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ABSTRACT 

 

This article describes the construction and preliminary testing of a pre-prototype thermoacoustic 

electricity generator to test the concept of a low-cost device for application in remote or rural areas 

of developing countries. A travelling-wave thermoacoustic engine with a configuration of a 

looped-tube resonator is designed and constructed to convert heat to acoustic power. Air at 

atmospheric pressure is used as the working gas, PVC tubing is utilised for the feedback pipe, 

while an inexpensive commercially available loudspeaker is adopted to convert the acoustic 

power, produced by the engine, to electricity. Preliminary experimental results are presented and 

discussed in detail. The results show that the approach is feasible in principle and it is possible to 

produce the electrical power levels in the order of 4-5 W with overall heat-to-electric efficiencies 

in the order of 1%. Further work towards optimising the device from the performance, 

manufacturing and cost point of view is outlined. 

 

 

1. Introduction and background 
 

Thermoacoustic engines have attracted a lot of attention [1,2] because their only moving component is the gas 

undergoing the acoustic motion. The absence of mechanical moving parts provides a potential for high reliability and 

low cost. The working gas in thermoacoustic engines is usually a noble gas, making this technology environmentally 

friendly. Furthermore, the required operating temperature difference could be relatively small. For example, de Blok�s 

[3] travelling-wave engine starts the acoustic oscillation at a temperature difference of only 65 K. Therefore the 

technology shows a lot of potential for utilizing solar power and waste heat. On the other hand, in the past decades, a 

variety of thermoacoustic engines, either standing-wave or travelling-wave thermoacoustic engines, have been designed 

and tested. One of the remaining challenges is to improve the thermal efficiency. So far, the highest thermal efficiency 

(defined as a ratio of acoustic power delivered to the quarter wavelength resonator over the heat input) reached 30% in a 

travelling-wave thermoacoustic engine using high pressure helium to execute a Stirling-like thermodynamic cycle in a 

carefully designed acoustic network [2]. This corresponds to 41% of the Carnot efficiency. 

 

The acoustic power of the thermoacoustic engine derived from the heat input can be utilized in several ways for 

different applications. It is generally used for two main purposes: One is to drive coolers or heat pumps [4], which can 
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be either thermoacoustic coolers (heat pumps) or pulsed-tube coolers. The other is to directly convert the acoustic 

power to electricity through the electro-dynamic transduction mechanism. Usually, flexure-bearing-supported linear 

alternators are an excellent solution due to their high reliability and efficiency. For example for the travelling-wave 

thermoacoustic electric generator developed by Backhaus et al. [5] the maximum system efficiency (defined as the 

electric power output over heat input) reached 18%, whilst the alternator efficiency (defined as the electric power output 

over acoustic power absorbed by the alternator) reached 75%, while the engine efficiency (defined as acoustic power 

absorbed by the alternator over the heat input) reached 24%, which corresponds to 35.7% of the Carnot efficiency. 

 

However, linear alternators purpose-designed for thermoacoustic applications are costly � in the order of a few 

thousands of US dollars. This limits the advantages of the thermoacoustic heat engines for low-cost energy conversion 

devices understood here as being in the range of a few tens of US dollars for electrical power outputs in the order of a 

hundred Watts. Usually, ordinary audio loudspeakers are excluded as prospective candidates for linear alternators due to 

their relatively low power transduction efficiency, a fragile cone, and a limited stroke, especially when the researchers 

aim at obtaining generators with a high power, high efficiency and high pressure difference between the two sides of the 

diaphragm. However, it is possible to consider niche applications where the main driver is the cost of device, not the 

power transduction (or even the overall) efficiency. This is particularly true for the above mentioned waste heat and 

solar energy utilization applications, where a low grade thermal energy is abundant and could be considered a limitless 

source. Then the actual efficiency figures may become a secondary issue, as long as the electric power could be 

extracted at very low cost per kWhe. Similar reasoning may be true for designing cheap electricity generators for 

developing countries [6]. The current work is part of a collaborative project, with an acronym SCORE, funded through 

the Engineering and Physical Sciences Research Council UK [7], and attempts to explore the possibilities of using 

commercially available loudspeakers (or their re-engineered parts) to develop cheap thermoacoustic electricity 

generators driven by biomass combustion. This preliminary study attempts to develop a laboratory-based demonstration 

