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PAPER

A Low-Complexity Step-by-Step Decoding Algorithm for Binary
BCH Codes

Ching-Lung CHR†a), Szu-Lin SU†, Members, and Shao-Wei WU†, Nonmember

SUMMARY A low-complexity step-by-step decoding algorithm for
t-error-correcting binary Bose-Chaudhuri-Hocquenghem (BCH) codes is
proposed. Using logical analysis, we obtained a simple rule which can di-
rectly determine whether a bit in the received word is correct. The computa-
tional complexity of this decoder is less than the conventional step-by-step
decoding algorithm, since it reduces at least half of the matrix computations
and the most complex element in the conventional step-by-step decoder is
the “matrix-computing” element.
key words: BCH code, step-by-step decoding, matrix computation, com-
putational complexity

1. Introduction

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a
class of powerful multiple-error-correcting cyclic codes [1]–
[3]. One popular error-correcting decoding procedure for bi-
nary BCH codes includes three major steps [1, 2, 4, 5]:

1) Calculate the syndrome values S i, i = 1, 2, . . . , 2t from
the received word.

2) Determine the error location polynomial σ(x).
3) Find the roots of σ(x), and then correct errors.

Massey first presented another well-known decoding
method, the step-by-step decoding algorithm, for general
BCH codes [6]. The step-by-step decoding algorithm [6]–
[9] involves changing received symbols one at a time, check-
ing whether the weight of the error pattern has been reduced.
The common procedure of this method for decoding the bi-
nary BCH codes also consists of the following three steps:

a) Calculate the syndrome values S i, i = 1, 2, . . . , 2t from
the received word.

b) Temporarily change one received bit and then check
whether the number of errors has been reduced. If so,
the received bit is erroneous and shall be corrected.

c) Following the same procedure as step (b), check the re-
ceived bits one by one.

The step-by-step decoding method avoids calculating
the coefficients and searching for the roots of the error-
location polynomial, so it is may be less complex than the
standard algebraic method. The conventional step-by-step
decoding algorithm has not been widely employed for BCH
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codes with large error-correcting capability owing to its re-
quirement for calculation of the determinant of the syn-
drome matrix.

To achieve real-time decoding, [9] proposed a step-
by-step decoder for t-error-correcting binary BCH codes in
which a shift-syndrome generator is added and the matrix-
calculation circuit is realized by systolic array so that the av-
erage computation time for the real-time decoder is only two
logic-gate delays. This decoder has adopted the logic con-
cept in the comparison of the number of errors. However, it
has not tried to reduce the number of matrix-calculations.

This paper presents a modified step-by-step decoding
algorithm for t-error-correcting binary BCH codes. By us-
ing logical analysis, the determination whether a received
bit is erroneous in the step-by-step decoding algorithm as
proposed in [9] can be further simplified into general func-
tions. The new decoder requires only approximately half of
the matrix calculations as the decoder in [9]. Thus, the com-
putational complexity of this decoder is much less, since
the most complex element of the step-by-step decoder is the
“matrix-computing” element. Furthermore, the simple and
regular decoding procedure also makes the decoder suitable
in hardware realization.

The remainder of this paper is organized as follows.
Section 2 describes the binary BCH codes and the step-by-
step decoding algorithm proposed in [9]. Section 3 intro-
duces a new step-by-step decoding algorithm and compares
its calculation complexity with previous algorithm. Section
4 presents an example of the new decoder. Finally, Section
5 provides some concluding remarks.

