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Abstract

This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state
visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem
consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our
approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object
among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic
and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in
making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a
humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can
navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the
encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based
BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites.
Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual
keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices.
Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data
supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an
important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to
carry out complicated tasks even with a low-cost system.
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Introduction

Electroencephalogram (EEG)-based BCIs have been of huge

interest because of their potential uses. The sensors are noninva-

sive, therefore, it is relatively much easier to use and the recording

procedure is safer. However, it is still the case that the recorded

signals are much noisier and less accurate than using invasive

techniques. Nevertheless, many interesting studies have demon-

strated the feasibility of EEG-based BCI for applications to

improve the quality of life of both the physically disabled and

healthy people [1–14]. Several EEG-based BCI protocols have

shown great promise, such as P300 potentials [3–5,9], SSVEP

[10–12], motor imagery [6–8] and ERD/ERS [13–14]-based

protocols. P300 potential is an approximately 300 ms delayed

response to visual stimulus. SSVEP is a response to visual

stimulation at a specific frequency. The protocols using P300 or

SSVEP are categorized as reactive BCI, which enables users to

control an application by detecting indirectly modulated brain

signals related to specific external stimuli. Meanwhile, motor

imagery or ERD/ERS represent consciously intended brain

signals without external events, which is classified as an active

BCI protocol. Active BCI is more natural in the sense that thought

is directly interpreted as commands. Generally, reactive BCI

requires less training and its implementation is relatively simpler

than active BCI.

However, it is especially difficult to decode a user’s real

intentions from noninvasive brain signals. To simplify the

problem, most studies have handled it as a classification problem,

which have resulted in a limited number of commands for control.

Recently, as an approach to overcome this limitation, the concept

of hybrid BCI was developed [15–17]. Hybrid BCI, which

combines different brain signal types and possibly even including

signals not originating from the brain, is appealing because it

increase the possibility to provide more varied commands for

control. Sequential or parallel processing of different brain signals,

with or without external sensing can improve the accuracy of

controllability as well as enable extended commands for control.

The benefits have been verified by previous studies. Two different

protocols of EEG-based BCIs are combined to extend control

capacity or accuracy. ERD and SSVEP-based BCIs [18] or

sensorimotor rhythm and P300 potential-based BCIs [19] were

used together to control two dimensional cursor movement.
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Similarly, the combined processing of ERD/ERS and SSVEP was

investigated for controlling an artificial upper limb [20]. A hybrid

BCI using sensorimotor rhythm and P300 was applied to increase

the number of commands to control a wheelchair [21]. ERS-based

BCI acted as a brain switch to activate or deactivate SSVEP-based

BCI operation for orthotics and the hybrid BCI operation yielded

a much lower false positive rate than a single conditioned BCI

[22]. It is also possible to hybridize EEG-based BCI with a non

EEG interface. There are studies that show interfaces which fuse

muscular and brain activity [23], while others fused near-infrared

spectroscopy (NIRS) and EEG [24]. These systems achieved more

accurate and stable results within their respective classification

problems. A multi-modal interface consisting of an eye gaze

tracker, along with a BCI, resulted in the creation of a robot with

an intuitive way for controlling without touch [25]. However, most

studies are focused on simple and refined classification problems

for evaluation. More complicated tasks should be considered to

increase the feasibility of a hybrid BCI for practical applications.

As an example of a complicated BCI task, humanoid robot

controls have been selected [7–9,26]. Bell et al [9] applied P300

potentials to target objects which a humanoid robot had to pick

up. It is a demonstration that combined a simple BCI with

preprogrammed robotic operations. Asynchronous direct control

of humanoid robot navigation using sensorimotor rhythm-based

BCI was published [7–8]. SSVEP-based BCI with a hierarchical

adaptive menu was applied to create a simulated robotic arm for

household tasks [26]. These papers demonstrated the possibility of

noninvasive BCI to control various motions of humanoids. Even

though the published results have been impressive, more-detailed

multi-task actions by EEG-based BCI still needs to be explored.

When a bigger variety of performable tasks are available, the

humanoid robot can better work as a surrogate of the user. More

natural control of the surrogate becomes possible when the user

thinks it is a replacement of his or her body. The use of invasive or

fMRI-based BCIs attained more detailed control of a humanoid

[27–28]. However, the increased size and cost of these invasive

recording devices, along with the stipulations placed on the users,

makes these devices less attractive for general use.

