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Abstract

An FPGA-based reconfigurable system may contain
boards of FPGAs which are reconfigured for different
applications and must work correctly.  This paper presents
a novel approach for rapidly testing the interconnect in
the FPGAs each time the system is reconfigured.  A low-
cost configuration-dependent test method is used to both
detect and locate faults in the interconnect.   The “original
configuration” is modified by only changing the logic
function of the CLBs to form “test configurations” that
can be used to quickly test the interconnect using the
“walking-1” approach.  The test procedure is rapid
enough to be performed on the fly whenever the system is
reconfigured.  All stuck-at faults and bridging faults in the
interconnect are guaranteed to be detected and located
with a short test length.  The fault location information
can be used to reconfigure the system to avoid the faulty
hardware.

1. Introduction

A field-programmable gate array (FPGA) can be
configured in the field to implement a desired logic
function.  A static RAM based FPGA architecture has a
matrix of configurable logic blocks (CLBs),
programmable interconnect, and programmable I/O cells.
A user can specify a logic function and then use compiler
software to map the logic function to a network of CLBs,
which are then placed and routed.  The end result is a
particular configuration for the FPGA that implements the
logic function.

One powerful and exciting application of FPGAs is in
constructing reconfigurable systems (or custom computing
machines).  The hardware in such systems can be
reconfigured on the fly to adapt to different computing
requirements for different applications.  Reconfigurable
systems offer higher computational density and higher
throughput for many applications compared with

conventional fixed hardware systems.  Reconfigurable
computing is an active area of research.

An important and challenging issue for reconfigurable
systems is reliability.  Reconfigurable hardware is
inherently less reliable than conventional hardware
because of the large amount of additional circuitry needed
to support the reconfigurability. Testing reconfigurable
hardware to ensure that it is defect-free is substantially
more difficult than testing conventional hardware.  There
are an exponential number of different ways that the
programmable hardware can be configured.  There is no
way to test that all possible configurations are fault-free.

A reconfigurable system may contain several boards of
FPGAs.  This paper presents a novel approach for rapidly
testing the interconnect in the FPGAs each time the
system is reconfigured.  The method presented here not
only detects faults in the interconnect, but also locates the
faults so that the system can be reconfigured to avoid the
faulty hardware and thus continue fault-free operation.

In order to describe the relationship between the work
presented here and previous work in FPGA testing, it is
important to make the distinction between configuration-
independent testing and configuration-dependent testing.
In configuration-independent testing, no assumptions are
made about the way in which the FPGA will be
configured by the user.  The goal is to maximize the fault
coverage for all possible configurations.

Configuration-independent testing is done when the
FPGA is manufactured (i.e., before it is shipped to the
user).  Previous work in FPGA testing has focused on
configuration-independent testing.  Configuration-
dependent testing, on the other hand,  involves testing that
a particular FPGA configuration is fault-free.  A higher
fault coverage (for the particular configuration) can be
achieved with less test time.  The approach described here
is a configuration-dependent test technique for
interconnect.  Configuration-independent techniques for
testing FPGA interconnect have been described in
[Liu 95], [Huang 96], [Renovell 97], [Zhao 98], and



techniques for diagnosis have been described in
[Lombardi 96] and [Culbertson 97].

Three drawbacks of the configuration-independent
diagnostic tests are described in [Culbertson 97]:
1. Time it takes to develop the diagnostic tests necessary

to locate (not just detect) the faults.
2. Time to develop (through experimentation) test

configurations that provide a high coverage.
3. Time to run the tests.