2. Preliminaries

A t-error-correcting binary BCH code is capable of cor-
recting any combination of t or fewer errors in a block of
n = 2m − 1 digits. For any positive integer m (m ≥ 3) and t
(t < 2m−1), there exists a binary BCH code with the follow-
ing parameters:

Block length: n = 2m − 1
Number of information bits: k ≥ n − mt
Minimum distance: dmin ≥ 2t + 1.
The generator polynomial of the code is specified in

terms of its roots over the Galois field GF(2m). Let α
be a primitive element in GF(2m). The generator polyno-
mial g(x) of the code is the lowest degree polynomial over
GF(2), which has α, α2, α3, . . . , α2t as its roots. Let Φ1(x),
Φ3(x), . . . ,Φ2t−1(x) be the distinct minimum polynomials of
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α, α3, . . . , α2t−1, respectively. Then, g(x) is given by

g(x) = LCM{Φ1(x),Φ3(x), . . . ,Φ2t−1(x)}. (1)

Let v(x) =
n−1∑
i=0
vixi be a systematic codeword and e(x) =

n−1∑
i=0

eixi be an error polynomial. Then, the received word can

be expressed as

r(x) =
n−1∑

i=0

rix
i = v(x) + e(x). (2)

The weight of the error pattern e(x) is the number of errors
in the received word r(x). The corresponding syndromes
can be calculated by

S i = r(αi) = v(αi) + e(αi) = e(αi), i = 1, 2, . . . , 2t. (3)

For 1 ≤ v ≤ t, the v × v syndrome matrix is defined as

Mν =



S 1 1 0 · · · 0
S 3 S 2 S 1 · · · 0

...
...

S 2v−1 S 2v−2 S 2v−3 · · · S v


.

The relations between the syndrome matrices and the num-
ber of errors in r(x) can be found by theorem 9.11 in [1], or
property 4′ in [6]. The theorem is restated below.

Theorem 1: For any binary BCH code and any v such that
1 ≤ v ≤ t, the syndrome matrix Mν is singular if the number
of errors is ν − 1 or less, and is nonsingular if the number of
errors is ν or ν + 1.

According to Theorem 1, the number of errors in r(x)
can be determined from the values of the determinants of the
syndrome matrices det(Mν), v = 1, 2,. . . , t. For example, if
det(M1) � 0, det(M2) � 0, det(M3) � 0, and det(Mv) = 0,
for v = 4, 5, . . . , t, then three errors have occurred. Hence, to
acquire the information of the number of errors, the step-by-
step decoding algorithm is concerned whether the values of
det(Mν), v = 1, 2,. . . , t, equal to zero, and a decision vector
m composed of decision bits mv, v = 1, 2,. . . , t, is defined as
[9]

m = (m1,m2, · · · ,mt),

where mv = 0 if det(Mν) = 0 and mv = 1 if det(Mν) � 0.
The decision vector of a general t-error-correcting bi-

nary BCH code can be expressed as follows:

1) m = (0t) if no error has occurred, where 0t denotes t
consecutive identical 0 bits. For example, vector (03) =
(0, 0, 0).

2) m = (1, 0t−1) if one error has occurred.
3) m ∈ {(×u−2, 1, 1, 0t−u)} if u errors, 2 ≤ u < t, have

occurred, where the “×” means a value of either 0 or 1.
4) m ∈ {(×t−2, 1, 1)} if t errors have occurred.

For example, if t = 2, the decision vector can be (0, 0) for
no error, (1, 0) for a single error, or (1, 1) for two errors.

Consequently, the number of errors can be correctly de-
termined by the decision vector m if and only if the weight

of error pattern is t or less. If the received word r(x) =
n−1∑
i=0

rixi

is modified by changing temporarily a selected bit at posi-
tion xp, 0 ≤ p ≤ n − 1, then the modified received word
becomes

rp(x) = r(x) + xp = v(x) + e(x) + xp = v(x) + ep̄(x),

(4)

where ep̄(x) = e(x) + xp and the subscript “p̄” in ep̄(x) in-
dicates that the magnitude of the xp position of e(x) is tem-
porarily changed.

Then, the modified syndrome matrix becomes

Mv, p̄ =



S 1, p̄ 1 0 · · · 0
S 3, p̄ S 2, p̄ S 1, p̄ · · · 0

...
...

S 2v−1, p̄ S 2v−2, p̄ S 2v−3, p̄ · · · S v, p̄


,

where S i, p̄ = e(αi) + (αi)p = S i + α
ip, i = 1, 2, . . . , 2t.