This work investigates a noninvasive hybrid BCI paradigm for

the actuation of, and the recognition of objects by, a humanoid

robot, which is applicable to real-life scenarios. In addition, this

work intentionally uses a low cost BCI system that is more

convenient for users and more portable. In addition, simple BCI

protocols are selected for their ease of adaptability to different

users. The simplicity of the system increases its applicability to

other real-world applications. Therefore, this work aims to

overcome the limitations of relatively low-quality data from a

low-cost system by suggesting algorithmic solutions. This work

evaluates whether a hybrid BCI technique can be a solution to

improve the reliability and strengthen the controllability of a low

cost BCI system. The objective of this work is to demonstrate that

it is possible to use a low-cost hybrid BCI system to perform

multiple tasks with a humanoid robot while giving the user the

illusion of embodying the robot.

Methods

Scenario description
Figure 1 illustrates the overall scenario. The scenario consists of

humanoid navigation/exploration and recognition tasks through

EEG-based BCIs. The humanoid surrogate, operated through a

combination of SSVEP and ERD-based BCIs, navigates and

explores a maze. When it encounters any objects, represented by

photos of various fruits randomly scattered throughout the maze,

the objects are detected by a simple image processing technique.

The surrogate robot recognizes whether the detected object is the

object which the user is looking through the P300 potential-based

BCI.

The surrogate robot was placed at the starting position in the

maze. Figure 2 shows the experimental setting of the 1.563 m2

maze. At several corners, several objects were placed. A subject

had to navigate the surrogate robot through the pathway relying

on visual feedback. Whenever each object was within view, the

surrogate robot recognized whether it was a favorite object of the

subject or not through the signals recorded from the subject’s

brain.

Subjects and EEG data acquisition
Among the candidates that volunteered, inclusion and exclusion

selection criteria were used to ensure a homogeneous population

for the purposes of the study’s conclusions. The inclusion criteria

were 1) users within the 20–30 year age range; 2) users within the

same gender group; 3) users of the same laterality (all right

handed). The exclusion criteria were 1) users with a history of

central nervous system abnormalities; 2) users taking any

psychiatric medications; 3) users with epilepsy, dyslexia, or

experiencing hallucinations; 4) users with any previous experience

with BCI. According to the criteria, five healthy male volunteer

subjects (age 23.463.8 years) participated in the experiment. All

subjects gave written informed consent. The KAIST Institutional

Figure 1. Overall scenario of humanoid navigation/exploration and recognition tasks.
doi:10.1371/journal.pone.0074583.g001
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Review Board approved the proposed experimental protocol of

this study.

To validate the application of a low-cost BCI system for feasible

task performance, brain signals were recorded using an Emotiv

Epoc headset (Emotiv Systems Inc., USA) [29]. The Emotiv Epoc

BCI recording system is much cheaper than state-of-the-art BCI

recording systems. The headset’s ease of usage, portability and

simplicity of operation make it an attractive headset to use within

this study. It has been tested in previous studies [3,30–32]. The

headset can measure brain activity through a total of fourteen

electrode channels around the sensorimotor cortex. Using the

headset, data was collected at a sampling frequency of 128 Hz

from the fourteen channel layout; AF3, AF4, F3, F4, F7, F8, FC5,

FC6, P7, P8, T7, T8, O1, and O2 with respect to the 10–20

system.

Design of navigation and exploration mode
An EEG-based BCI was used for the humanoid motion control.

To perform the navigation and exploration of the humanoid, the

EEG-based BCI protocols, SSVEP-based and ERD-based, were

combined. In this work, navigation consists of two behaviors,

forward walk and body turn (left or right) while exploration is

made up of turning the head (left or right). The navigation mode

enables the humanoid to move around in the maze. During

navigation and exploration, a user can obtain visual feedback

about the environment. Figure 3 illustrates the organization of the

overall algorithm used to implement navigation and exploration.

To minimize burden on the subject and promote a more

convenient interface, a hybrid strategy was proposed. Initially,

whenever the ERD-based BCI detected a user-specified motor

imagery, the humanoid changed its state as indicated by

‘‘,ERD.’’ in Figure 3. It is similar to a ‘‘state transition switch’’.

Foot motor imagery was recommended, but not mandated.