(pre-prototype) concept. The aim of the demonstrator is to produce a few Watts of electricity from a setup that could be 

potentially streamlined towards a low-cost design. It is hoped that the final scaled-up version ready for 

commercialisation will be able to produce up to 150W of electricity, will cost around 30 US dollars when all the 

components are designed for mass production and assembly, and will be ready for implementation through appropriate 

charities working with rural communities around the world. 

 

2. Theoretical analysis of an alternator 
 

In the analysis presented below it is assumed that an alternator has a linear behaviour and that the hysteresis losses 

can be ignored. In this case, a simple linear model can be formulated [8,9] that describes the use of a loudspeaker as a 

linear alternator, as shown schematically in Figure 1. The acoustic wave exerts an oscillatory pressure on the 

diaphragm, which has an effective area S. The total mass of the diaphragm and the coil is Mm. The alternator has a 

mechanical stiffness, Km, and a mechanical resistance, Rm. The coil has an inductance, Le, and a resistance, Re. The force 

factor is Bl. A load resistor RL is connected to the terminals of the coil to extract the electrical power converted from the 

acoustic power by the alternator. The sketch at the bottom of Figure 1 shows the equivalent impedance circuit of the 

physical model shown at the top. The pressure difference (pressure drop) between the front and the back of the 

diaphragm is Δp, the volumetric velocity due to the diaphragm displacement is U1. The force exerted on the diaphragm 

due to the pressure drop is F, and velocity of the diaphragm is u1. The voltage on the load resistor is VL, and the current 

is I1. 
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The model in Figure 1 can be described approximately by the following linear equations: 
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In equation (3), θ is the phase angle between the pressure drop and velocity. The extracted electric power by the 
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Figure 1 Schematic of the physical model of the alternator (top); the equivalent impedance circuit (bottom). 

 

 

 

In equation (4), |VL| is the amplitude of current VL. Accordingly, the acoustic-electric efficiency can be defined as 

a
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Substituting Equations (1) and (2) into equation (3) leads to the following relationship: 
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From Equation (6), it can be found that the input acoustic power, Pa, is dissipated by the alternator by three different 

mechanisms: the mechanical resistance, the resistance of the coil and the load resistor. According to Equation (6) and 

neglecting the inductance of the coil, the electrical power extracted by the load resistor can be written as: 
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The maximum power extracted is therefore 
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For the loudspeaker tested in this work, ȦLe is much lower than Re or RL. Therefore, substituting Equations (6) and 

(7) into (5) and neglecting the inductance of the coil, the approximate expression for the efficiency can be obtained as 
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The maximum efficiency can be obtained as 
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Substituting equation (2) into (1) to cancel I1 leads to the total acoustic impedance of the alternator: 
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The inductance of the coil can be neglected, because ȦLe is much lower than Re or RL. Then the phase angle between 

pressure drop, Δp, and the volumetric velocity, U1, can be derived from equation (13) as 
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In Equation (14), when ω2=MmKm, i.e. the alternator is at resonance, the phase angle between Δp and U1 is 

0=θ , or πθ ±= .             (15) 

 Therefore, by monitoring the phase angle ș, one can find out whether the alternator is at resonance. However, it 

should be noted that the analysis is based on the ideal linear conditions. In a practical linear alternator, the mechanical 

resistance depends on frequency, because the mechanical windage and spring losses depend on the frequency. 

Furthermore, at high pressure amplitudes, the harmonics will also be induced in the engine. 

 

3. Experimental setup 
 

The experimental setup is shown schematically in Figure 2. The main cold heat exchanger is made out of a round 

aluminium block, which is 90 mm in length, and 110 mm in diameter. Gas passages are made in the form of 45 holes 

with the diameter of 5 mm, drilled parallel to the centre-line of the heat exchanger. 12 holes with the diameter of 6 mm 

are drilled perpendicular to the heat exchanger axis to pass cooling water A PCB pressure transducer (model 112A22) is 

installed on the flange just above the cold heat exchanger (denoted as P3 in Figure 2). 