The corresponding decision vector mp̄ can also be de-
fined as

mp̄ = (m1, p̄,m2, p̄, · · · ,mt, p̄),

where mv, p̄ = 0 if det(Mv, p̄) = 0 and mv, p̄ = 1 if det(Mv, p̄) �
0, v = 1, 2,. . . , t.

Hence, m is the decision vector of original syndromes
and mp̄ is the decision vector of temporarily changed syn-
dromes. Whether the bit at position xp of r(x) is erroneous
can be determined from the difference between m and mp̄.
The step-by-step decoding algorithm proposed in [9] is then
described as follows:

1) Determine the original syndromes and the decision
vector m = (m1,m2, . . .mt).

2) Change the magnitude of the xp position of r(x) tem-
porarily and determine the modified decision vector
mp̄ = (m1, p̄,m2, p̄, · · · ,mt, p̄).

3) Using m and mp̄, determine the value of êp(t), which
is the estimated value at the xp position of the error
pattern e(x) by

êp(1) = m1m̄1, p̄, (5a)

êp(2) = (m1m̄1, p̄)m̄2m̄2, p̄ ∨ m1m1, p̄m2m̄2, p̄, (5b)

and

êp(l) = [êp(l − 1))m̄lm̄l, p̄]

∨ml−2, p̄m1−1ml−1, p̄mlm̄l, p̄, (5c)

3 ≤ l ≤ t, where t is the error-correcting capability
of the binary BCH code, “∨” is the logical operator
“OR,” and m̄i is the complement of mi. (Proof: See the
Appendix.)

4) Send the output bit r̂p = rp + êp(t).
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3. Proposed Decoding Algorithm

A new step-by-step decoding algorithm for t-error-
correcting binary BCH codes is proposed as follows. The
algorithm follows the same idea as that proposed in [9], but
further reduces the amount of the determinant-calculation of
syndrome matrices by means of logical analysis. The logical
analysis is based on the fact that only 2t + 1 cases are possi-
ble when we want to determine the value at the xp position
(0 ≤ p ≤ n − 1) of the error pattern e, e = (e0, e1, . . . , en−1),
for a t-error-correcting binary BCH code. For example, for
a binary (15, 7) BCH code (t = 2), all five possible cases of
ep are expressed in Table 1 and described as below:

1) If no error occurs, then the value of ep must be correct
(i.e. ep =0).

2) If one error occurs, then the value of ep can be erro-
neous or correct (i.e. ep = 1 or ep = 0).

3) If two errors occur, then the value of ep can be erro-
neous or correct (i.e. ep = 1 or ep = 0).

In the following, we assume that the signal-to-noise ra-
tio (SNR) of the communication is large enough such that
the number of errors in a received codeword is t or fewer for
a t-error-correcting binary BCH code.

Theorem 2: For a t-error-correcting binary BCH code, the
estimated error value at position xp of the error pattern, êp(t),
n − k ≤ p ≤ n − 1, can be given by

êp(1) = m̄1, p̄, (6a)

êp(l) = êp(l − 1)m̄l ∨ mlm̄l, p̄, for 2 ≤ l ≤ t. (6b)

Proof:
In the case t = 1: Let w(e) be the weight of error pattern e,
and ep(1) be the value of position xp in e, n− k ≤ p ≤ n− 1.
Three possible cases apply in the determination of the value
of ep(1), as shown in row 2 of Table 2. Row 4 is the decision
bit m1. If no error occurs [w(e) = 0], det(M1) = 0, then
m1 = 0. If one error occurs [w(e) = 1], det(M1) � 0, then
m1 = 1. w(e p̄) and m1, p̄ indicates the weight of the error
pattern and the decision bit for changing the received digit
rp, respectively. It is easy to see that êp(1) = m̄1, p̄.
In the case t ≥ 2: There are 2t+1 possible cases in deter-
mining the value at position xp [ep(t), n − k ≤ p ≤ n − 1] of
the error pattern e, as shown in row 2 of Table 3. As the case
of t = 1, the decision bits m1, m2, . . . , mt−1, mt, m1, p̄, m2, p̄,
. . . , mt−1, p̄ and mt, p̄ in Table 3 can be determined by Theo-
rem 1. All 2t+1 possible estimated values of ep(t), as shown
in the bottom row of Table 3, are equal to êp(t−1)m̄t∨mtm̄t, p̄.
Hence, in a similar way, we can get

Table 1 The possible various cases of ep for t = 2.