During the experiments, each subject was allowed to choose his or

her favorite motor imagery such as foot or hand motor imageries,

which was well classified. While no specific imagery was detected,

the humanoid robot maintained its state. Therefore, the user did

not have to continuously focus on their specified imagery, which

minimized the effort needed. The reactive SSVEP-based BCI

requires displaying flickering stimuli. This flickering could distract

a user when he or she did not wish to use the SSVEP-based BCI

[22]. Thus, SSVEP-based BCI was turned on as needed. Once

SSVEP-based BCI was activated, head turns could be actuated by

responding to the flickering stimuli. In this study, ,left. and

,right. states were discriminated by SSVEP-based BCI using

two visual stimuli flickering at their respective specific frequencies.

The humanoid rotated its head in the selected direction by 3

degrees per decision. By appropriately turning the head, a user

could explore the environment from visual feedback. Turning the

humanoid body to either the left or right was implemented by

turning its head toward the desired angle through SSVEP-based

BCI and then operating a state transition through ERD-based

BCI. When its head and body were not aligned, that is, the angle

between head and body was greater than 9u, an ERD switch

provoked the body to turn to align itself in the same direction as

the head. The humanoid did not respond to any other commands

from any of the BCI protocols during alignment. The alignment

behavior resulted in the body turning to the desired direction.

Once the body was aligned, the humanoid remained still and

waited for the next command. On the other hand, if head and

body were aligned when ERD-based BCI operated, the humanoid

simply walked forward without aligning the body first.

The proposed algorithm in Figure 3 was designed by combining

simple BCI protocols with a postural dependent control scheme to

achieve desired performance with less effort and more comfort.

That is, an identical classification outcome can implement

different robot behaviors depending on the robot postures.

Design of recognition mode
When objects, which were fruits such as apples and bananas in

this study, appeared in the view of the humanoid surrogate, a very

simple color filtering technique detected them as shown in Figure

4. Color information of each object in the white background was

used to detect the object’s region. Then, a rectangular box

appeared to indicate the region. Each subject turned the robot to

position the center of the box near the center of the surrogate

robot’s view. When multiple objects were detected, each subject

tried to locate a virtual center of all of the rectangular boxes near

Figure 2. Experimental setting.
doi:10.1371/journal.pone.0074583.g002
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the center of the view window. The virtual center of multiple

objects was a center of gravity of objects. When the height and

width of the whole view window are divided into five zones, the

middle zone indicates the central region of the view window.

When the virtual center of rectangular boxes was located within

the central region, the recognition mode began. Subjects were

informed of the start of recognition mode by turning the view

window’s border blue. The humanoid remained still during

recognition mode. Once the recognition mode turned on, a 4 s

rest was provided before each object region started flashing for

P300-based BCI operation. The rest aimed to provide subjects

with a short break to be ready for P300 operation. Once P300-

based BCI began, flashes occurred every 250 ms in a random

order. While an object region flashed, the other object regions

were blacked out. An epoch of EEG signals corresponding to the

flashing of a particular object is a 600 ms window of time from

when the flashing of an object starts. Figure 5 illustrates the

course of time of the flash stimulus and corresponding epochs in

EEG signals. Each epoch was checked for P300 potential. If

P300 potential was detected, the surrogate robot interpreted

that the corresponding flashed object was a user’s favorite,

otherwise it was not a favorite object of the user. During the

real-time humanoid experiments, the results of the object

recognition were displayed on the monitor for 2 s before

transitioning back to navigation/exploration mode. The blue

border disappeared once the recognition mode was over.

Designs of BCI protocols
The proposed hybrid BCI consisted of three BCI protocols.

Each of the protocols relied on a simple but effective algorithm in

order to carry out a two-class classification with a low-cost

recording system. In each case a simple algorithm was selected

which could solve its two-class classification problem with high

accuracy while requiring little training.

ERD-based BCI protocol. According to Figure 3, the

humanoid changed states if pre-designated motor imagery was

detected. Common Spatial Patterns (CSP) algorithm [33], a

popular technique in EEG-based BCI, was used to extract features

to identify the specified motor imagery. EEG signals were filtered

between 8 and 30 Hz, which mainly contain motor imagery

information covering the mu and beta frequency bands. Let X1

represent a set of EEG signals corresponding to the specified

motor imagery, and X2 represent the remaining EEG signals.

Xi~ xi
1
S

� �

xi
2
S

� �

� � � xi
T
S

� �� �

,i~1,2

where S is the sampling rate, and T is the number of samples.

The dimensionality of each vector xi is equivalent to the number

of electrode channels.

CSP finds spatial filters W D_Dd_________ the following

function.