The configuration-dependent test method presented in
this paper addresses all three of the problems described
above.  The method presented here provides a systematic
procedure for detecting and locating all stuck-at and
bridging faults in the interconnect for a particular FPGA
configuration.  This is done by modifying the “original
configuration” by only changing the logic function of the
CLBs to form “test configurations” that can be used to
quickly test the interconnect. A systematic procedure is
applied to the “original configuration” to generate a small
set of test configurations.  The logic function of the CLBs
in the test configurations are chosen in such a way that the
“walking-1” approach can be used to detect and locate all
stuck-at and bridging faults in the interconnect with a
small set of test vectors.  Since only the logic functions of
the CLBs are changed, time consuming placement and
routing is avoided.  The process of generating the test
configurations and test vectors is fully automated and very
fast.  It can be performed on the fly whenever the system
is reconfigured.

Since the area of an FPGA is dominated by the
programmable interconnect, most faults occur in the
interconnect.  Thus, thoroughly testing of the interconnect
for each configuration used in a reconfigurable system is
very important.  If an FPGA configuration is found to be
faulty, the information provided by the proposed method
can be used to avoid the faulty hardware.  This can be
done by either rerouting the configuration [Roy 95], or by
recompiling the design with additional resource
constraints [Culbertson 97].

2.  Fault Model

The most common failure mode in interconnects is
bridging faults between nets [Zhao 98].  Bridging faults
can be of wired-AND or wired-OR type.  In wired-AND
the logic level 0 dominates, while the logic level 1
dominates in wired-OR. Besides bridging faults,
stuck-at-0 and stuck-at-1 faults are also significant.
Detection of bridging faults can be achieved by the
counting sequence algorithm [Kautz 74],[Goel 82].

To diagnose bridging faults between two nets,
complementary values have to be driven on the nets and
each net has to be observed at the output.  This can be

achieved by setting all the nets to ‘0’ and then walking a
single ‘1’ step by step through all the nets.  This approach
has been used for the diagnosis of interconnects in printed
circuit boards (PCBs) using a boundary scan architecture
[Hassan 88].  In this paper, we propose a novel and very
efficient way of implementing the “walking-1” method in
FPGAs. The logic function of the CLBs is programmed in
a clever way to “walk” a ‘1’ through all the nets in the
design.

The proposed method for fault diagnosis targets both
bridging and stuck-at faults. CLBs are configured to
define pseudo scan paths.  Note that we are not using any
existing scan structure on the FPGA.  We are forming
scan paths by using the internal flip-flops in the CLBs and
a programming scheme for the logic function of the CLBs.
The scan paths defined are not independent. Two or more
scan paths can merge.  Multiple FPGA configurations are
used to satisfy the following requirements:

Requirement 1:  Each net  is controlled to a ‘1’ while the
remaining nets are ‘0’ and

Requirement 2: Each net is controlled to a ‘0’ while the
remaining nets are ‘1’.

The net being driven to ‘1’ in Requirement 1 and ‘0’ in
Requirement 2 has to be made observable at the output
after some number of clock cycles.

The “walking-1” test case was sufficient for fault
diagnosis in [Hassan 88] since the scan paths used
(boundary scans) were independent.  In our case, the scan
paths can merge, hence both “walking-1” and “walking-0”
test cases are needed for fault diagnosis.

The problem at hand is given the interconnects in the
“original configuration,” we want to choose the logic
function of the CLBs in each test configuration in such a
way as to minimize the total number of test configurations
that are required to satisfy Requirement 1 and 2.  The
easiest way to satisfy the requirements is to include each
CLB on a scan path.  Unfortunately, the number of scan
paths cannot be greater than the number of primary inputs.
However, we have developed a clever approach for
overcoming this limitation.  It involves identifying scan
paths with more complex controllability conditions using
linear programming techniques.  We first discuss
diagnosis with simple scan paths in Sec. 3 to illustrate the
concepts.  In Sec. 4, we introduce the more complex scan
paths, which allow us to minimize the number of test
configurations that are required.

3.  Fault Diagnosis

In this section, we explain the FPGA configurations
used for fault diagnosis.