êp(l) = êp(l − 1)m̄l ∨ mlm̄l, p̄

= {[(m̄1, p̄m̄2) ∨ m2m̄2, p̄] · · · }m̄l

∨ mlm̄l, p̄, for 2 ≤ l ≤ t.
Q. E. D.

Equations (6a) and (6b) can be further simplified as
shown in the following theorem.

Theorem 3: For a t-error-correcting binary BCH code, the
estimated error value at position xp of the error pattern, êp(t),
n − k ≤ p ≤ n − 1, can be given by

êp(1) = m̄1, p̄, (7a)

êp(2) = m1m̄2, p̄, (7b)

and

Table 2 The logic analysis in Theorem 2 for t = 1.

Table 3 The logic analysis in Theorem 2 for t ≥ 2.
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Table 4 The logic analysis in Theorem 3 for t is odd.

Table 5 The logic analysis in Theorem 3 for t is even.

êp(l) = êp(l − 2)m̄l−1 ∨ ml−1m̄l, p̄, for 3 ≤ l ≤ t. (7c)

The proof of Theorem 3 is similar to that of Theorem
2 and its analysis refers to Table 4 (for t is odd) and Table 5
(for t is even). For example, if t = 3, then êp(3) = êp(1)m̄2 ∨
m2m̄3, p̄, and if t= 4, then êp(4) = êp(2)m̄3 ∨ m3m̄4, p̄.

According to Theorem 3, the procedure of the proposed
step-by-step decoding algorithm for a t-error-correcting bi-
nary BCH code can be summarized as follows:

Table 6 The equations and matrix-calculations of the error correctors for
t-error-correcting binary BCH decoders, t = 1, 2, 3, 4, 5; n− k ≤ p ≤ n− 1.

1) Calculate the original syndromes S i (i = 1, 2, 3,. . . ,
2t).

2) Determine initial decision vector m = (m2,m4, · · · ,mt−1)
if t is odd, or m = (m1,m3, · · · ,mt−1) for t is even.

3) Let p = n − 1.
4) Change the magnitude of the xp position of r(x) tem-

porarily and determine the modified decision vector
mp̄ = (m1, p̄,m3, p̄, · · · ,mt, p̄) if t is odd, or mp̄ =

(m2, p̄,m4, p̄, · · · ,mt, p̄) for t is even.
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5) Using m and mp̄, determine the value of êp(t), which
is the estimated value at the xp position of the error
pattern e(x) by Eqs. (7a), (7b), and (7c).

6) Send the output bit r̂p = rp + êp(t).
7) Let p = p − 1. If p = n − k − 1, then this decoding

algorithm is completed. Otherwise, go to step 4.

Table 6 compares the equations and the matrix calcula-
tions required in the proposed decoders with those required
in [9]. Obviously, the proposed algorithm reduces the num-
ber of matrix computations by half at least.

4. Illustrative Example

Consider the (31, 11) binary BCH code with error correcting
capability t = 5 as an example. Let α denote a primitive
element of GF (25) and α5 + α2 + 1 = 0. The generator
polynomial of the (31,11) binary BCH code is defined as
the least common multiple of the minimal polynomials of
1, α, α2, . . . , and α10. Assume there are three errors in the
received polynomial r(x) and e(x) = x7 + x20 + x25.

The initial syndrome values are

S 1 = 1, S 2 = 1, S 3 = α
8, S 4 = 1, S 5 = α

19, S 6 = α
16,

S 7 = α
7.

Since

det(M4) =

∣∣∣∣∣∣∣∣∣∣∣

S 1 1 0 0
S 3 S 2 S 1 1
S 5 S 4 S 3 S 2

S 7 S 6 S 5 S 4

∣∣∣∣∣∣∣∣∣∣∣
= 0 and

det(M2) =

∣∣∣∣∣∣
S 1 1
S 3 S 2

∣∣∣∣∣∣ = α
20 � 0,

so m4 = 0 and m2 = 1.