J(w)~
wTX1X

T
1 w

wTX2X
T
2 w

~

wTCT
1 w

wTCT
2 w

Each Ci indicates the spatial covariance matrix of an

associated class assuming a zero mean for EEG signals. The

zero mean assumption is met by preprocessing the EEG signals

through a band-pass filter. Using the Lagrange multiplier

method, the optimization problem is transformed to be a

standard eigenvalue problem. Therefore, the spatial filters F F~

eL1 � � � eLm el1 � � � elm
� �

where eLi and eliare the ith largest and lowest principal

directional eigenvectors of C{1
2 C1 respectively. m was set to be

2 in this study.

Figure 3. Proposed algorithm for navigation and exploration mode.
doi:10.1371/journal.pone.0074583.g003
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Then, features fp, p~1,2, � � � ,2m, are assigned to be

fp~ log
var Zp

� �

P

2m

j~1

var Zj

� �

0

B

B

B

@

1

C

C

C

A

where Zj~ FXið Þj for either active or idle states.

Finally a classifier to discriminate the two classes was

constructed by applying the Support Vector Machines (SVM)

algorithm [34] with a linear kernel to the features. SVM was

selected because of its good generalization properties [35]. The

MATLAB functions for SVM computation were used in this

implementation.

SSVEP-based BCI protocol. SSVEP-based two-class classi-

fication, which indicates left and right head turns, was designed

based on Canonical Correlation Analysis (CCA) [36]. CCA works

on two sets of variables. A set of variables are EEG signals x tð Þ
recorded from several channels of the headset. The other set

describes stimulus signals yf tð Þ which are set at a particular

frequency f as follows.

X~ x 1
S

� �

x 2
S

� �

� � � x T
S

� �� �

Yf~ yf
1
S

� �

yf
2
S

� �

� � � yf
T
S

� �� �

,yf tð Þ~

sin 2pftð Þ

cos 2pftð Þ

.

.

.

sin 2phftð Þ

cos 2phftð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Where h is the number of harmonics. In this study, h was set to

be 1.

Two sets of linear combinations, called canonical variants,

are defined to be x~XTWx and y~YTWy. CCA finds the

weight vectors Wx and Wy that maximizes the correlation

between x and y:

max
Wx,Wy

r fð Þ~
E xTy½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xTx½ �E yTy½ �
p

~

E WT
x XY

TWy

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E WT
x XX

TWx

� �

E WT
y YY

TWy

h i

r

(1)

Two stimulus frequencies f1 and f2 were designated to indicate

left and right turn states respectively. EEG signals were recorded

responding to flickering at the two frequencies. When correlation

maximizations were conducted for the two stimuli, the left turn

state was selected by checking the correlation values, r f1ð Þ and

r f2ð Þ. This is explained in detail in the following section. This

enables the exploration of the environment by turning the head,

while turning of the body can also be implemented by then

aligning the direction of the humanoid body to that of the head.

The two channels O1, and O2 of the headset were used for

SSVEP-based BCI protocol because they cover the occipital area

where SSVEP are detected well. Collected EEG signals from the

two channels were filtered between 4 and 50 Hz to reduce artifacts

using a fifth order Butterworth band-pass filter.

Figure 4. Proposed procedure of recognition mode.
doi:10.1371/journal.pone.0074583.g004

Figure 5. Timing diagram of stimulus events and correspond-
ing epoch windows for EEG signals.
doi:10.1371/journal.pone.0074583.g005
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Selection of ERD and SSVEP-based BCI protocols. As

EEG data was recorded in real-time, a selection between the two

BCI protocols was required. Using training data of the left and

right turns in SSVEP as well as that of ERD, r f1ð Þ and r f2ð Þ were
computed from equation (1). Then, the distribution of

r f1ð Þ,r f2ð Þð Þ was plotted as shown in Figure 6. SVM set a

quadratic classifier to decide which BCIs protocol to select. ERD-

based protocol operated when the recorded data point was located

in the ‘‘E’’ region, otherwise the SSVEP-based protocol ran. When

the SSVEP-based protocol was on, the discrimination between the

left and right head turns, the ‘‘Sr’’ and ‘‘Sl’’ regions in Figure 6, was

identified by a linear classifier obtained through SVM.

P300-based BCI protocol. This work implemented a simple

P300-based BCI protocol using the xDAWN spatial filter which

was proposed to enhance evoked potentials [37]. The method

improves the quality of the evoked responses by taking into

account both the signal and the noise, hence it is appropriate to be

applied in our case, which uses a low-cost recording system.