 

 

Figure 2 Schematic diagram of the test rig. 
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The regenerator is made out of stainless screen disks (110 mm in diameter), with the mesh number 34 and the wire 

diameter 0.254 mm. Sixty six discs have been piled up in a stainless steel can which has a wall thickness of 2 mm. The 

disks form a 33 mm long regenerator. Consequently, the calculated porosity and hydraulic radius are 73.3% and 175 

たm, respectively. Four Type-K thermocouples (TC-Direct model 408-119) are embedded in the regenerator. The 

distance between each of the two adjacent thermocouples is 11 mm. They monitor the temperature profile along the axis 

of the regenerator, as well as the temperature difference between the two ends of the regenerator. They are denoted as 

T1 � T4. 

 

The hot heat exchanger is made in a similar way to the cold heat exchanger, except that it is made out of brass to 

withstand much higher temperatures (brass melting temperature is typically around 900-940°C, while the expected hot 

heat exchanger temperatures were up to 650°C). It is also 110 mm in diameter, but only 51 mm in length. There are 64 

holes of 7 mm diameter, parallel to the axis for passing working gas. Perpendicular to the axis, 9 quarter-inch holes 

have been drilled to hold nine cartridge heaters. Each cartridge heater can provide 100 W of heat input. As a result, the 

input thermal power can be varied between 100 and 900 W with a step of 100 W. Thermocouple T5 penetrates 55 mm 

into the brass block to monitor the metal temperature at the centre of the hot heat exchanger. 

 

Below the hot heat exchanger, there is a short thermal buffer tube, which is simply a section of stainless steel pipe 

(ID=110 mm) with a length of 55 mm, and a wall thickness of 2 mm. The four parts described so far are clamped 

between two 4 inch flanges as shown in Figure 2. To reduce heat losses, the regenerator, hot heat exchanger and the 

short section of 110 mm diameter thermal buffer tube are enclosed within a ceramic insulation material (DURATEC), 

with a thickness of 3.5 cm. The 110 mm diameter buffer tube connects to a smaller buffer tube via a short transition 

cone, which reduces the diameter from 110 mm to 54 mm over a distance of 20 mm. The small diameter buffer tube is 

around 100 mm long and has the internal diameter of 55 mm (a section of standard stainless steel 2 inch tube, with 2.77 

mm wall thickness). Below the small diameter buffer tube, a secondary cold heat exchanger is introduced to prevent the 

hot air reaching the alternator housing. The secondary cold heat exchanger is made out of a piece of car radiator, which 

tightly fits inside the 2 inch pipe. A cooling water jacket is surrounding the outside of the pipe at this position. 

 

The alternator housing is about 50 mm below the secondary cold heat exchanger. The alternator is mounted on the 

bottom flange of the housing; the cone facing downwards. The bottom flange has a small glass window (50 mm 

diameter), which is an optical access for the laser displacement sensor (MICROTRACK II) to measure the displacement 

of the alternator diaphragm. Two PCB pressure transducers (model 112A22, manufactured by PCB Piezoelectric) have 

been used to measure the pressures in front and behind the alternator diaphragm. They are marked as P1 and P2 in 

Figure 2. 

 

The remaining part of the rig is the feedback tube, with the total length of 3.4 m. Because the engine is designed to 

operate with air at atmospheric pressure, the maximum pressure difference between the inside and the outside of the 

resonator corresponds to acoustic pressure, which is usually less than 0.1 bar. Therefore, the feedback pipe is made out 

of a standard 2 inch PVC pipe and 90° bends (Class E, OD: 60.3 mm, wall thickness 4.5 mm) instead of a metal pipe to 

reduce costs. The total length of the loop is 4.03 m. The measured frequency is 75 Hz. About 33 cm away from the 

alternator housing, a �stub� tube (a blind branch with an adjustable piston) is connected to the resonator to improve the 