From Eq. (7), the estimated error value of ep(5) is

êp(5) = (m̄1, p̄m̄2 ∨ m2m̄3, p̄)m̄4 ∨ m4m̄5, p̄

= (m̄1, p̄ · 0 ∨ 1 · m̄3, p̄) · 1 ∨ 0 · m̄5, p̄

= m̄3, p̄ (8)

For 20 ≤ p ≤ 30 the temporarily changed syndrome values
are

S i, p̄ = S i + α
ip, i = 1, 2, 3, 4, 5.

Then,

S 1,30 = α
17, S 1,29 = α

3, S 1,28 = α
26, S 1,27 = 1,

S 1,26 = α
28, S 1,25 = α

21, S 1,24 = α
15, S 1,23 = α

12,

S 1,22 = α
7, S 1,21 = α

25, S 1,20 = α
8;

S 2,30 = α
3, S 2,29 = α

6, S 2,28 = α
21, S 2,27 = 1,

S 2,26 = α
25, S 1,25 = α

21, S 1,24 = α
15, S 2,23 = α

24,

S 2,22 = α
14, S 2,21 = α

19, S 2,20 = α
16;

S 3,30 = α
16, S 3,29 = α

7, S 3,28 = α
21, S 3,27 = α

27,

S 3,26 = α
28, S 3,25 = α

4, S 3,24 = α
6, S 3,23 = α

25,

S 3,22 = α
14, S 3,21 = α

23, S 3,20 = α
2;

S 4,30 = α
6, S 4,29 = α

12, S 4,28 = α
11, S 4,27 = 1,

S 4,26 = α
19, S 4,25 = α

22, S 4,24 = α
29, S 4,23 = α

17,

S 4,22 = α
28, S 4,21 = α

27, S 4,20 = α
1;

S 5,30 = α
10, S 5,29 = α

24, S 5,28 = α
24, S 5,27 = 1,

S 5,26 = α
20, S 5,25 = α

2, S 5,24 = α
19, S 5,23 = α

17,

S 5,22 = α
22, S 5,21 = α

3, S 5,20 = α
30.

By calculating the value of

det(M3,P̄) =

∣∣∣∣∣∣∣∣

S 1,P̄ 1 0
S 3,P̄ S 2,P̄ S 1,P̄
S 5,P̄ S 4,P̄ S 3,P̄

∣∣∣∣∣∣∣∣
,

we can determine

m3,30 = 1,m3,29 = 1,m3,28 = 1,m3,27 = 1,m3,26 = 1,

m3,25 = 0,m3,24 = 1,m3,23 = 1,m3,22 = 1,m3,21 = 1,

m3,20 = 0.

Hence,

ê30(5) = m̄3,30 = 0, ê29(5) = m̄3,29 = 0,

ê28(5) = m̄3,28 = 0, ê27(5) = m̄3,27 = 0,

ê26(5) = m̄3,26 = 0, ê25(5) = m̄3,25 = 1,

ê24(5) = m̄3,24 = 0, ê23(5) = m̄3,23 = 0,

ê22(5) = m̄3,22 = 0, ê21(5) = m̄3,21 = 0,

and ê20(5) = m̄3,20 = 1.

Therefore, the estimated error pattern of the message part of
the received vector is

(ê20, ê21, ê22, ê23, ê24, ê25, ê26, ê27, ê28, ê29, ê30)

= (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).

5. Conclusions

A novel step-by-step decoding algorithm for t-error-
correcting primitive binary BCH codes is proposed in this
paper. A simple equation to estimate the error value of the
error pattern is obtained by logical analysis. The computa-
tional complexity of this decoder is much lower than of the
step-by-step decoding algorithm proposed in [9], since the
most complex elements in the step-by-step decoder are the
“matrix-computing” elements and the proposed algorithm at
least reduces half of the matrix computations. Furthermore,
as [9] the simple structure also makes it suitable for hard-
ware realization.
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Appendix: Proof of Eqs. (5a), (5b), and (5c)

Let w(e) be the weight of error pattern e, êp(t) be the es-
timated value of position xp in e, n − k ≤ p ≤ n − 1.
m = (m1,m2, · · · ,mt) is the decision vector of original syn-
dromes and mp̄ = (m1, p̄,m2, p̄, · · · ,mt, p̄) is the decision vec-
tor of temporarily changed syndromes.