Collected data was projected on to a three-dimensional signal

subspace constructed by the spatial filter. Then, a Bayesian linear

discriminant analysis classifier [38] was applied to identify the

evoked P300 potentials. In the protocol, each epoch was recorded

after the stimulus onset. They were band-pass filtered between

1 Hz and 20 Hz and down-sampled from 128 Hz to 32 Hz.

Dynamic fading feedback rule
In order to achieve robust classification results with the

proposed BCI system and guard against misclassification results,

this work adapted the dynamic fading feedback rule proposed in

[7]. The principle of the rule is to confirm a command based on

consecutive classifications by setting a selection level to avoid

abrupt false classification. The rule is as follows: The selection level

is initially set to zero and the first classification results in a

command candidate. Whenever further classifications result in an

identical command candidate, the selection level increases by one.

Otherwise the selection level decreases by one. If the selection level

reaches zero, the next classification assigns new classification

candidate. Whenever the selection level reaches four, the

command candidate is finally confirmed and the command is

sent to the surrogate robot. In this paper’s implementation, we

applied this rules for hybridization of SSVEP-based and ERD-

based protocol. Each classification was determined every 250 ms.

Interface system
The subject sat comfortably looking at a monitor wearing the

recording headset. A video stream from the robot’s camera was

displayed in the center of the screen at 10 fps. Any command sent

to the robot by way of interpreting brain signals was indicated

below the view window (see Figure 7(a)). When the SSVEP

protocol was active, flickering rectangles at the stimulus frequen-

cies f1 and f2 were located on the left and right sides of the video

stream (see Figure 7(b)). During object recognition, neither the sent

command nor SSVEP flickering rectangles were visible while the

boxes surrounding the objects flashed randomly in the camera

view (see Figure 7(c)). Figure 7(d) shows a subject interacting with

the robot through the described interface.

Overall system description
The surrogate robot used in this work was a Nao humanoid

robot (Aldebran Inc., France) with 25 degrees of freedom. The

robot is equipped with monocular vision on its head that can

provide a front view to the user. The robot was configured to walk

at a speed of 3.3 cm/s and make turns at a speed of 0.13 rad/s.

These speeds were selected to ensure stable robot movement. A

subject sat comfortably in front of a computer while the robot was

separately located in the maze. A TCP/IP protocol transferred

data wirelessly between the interface computer and the robot.

Figure 8 illustrates the overall system.

Experimental Results

Real-time humanoid navigation/exploration experiment
Each subject was first asked to complete a real-time humanoid

navigation/exploration task without the object recognition task.

To decide the classifiers for the ERD-based and SSVEP-based

BCI protocols respectively, the following procedure was followed.

For the ERD-based protocol, EEG signals were recorded while

each subject remained neutral for 5 s and imagined a specific

motor imagery for 5 s. Each subject selected a specific motor

imagery, such as moving a right hand, which they could easily

imagine. Each subject repeated this 20 times. Then, a dataset per 2

s time window with 250 ms increments was obtained. The method

explained in the ERD-based BCI protocol section was applied to a

collection of datasets to obtain a classifier. A tenfold cross-

validation was assessed to evaluate the classification performance.

The specific stimulus frequencies for the SSVEP-based protocol

Figure 6. Proposed selection rule of ERD and SSVEP-based BCI protocols.
doi:10.1371/journal.pone.0074583.g006
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were selected to be 12 and 15 Hz for all subjects through empirical

pre-tests. Evoked response data was manually analyzed to find

distinguished frequency peaks by taking into account the

specification of the low-cost recording headset. In a previous

study [32], the limitation of stimulus frequency up to 15 Hz was

discussed using the selected recording headset. Once two stimulus

frequencies were decided, data was acquired using flickering

checkerboards at the designated frequencies. Each subject was

asked to look at flickering checkerboards for 5 s; this was repeated

a total of 20 times. Then, again, a dataset per 2 s time window

with 250 ms increment was obtained. The method explained in

the SSVEP-based BCI protocol section was applied to this

collection of datasets to obtain a classifier. Again, a tenfold

cross-validation was used. When adequate cross-validation accu-

racies were obtained, the estimated classifiers were used for

completing the real-time task. Table 1 indicates the validation

results as well as the information transfer rate (ITR).