3.1 Scan Paths

To walk a ‘1’ through each net, the CLBs are
configured to define pseudo scan paths that run from the
primary inputs to the primary outputs. The FPGA is
reconfigured such that the place and route information of
the original design is used as it is; only the logic
performed by the CLBs is changed. The CLBs are
essentially used as routers to construct scan paths. Since
the interconnects used are the same as the interconnects in
the original design, every CLB in the configuration has the
same set of fanins as the original circuit. The output of
each CLB is taken through the internal flip-flop in the
CLB so that all segments of the scan path are clocked.
Any CLB on a scan path can be controlled and the CLB
output is observable since it is uniquely routed to a
primary output; its value can be scanned out.
Definition 1. ACTIVE-SEG and INERT-SEG:  Every CLB

on a scan path has to be uniquely routed to one and
only one primary output since we need a single ‘1’
walking through the design.  This is ensured by
controlling fanouts.  For nets with multiple fanouts,
only one fanout branch is allowed to be a controlling
input to the CLB it feeds.  This branch is labeled
ACTIVE-SEG, the remaining branches are labeled
INERT-SEG.  When a net is justified to ‘1’, the
ACTIVE-SEG propagates the ‘1’ to the next CLB.
The remaining INERT-SEGs are non-controlling inputs
and do not propagate the ‘1’ forward.  We are thus able
to get a single ‘1’ traveling through the CLBs on a scan
path.

3.2 Fault Detection and Location

The overall procedure for fault diagnosis is given
below.
Step 1. Load the FPGA configuration that walks a ‘1’

through the circuit.  This configuration (CONFIG-1)
detects all stuck-at-1 and wired-AND bridging faults.
There are two types of FPGA configurations used for
fault diagnosis.  Scan paths are constructed in both
configurations as described in Section 3.1.  The logic
implemented by the CLBs in the configuration differ.
In CONFIG-1 the reset value of each flip-flop is ‘0’.
The output of a CLB is ‘1’ when there is exactly one
‘1’ in its fanins and this ‘1’ is on a net labeled
ACTIVE-SEG.

Step 2. Apply the test case that detects all stuck-at-1 faults
on ACTIVE-SEGs. This test case (FLOOD-0) is a
sequence of test vectors applied at the primary inputs,
where each test vector  is the vector of all ‘0’s. The
length of the test sequence i.e. the number of times the
design is clocked is equal to the length of the longest
path in the design.  On applying FLOOD-0 to

CONFIG-1, the fault free response are vectors of all
‘0’s.

Step 3. Apply the test case that detects all stuck-at-1 faults
on INERT-SEGs and all wired-AND bridging faults.
This test case (WALK-1) is a sequence of  test vectors
applied at the primary inputs of CONFIG-1 that walk a
‘1’ through each of the scan paths.  This can be done
by applying a test vector with one of the primary inputs
set to ‘1’ followed by vectors of all ‘0’s.  The ‘1’
should appear at the primary output at the end of the
scan path when the number of clocks applied is equal
to the length of the scan path.  The number of all ‘0’
vectors applied i.e. the number of times the design is
clocked after setting one of the primary inputs to ‘1’ is
twice the length of the longest path in the design.

Step 4. Load CONFIG-0.  This configuration is used to
detect all stuck-at-0 and wired-OR bridging faults.

Step 5. FLOOD-1.  This test case is used to detect all
stuck-at-0 faults on ACTIVE-SEGs.

Step 6. WALK-0.  This test case is used to detect all
stuck-at-0 faults on INERT-SEGs and all wired-OR
bridging faults.
CONFIG-0, FLOOD-1 and WALK-0 are the exact

duals of CONFIG-1, FLOOD-0 and WALK-1
respectively.  If a fault is detected at the above steps,  fault
location is done by applying the appropriate test vectors
[Das 98].  A few examples are illustrated using Figure 1.
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Figure 1. FPGA Configuration

Stuck-at-1 on ACTIVE-SEGs:  These faults are
detected by applying the FLOOD-0 test case in
CONFIG-1.  If any one of the ACTIVE-SEGs is stuck-
at-1, the ‘1’ will propagate along the scan path controlled
by this ACTIVE-SEG and appear at a primary output.