In the case t = 1: Three possible cases apply in the de-
termination of the value of ep(1), as shown in column 2 of
Table A· 1. The analysis of Table A· 1 as follows:

1) If no error occurs [w(e) = 0, m = (m1) = (0)], then the
value of ep must be correct (i.e. ep =0). Temporarily
change a received bit at position xp, n − k ≤ p ≤ n − 1,
then one error occurs [w(e p̄) = 1, mp̄ = (m1, p̄) = (1)].

2) If one error occurs [w(e) = 1, m = (m1) = (1)], then the
value of ep can be erroneous or correct (i.e. ep = 1 or

Table A· 1 The logic analysis of Eq. (5a) for t = 1.

ep = 0). Temporarily change a received bit at position
xp, then no or two errors occur [w(e p̄) = 0 or 2, mp̄ =

(m1, p̄) = (0) or (1)]. It is easy to see that the estimated
error value of ep(1) is

êp(1) = m1m̄1, p̄.

In the case t = 2: Five possible cases apply in the deter-
mination of the value of ep(2), as shown in column 2 of
Table A· 2. As the case of t = 1, the decision bits m1, m2,
m1, p̄ and m2, p̄ in Table A· 2 can be determined. Then, the
estimated error value of ep(2) is

êp(2) = m1m̄2m̄1, p̄m̄2, p̄ ∨ m1m2m1, p̄m̄2, p̄

= (m1m̄1, p̄)m̄2m̄2, p̄ ∨ m1m2m1, p̄m̄2, p̄

{= (m2 ⊕ m1, p̄)m1m̄2, p̄, Fig. 13 of [9].

In [9], define that

mv = 1 if det(Mv) = 0, v = 1, 2, · · · , t.}
In the case t ≥ 3:
For the case t = 3: Seven possible cases apply in the de-
termination of the value of ep(2), as shown in column 2 of

Table A· 2 The logic analysis of Eq. (5b) for t = 2.

Table A· 3 The logic analysis of Eq. (5c) for t = 3.

Table A· 4 The logic analysis of Eq. (5c) for t > 3.
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Table A· 3. As the case of t = 1, the decision bits m1, m2, m3,
m1, p̄, m2, p̄ and m3, p̄ in Table A· 3 can be determined. Then,
the estimated error value of ep(3) is

êp(3) = m1m̄2m̄3m̄1, p̄m̄2, p̄m̄3, p̄ ∨ m1m2m̄3m1, p̄m̄2, p̄m̄3, p̄

∨ m2m3m1, p̄m2, p̄m̄3, p̄

= [(m1m̄1, p̄)m̄2m̄2, p̄ ∨ m1m2m1, p̄m̄2, p̄]m̄3m̄3, p̄ ∨
m2m3m1, p̄m2, p̄m̄3, p̄

= êp(2)m̄3m̄3, p̄ ∨ m2m3m1, p̄m2, p̄m̄3, p̄

{= (m2 ⊕ m1, p̄)m1m̄3m̄2, p̄m̄3, p̄ ∨ m2m3m1, p̄m2, p̄m̄3, p̄,

Fig. 14 of [9].}
For the case t > 3: All 2t + 1 possible values of ep(t), as
shown in the column 2 of Table A· 4. As the case of t = 1,
the decision bits m1, m2, . . . , mt−1, mt, m1, p̄, m2, p̄, . . . , mt−1, p̄

and mt, p̄ in Table A· 4 can be determined. Hence, in a similar
way, we can get

êp(t) = êp(t − 1)m̄tm̄t, p̄ ∨ mt−1mtmt−2, p̄mt−1, p̄m̄t, p̄

Q.E.D.
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