ERD and SSVEP-based protocols achieved an overall accuracy

of 84.6 and 84.4%, respectively. Both protocols also resulted above

11 bits/min ITR. The ERD cross-validation accuracy was the

worst for subject A at 76.8% while SSVEP cross-validation

accuracy was the worst for Subject D at 79.5%.

With confirmed classifiers of the SSVEP and ERD-based

protocols per subject, the classifier for selection between SSVEP

and ERD-based protocols was assigned. The assigned classifier

was also tested before the real-time experiments. Average accuracy

over all of the subjects was 73.0 (63.6)%. The worst performer

was subject B, whose accuracy was 68.8% while subject C

achieved the highest accuracy of 78.3%. Figure 9(a) illustrates an

example of the classified region obtained based on data samples

from a particular subject. Figure 9(b) exemplifies that SSVEP and

ERD brain activities are classified according to the selection rule

between SSVEP and ERD-based BCIs. Due to the limited

Figure 8. The system architecture.
doi:10.1371/journal.pone.0074583.g008

Figure 7. The design of the display during (a) walking straight,
(b) turning head, and (c) recognition. (d) The interface being used
by a subject.
doi:10.1371/journal.pone.0074583.g007
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specifications of the low-cost headset, stimulus frequencies of 12

and 15 Hz, had to be selected for SSVEP. Meanwhile, motor

imagery signals for the ERD-based BCI tended to peak around the

mu band (8,13 Hz). The peak of motor imagery signals

overlapped with that of SSVEP stimulus frequencies and therefore

could be confused.

Real-time humanoid navigation/exploration experiments were

conducted in the environment described in the scenario descrip-

tion section. To evaluate the experiment’s performance, several

metrics for each task were collected as done in a previous study

[7]: total time taken during task, total travelled distance during

task, total number of steps taken during forward movement, total

number of steps taken during body turn, summation of the angles

the head turned during exploration, total number of transitions

between navigation and exploration modes, and total number of

collisions with the wall. Furthermore, the BCI-based performance

was compared with manual keyboard control-based performance.

Table 2 summarizes the overall performance of the real-time

navigation task as carried out by the five subjects with respect to

the selected performance metrics. The performance metric values

were averaged across three trials for both BCI and manual control

cases.

Working under the assumption that the manual control

performance was nominal, the BCI-based performance was

compared with the manual control performance by computing

the metric ratios as summarized in Table 2. All subjects took more

time to complete the experiment using the BCI-based approach

than manual control. The average ratio of BCI-controlled

execution time to manual-control execution time was 1.22. The

ratio is a little less than the value (1.35) obtained using

sensorimotor rhythm-based BCI control under a similar experi-

ment scenario [7]. Because the total time includes the robot

operation, BCI and manual control execution cannot be

compared only with the time metric. As for the distance travelled,

with the exception of subject E, all subjects were able to attain a

ratio of less than 1. However, all of the ratios are close to one,

which indicates the same distance was travelled. With respect to

the numbers of forward steps and turning steps, BCI and manual

control performed quite similarly, considering their ratios. With

these results, BCI-controlled navigation task performances were

comparable with manual-based performances. Looking at the

accumulated angle of the head, which represents exploration, its

ratio was greater than one for all subjects, having an average of

1.13. Although not significantly different, the interpretation is that

BCI-based controls resulted in more exploration. BCI control

tended to transition between navigation and exploration modes

about four times more than manual control, which resulted in an

average ratio of 1.23. In most cases, subjects collided with the wall

only once during a particular run of the maze, regardless of

whether BCI or manual controls were used. Overall, the

humanoid behaviors as executed by the subjects are comparable

when considering BCI control and manual control.

Humanoid object recognition experiment
To complete the real-time object recognition task, the five

subjects used a P300-based BCI to conduct object recognition. To

identify classifiers, EEG data was first collected beforehand by

having each subject recognize four objects on a computer monitor.

In each trial, each object was flashed up to 10 times in a randomly

selected order. This process was repeated for a total of 40 trials.

EEG data obtained during the trials was used to calculate a

Table 1. Cross-validation accuracies and ITRs of BCI protocols
used for navigation/exploration.

