpolated by different
methods and their local details are shown in Fig. 6. Results show
that our method provides better visual performance. In image (a), (b)
and (c), obvious artifacts can be seen near the man’s right eyebrow.
However, image (d) that was generated by the proposed method
does not suffer from such artifacts. This can be seen more clearly in
image (e), (f), (g), and (h) that represent local details.

4929

TABLE II. PSNR COMPARISON OF DIFFERENT METHODS

Sequence Method[1] Method[2] Method[3] Our method
Foreman 33.95 34.09 33.92 34.66

Coastguard 33.94 34.05 34.13 34.08
Carphone 33.35 33.42 33.20 33.63
Mother 37.75 37.79 37.87 38.01

Salesman 36.96 37.05 37.04 37.18
Mobile 29.97 30.46 30.24 31.38
Clair 41.38 41.42 41.45 41.65

 The proposed method possesses relatively low complexity. As
described before, the proposed method consists of three steps. The
motion vector classification step performs only one SAD and BAD
calculation for each block, which requires very little computational
cost. In the OBBME step, although the block size in motion search
is enlarged to 12×12, because only a fraction of blocks need motion
estimation after motion vector classification, the total computational
complexity is still lower than general BMA methods. The following
motion vector post-processing and OBMC are also low-complexity
calculations. We ran different methods on an Intel P3 600MHz
machine and compare their execution time in Table III. The
implementations are not optimized by SIMD instructions. Results
show that our method is obviously faster than other methods.

TABLE III. PROCESSING TIME (IN SECONDS) COMPARISON

Sequence Method[1] Method[2] Method[3] Our method
Foreman 45.5 22.7 25.1 16.4

Coastguard 48.4 24.4 26.1 18.0
Carphone 44.0 22.4 24.4 17.1
Mother 38.1 20.0 21.2 8.0

Salesman 45.0 20.3 24.2 11.3
Mobile 43.6 23.4 24.3 23.2
Clair 37.6 20.3 22.1 8.8

IV. CONCLUSIONS
In this paper, we propose a low-complexity motion

compensated frame interpolation method. It is composed of three
steps. First, it examines the accuracy of the motion vectors
embedded in the bit-stream. Second, it carries out overlapped block
bi-directional motion estimation on those blocks whose embedded
motion vector is regarded as not accurate enough. Finally, it utilizes
motion vector post-processing and overlapped block motion
compensation to generate interpolated frames and further reduce
blocking artifacts. Experimental results show that the proposed
algorithm not only outperforms other methods in both PSNR and
visual performance, but also possesses lower complexity compared
to other methods.

REFERENCES
[1] T. Chen, “Adaptive temporal interpolation using bidirectional motion

estimation and compensation”, IEEE International Conference of
Image Processing 2002, pp.313-316.

[2] K. Hilman, H.-W. Park, and Y.-M. Kim, “Using motion compensated
frame-rate conversion for the correction of 3:2 pulldown artifacts in
video sequences,” IEEE Trans. on CSVT, Vol. 10, No. 6, pp. 869-877,
Sep. 2000.

[3] Al-Mualla, M.E.,“Motion field interpolation for frame rate
conversion”, IEEE International Symposium on Circuits and Systems
2003, pp. II 652 -655.

[4] B.-T. Choi, S.-H. Lee, and S.-J. Ko, “New frame rate up-conversion
using bi-directional motion estimation,” IEEE Trans. on Consumer
Electronics, Aug. 2000, Vol. 46, No. 3, pp. 603-609.

[5] MPEG4-AVC/H.264 JVT document archives: ftp://ftp.imtc-
files.org/jvtexperts

[6] JVT reference software version 8.0:
http://bs.hhi.de/~suehring/tml/download/old_jm/

[7] G. Dane and T. Nguyen, "Motion vector processing for frame rate up
conversion", IEEE International Conference on Acoustics, Speech,
and Signal Processing, May, 2004, Montreal.

[8] W.M. Lam, A.R. Reibman, B. Liu, “Recovery of lost or erroneously
received motion vectors”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, April 1993, Minneapolis,
pp. 417-420.

[9] C.W. Tang, O.C. Au, “Comparison between block-based and pixel-
based temporal interpolation for video coding”, IEEE Int. Sym. on
Circuits & Systems, Vol. 4, pp.122-125, May 1998.

[10] J. Astola, P. Haavisto, Y. Neuvo, “Vector median Filters”,
Proceedings of the IEEE, April 1990, Vol. 78, Issue 4, pp. 678-689

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Visual comparison between different methods. Image
(a), (b), (c) and (d) illustrate the interpolated results of frame 57 of
the Carphone sequence using methods in [1], [2], [3] and ours
respectively. Image (e), (f), (g), and (h) show the local details of
(a), (b), (c), and (d) respectively.

4930