The longest scan path in Figure 1 is four (A-D-H-J-
PO2). Any stuck-at-1 fault on the ACTIVE-SEGs will



result in an erroneous ‘1’ arriving at one primary output
within four clock cycles.  For example, a stuck-at-1 on the
ACTIVE-SEG of H will cause an erroneous ‘1’ to appear
on PO2 on the second clock cycle.  The clock cycle at
which the erroneous ‘1’ appears gives information about
the location of the faulty net.

Stuck-at-1 on INERT-SEGs:  Consider an INERT-
SEG which is stuck-at-1.  Let us denote the other net
segments feeding the same CLB as this net segment as its
sibling net segments.  At least one of these sibling net
segments is an ACTIVE-SEG for the CLB to be on a scan
path.  Consider the test case which walks a ‘1’ along this
ACTIVE-SEG.  The presence of an extra ‘1’ caused by
the stuck-at-fault will force the walking ‘1’ to a ‘0’ and
the fault can thus be detected.

To illustrate with an example,  assume the INERT-
SEG of F is stuck-at-1.   The ACTIVE-SEG among its
sibling nets is D.  D lies on the scan path A-D-H-J-PO2.
While walking a ‘1’ through this scan path, the output of
CLB H will be forced to ‘0’ since two of its inputs are ‘1’,
thus terminating the walking ‘1’.

Bridging fault (wired-AND) between two nets: Wired-
AND bridging faults are detected by applying the
WALK-1 test case on CONFIG-1.  The bridging fault gets
detected when a ‘1’ is walked on to one of the nets while
the other is at ‘0’ and vice versa. Assume E and H are
bridged with the ‘0’ dominating (wired-AND).  While
walking a ‘1’ through the scan path A-D-H-J-PO2, H is set
to ‘1’ while E is at ‘0’.  The bridging fault will get
activated, the walking ‘1’ gets terminated and the fault is
detected.  The same thing happens when a ‘1’ is walked
through the scan path B-E-I-PO1. Fault location can be
done by using the CONFIG-0 test configuration [Das 98].

4.  Reducing Number of Configurations

The lower bound on the number of FPGA
configurations required to put every CLB on a scan path is
(Max number of gates in a level) divided by (Number of
Primary Inputs).  This number can become large for big
designs having a relatively low number of inputs.  In this
section we describe a clever scheme for drastically
reducing the required number of configurations.  We
introduce two terms: Single Input Controlled  (SIC) scan
paths and Multiple Input Controlled (MIC) scan paths.

SIC:  In SIC scan paths, the output of the each CLB is
set to ‘1’ by any one of the ACTIVE-SEG inputs being set
to ‘1’.  The scan paths described in the previous sections
were SIC scan paths.

MIC:   In MIC scan paths, the output of the CLB at the
head of the scan path is set to ‘1’ by two or more INERT-
SEG inputs being set to ‘1’.  Thus, by introducing MIC

scan paths, additional CLBs (which were not included in
any scan path) can be put on scan paths.

Consider a CLB that is not on any scan path.  To put it
on a MIC scan path, two or more of its INERT-SEG
inputs have to be set to ‘1’.  In Figure 1, the CLB G can be
put on a MIC scan path by modifying its logic function to
perform G is ‘1’ iff A and B are ‘1’.  The ACTIVE-SEG
of A and B will propagate ‘1’s into the circuit, but then our
condition of a single ‘1’ in the circuit will be violated.
However, if we can find a test vector, which will suppress
these other ‘1’s, then G can be enabled as a scan path.  By
choosing A and B equal to ‘1’, E is set to ‘1’.  This ‘1’ has
to be suppressed.  This can be done by setting C to ‘1’.
Thus a valid test vector to enable G as a scan path is A and
B and C equal to ‘1’.