Subject A B C D E Overall

ERD cross-
validation
accuracy (%)

76.8 86.7 90.1 81.8 87.5 84.6 (65.3)

ERD ITR (bits/
min)

6.6 13 16.0 9.5 13.7 11.8 (63.7)

SSVEP cross-
validation
accuracy (%)

92.2 80.8 84.9 79.5 84.6 84.4 (65.0)

SSVEP ITR
(bits/min)

18.1 8.8 11.6 8.1 11.4 11.6 (63.9)

doi:10.1371/journal.pone.0074583.t001

Figure 9. SSVEP and ERD-based BCI selection: (a) selection classification region: dotted lines indicate decision boundaries, and (b)
average brain activities specified from O1 during BCI operation of subject C.
doi:10.1371/journal.pone.0074583.g009
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classifier using the method mentioned in the selection of ERD and

SSVEP-based BCI protocols section. Then, tests were performed

for four cases: recognition between two and four objects on the

monitor, and recognition between two and four objects by viewing

them through the robot’s camera. Each case was also performed

40 times. During the robot vision test, the surrogate robot stood

about 35 cm in front of the prearranged objects. Each subject

performed the object recognition task looking at the video stream

sent from the robot. The image view outlined the objects in real-

time. Figure 10 illustrates the test results. Overall, the accuracy of

recognition increased as the number of flashes increased. Subjects

generally performed better with tests performed with the monitor

alone than through viewing objects through the robot’s camera.

Even so, recognizing objects through the robot’s camera still

attained around 90% accuracy with all but one of the subjects

when flashing each object five times. Flashing each object 5 times,

the average recognition accuracy was 91% for two objects and

89.5% for four objects when objects were detected through the

robot’s camera. Based on these results, it was decided that five

sequential flashes would be used during real-time humanoid

experiments. Therefore, it is expected that object recognition

through the P300 would take 2.85 s for two objects and 5.35 s for

four objects.

The ITR of the P300-bsed BCI is summarized in Table 3. An

ITR of approximately 12–18 bits/min was attained. Specifically,

real-time robot vision-based recognition resulted in an ITR 12–15

bits/min. However, for each of two and four object recognition

scenarios conducted through the robot’s camera, one particular

subject’s inferior performance lowered the average ITR. In every

case the highest ITR was over 20bits/min.

Real-time humanoid navigation/exploration and
recognition
After performing each task of navigation/exploration and object

recognition separately, the real-time humanoid navigation/explo-

ration and recognition task was conducted by the five subjects with

the previously discussed set-up for the different modes. Each

subject repeated the task three times using the classifications

determined in the two previous sections. While traversing through

the maze, recognition tasks were requested to be performed two

times as shown in Figure 2. Fruit images were randomly selected

Figure 10. Per subject recognition accuracies over the number of flashes per object of (a) two objects on the computer monitor, (b)
four objects on the computer monitor, (c) two objects through robot vision in real-time, and (d) four objects through robot vision
in real-time.
doi:10.1371/journal.pone.0074583.g010
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among five different varieties. In each object recognition task, two

to four objects were arbitrarily displayed. Table 4 summarizes the

overall performance results obtained from averaging over the

three trials.

As seen in Table 4, most of the time during the trial was spent in

navigation/exploration mode, 762.3 s on average. The cumula-

tive times for navigation/exploration are greater than those in

Table 2 due to more time being spent positioning the robot near

objects. Also, the total travelled distances increased compared

with those in Table 2. It can be clearly understood that the robot

had to navigate to the locations of objects, rather than take the

shortest path to the finish line, as was the case with the

navigation/exploration-only task. Therefore, forward steps, turn-

ing steps, explored angles, and transitions were generally greater

than those in Table 2. The favorite objects of subjects were well

recognized in most cases. Recognition time is the average amount

of time spent in recognition mode. Specifically, it is the average

amount of time between entering recognition mode and returning

to navigation mode. On average, the entire object recognition task

took a total of 27.2 s. This implies that the object recognition itself

took about 13.6 s. The recognition time includes the 4 sec

readiness interval, the 2 s display of the results, the robot

launching interval as well as the P300-based BCI operation. Using

the dynamic feedback rule, it took at least 1 s for the robot to start

moving again.

Figure 11 shows some pictures taken during a trial being

performed by a subject. In the maze, the surrogate robot

navigated, gathered information about its environment, and

looked at fruit images on the wall for object recognition while

reaching a destination from a starting point. A video of the

experiment in action has been included as Video S1.

Discussion

This study shows that a hybridization of simple BCI protocols

can be an effective way to implement a complicated task rather

than employing a complex BCI protocol. Although each simple

protocol has limited bandwidth, it is enough to carry out a binary

classification task. In addition, each simple protocol is trained

relatively easily for such a simple task and easily operated. In this

study, subjects required little training to adapt to each BCI

protocol. Furthermore, its operation was relatively stable and

robust, and could attain reliable accuracy for simple tasks. Their

combination provided extended controllability. In a well-

designed hybridization system, each simple protocol can sustain

a sufficiently good accuracy per simple task mode within a

complex task. Therefore, the overall performance of the

composite task can be achieved with reliable accuracy. In

addition, it was assessed that auxiliary signal processing

techniques to the BCI modalities are also advantageous to

enhance complicated task performance. In this work, a very

simple image processing technique was useful to detect objects.

As already pointed out in literature [9,15–16], leveraging BCI

with advanced intelligence techniques will enrich potential

applications and increase practical feasibility.

This work also evaluated the feasibility of a low-cost

recording system-based BCI implementation. The low-cost

BCI headset may not provide precise measurements for

advanced or complicated BCI protocols for complex tasks;

however, it could still collect enough data to achieve reasonable

performance with simple BCI protocols at simple tasks such as

binary classification. This work also suggested and demonstrated

that hybrid BCI facilitates the use of a low-cost EEG recording

system and makes it possible to use it for complicated tasks by

conducting real-time humanoid navigation/exploration and

object recognition tasks.

The proposed hybrid scheme with the low-cost EEG headset

attained average accuracies of 84.6%, 84.4%, and 89.5–91% for

ERD, SSVEP, and P300 -based BCI protocols, depending on the

number of objects respectively. Furthermore, it provides ITRs of

up to 18.1 and 21.1 bits/min during navigation/exploration and

recognition modes respectively. While switching between SSVEP

and ERD, accuracy and bit rate tended to be lower. Its accuracy

was 73% on average.

Our real-time humanoid robot navigation/exploration experi-

ments showed that the proposed hybrid BCI scheme with a low-

cost recording system achieved reasonably comparable perfor-

mances to manual keyboard control. In addition, the proposed

hybrid BCI control was comparable to asynchronous direct motor

imagery-based BCI control [7] with respect to humanoid robot

navigation.

Although the results demonstrate the possibility of applying a

low-cost recording system to complicated tasks, some issues were

recognized while conducting experiments. The electrode loca-

tions of the recording headset did not fully cover the

sensorimotor cortex. It may be possible that the area not

covered produces more effective brain activity for BCI protocol

design. Additionally, due to the plastic connections between the

electrodes and the headset’s frame, the locations of the electrodes

were subtly changed when the headset was worn. In the future,

an in-house custom design of an EEG headset, whose number of

electrodes and electrode locations are better optimized for

specific tasks, will be attempted. In this work, the specific

stimulus frequencies for SSVEP-based protocol were 12 and

15 Hz. The specifications of the low-cost headset limited the

selection of the stimulus frequencies. If the frequencies were

more clearly distinguished from the mu band for ERD-based

protocol, a more robust classification between SSVEP and ERD

Table 3. ITRs during various object recognition scenarios.

Subject Two objects on monitor Four objects on monitor

Two objects through

robot vision

Four objects through

robot vision

A 9.6 18.3 15.0 20.1

B 21.1 20.1 21.1 15.4

C 17.5 20.1 11.2 15.4

D 15.0 15.4 11.2 9.8

E 15.0 16.8 5.9 16.8

Overall 15.6 (64.2) 18.1 (62.1) 12.9 (65.6 ) 15.1 (63.7)

doi:10.1371/journal.pone.0074583.t003
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performances would have been possible. Future work will

develop a low-cost headset that can tune to higher stimulus

frequencies more robustly.

Conclusion

This paper addressed a low-cost hybrid BCI system-based

approach for a humanoid robot navigation and object

recognition. The robot movement and direction were com-

manded through the SSVEP and ERD-based BCIs and favorite

object recognition was implemented by the P300 potential-

based BCI with the help of a simple image processing

technique. We believe this paper demonstrated the feasibility

of carrying out multiple tasks through a combination of simple

BCI protocols using a low-cost BCI system. This hybrid strategy

has the potential to enable further applications using a low-cost

BCI recording system, even though the quality or amount of

data is lower than that of advanced BCI systems. In the future,

we will continue to investigate the implementation of more

practical BCI applications while making its usage friendlier to

the user.

Supporting Information

Video S1 Real-time humanoid navigation/exploration and

recognition demo.
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