We now give a general procedure to find test vectors to
put additional CLBs on scan paths. We define a matrix A
where the rows correspond to the CLBs currently on scan
paths, the columns correspond to the primary inputs and
CLBs on scan paths (i.e. nets whose values can be
controlled).  The entries in the matrix are defined below:

aij  =     1      if  j is an ACTIVE-SEG fan in to CLB i,
          -1      if  j is an INERT-SEG  fan in to CLB i,

0 if  j does not fan into CLB i.

Consider a column vector X whose rows correspond to
the nets which can be controlled. Claim: Any solution of
X over the set {0,1} which makes  (A.X  ≤ 0) can be used
to add extra CLBs on to the existent scan paths.  Any
entry in A.X corresponding to a CLB is ‘1’ iff its
ACTIVE-SEG input is set to ‘1’ and no other input is set
to ‘1’.  For all other cases, the entry will be less than or
equal to ‘0’.

The matrix inequality can be solved by integer linear
programming.   The solution is a binary vector over the
primary inputs and CLBs on scan paths.  If the solution
has two or more nets at a value ‘1’ that are fanins to a
CLB that is currently not on a scan path, the CLB can be
added to the scan path by defining the logic function such
that the output of the CLB is ‘1’ iff  these nets are ‘1’.
Once a CLB has been made a MIC CLB, a row is added in
matrix A corresponding to this CLB and the entire
procedure is repeated to find more test vectors.

Given the original configuration to be tested, we first
select SIC scan paths that will cover the largest number of
“undetected” nets.  Then the remaining “undetected” nets
are added to MIC scan paths until either all nets are
“detected” or no more MIC scan paths can be added. If
there are still nets that have not been included in any scan
path for any configuration, then a new test configuration is
added, and the procedure repeated.  When the procedure
completes, a sufficient set of test configurations have been
created to detect and locate all stuck-at and bridging



faults.

5.  Experimental Results

The procedure described in this paper was used to
generate test configurations for FPGA implementations of
some of the largest ISCAS benchmark circuits.  Results
are shown in Table 1. The total number of test
configurations required for 100% fault coverage is shown
for each circuit. For a particular circuit, the test time can
be reduced by using fewer configurations at the cost of
some loss in fault coverage.  Most of the faults are
detected by the first few test configurations.  Later test
configurations detect only a small number of additional
faults.  In almost all cases, 90% fault coverage could be
achieved with only 6 configurations.

Table 1.  Number of Test Configurations

Circuit FPGA
Name PIs Pos FFs CLBs Nets Configs

C2670 233 140 0 207 275 2
C3540 50 22 0 422 477 8
C5315 178 123 0 496 817 6
C6288 32 32 0 1045 1113 16
C7552 207 108 0 734 1063 4
s1423 17 5 74 117 153 2
s5378 35 49 179 440 657 18
s9234 36 39 211 513 685 14
s13207 62 152 638 628 804 18
s15850 77 150 534 955 1303 16

6.  Conclusions

The FPGA test method described here provides a
number of innovations:

1.  It is a configuration-dependent test method in which
only the logic function of the CLBs are changed.  Thus,
the test configuration can be obtained without time
consuming placement and routing.

2.  It fully tests the programmable interconnect exactly
as it will be used in system operation.  Bridging faults
between all pairs of nets are both detected and located.

3.  It is rapid enough to test the system each time it is
reconfigured on the fly.  Thus it is able to detect both
latent manufacturing faults (which have previously gone
undetected) as well as faults that occur over time.

When a fault is detected, information about the
location of the fault can be passed back to the compiler so
that the system can be reconfigured to avoid the fault and
resume fault-free operation.  Thus, the proposed approach
can be used to greatly increase the dependability of

reconfigurable systems with low-cost.  Such techniques
are needed to increase the domain of applications for
which reconfigurable computing can be used.
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