impedance matching between the alternator and the engine. It has the same diameter as the feedback tube and is 37 cm 

long. 
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The loudspeaker (alternator) adopted in this work is B&C 6PS38 woofer manufactured by B&C Speakers [10]. Its 

specifications and the Thiele/Small parameters are summarized in Table 1. A high power variable resistor is adopted as 

an electrical load for the alternator to extract electrical power. The voltage difference and the current flowing through 

the load resistor are measured using a standard voltmeter and ammeter. As a result, the electrical power extracted by the 

load resistor can be deduced. The output from the sensors described together with the voltage drop VL on the load 

resistor are recorded directly using a computer acquisition card (OMB-DAQTEM 14). The phase angles between these 

signals are measured by SR830 DSP lock-in amplifier. 

 

 

Table 1. Specifications of the loudspeaker/alternator B&C 6PS38
 10

. 

Nominal Diameter   170 mm  Qms 11.7 

Fs    75 Hz  S  132 cm2 

Bl 10.8 Tx/m  Xmax   +/- 6 mm 

Le 0.6 mH  Mm  14 g 

Re  5.4 っ  Km 0.36 mm/N 

Qes 0.31  Rm 0.64 kg/s 

  

 

4. Experimental results and discussion 
 

With the terminals of the alternator open, the generator (i.e. the engine plus the alternator) starts to oscillate when 

the hot end temperature of the regenerator (T1) reaches 240 ºC. At this time, the cold end of the regenerator is at 30ºC, 

while the metal temperature of the hot heat exchanger is 291ºC. The onset temperature difference (T1-T4) is about 210 

ºC. When the load resistor is connected to the alternator the onset temperature difference increases as the resistance 

decrease. For example, for 28.4 っ load resistance the generator starts to oscillate when T1 reaches 261 ºC, the related 

onset temperature difference (T1-T4) being about 231 ºC. When the load resistance drops to zero (i.e. short circuit 

between the terminals), the onset temperature difference goes up to 500 ºC. All the experiments below are conducted for 

the generator in a steady state for selected levels of heat input. 

 

4.1. Sample Measurement 

 

As described above, the two pressure sensors P1 and P2 measure the pressure oscillations in front and behind the 

alternator diaphragm. The displacement sensor measures the motion of the diaphragm, which can be converted to its 

velocity. The phase angles between these oscillations can be either measured using a lock-in amplifier or by using FFT 

analysis of the simultaneously recorded signals. Combining these measurements, the acoustic power flow behind and in 

front of the alternator can be obtained, which gives the acoustic power absorbed by the alternator. Because the voltage 

drop on the resistor overflows the range of the computer acquisition card (+/- 10 V) at high power values, a case with 

relatively small VL is selected for illustration. Figure 3 shows one sample of this type of measurement, for the input heat 

of 600 W, and the load resistor of 10.44 っ. 

 

 Figure 3 shows five oscillations. Here, for the convenience of discussion, the displacement of the alternator 

diaphragm can be looked upon as a reference. It has amplitude of 2.64 mm. P1 and P2 are the pressure oscillations in 
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front and behind the alternator diaphragm. They have amplitudes of 2698 Pa and 1816 Pa, respectively. These two 

oscillations are almost in phase, but both lead the displacement. The measurement shows that P1 and P2 lead the 

displacement with a phase of 136º and 133º, respectively. It can also be seen that the voltage drop on the load resistor 

leads the displacement, and has amplitude of 6.66 V. The actual phase angle is measured as 91º. The volumetric 

velocity, U1, is converted from the displacement sensor signal, which is 90º leading the displacement and has an 

amplitude 0.0164 m3/s. 

 

 For further analysis, the results shown in Figure 3 can also be converted into a phasor diagram shown in Figure 4. It 

can be clearly seen that the pressure drop is around 127º, not �ヾ, out of phase with velocity. This means that the 

alternator is off resonance. Using equations (3) � (5), the acoustic power flow to and from the alternator, and the 

acoustic power absorbed by the alternator can be obtained as 15.3 W, 10.9 W and 4.4 W respectively. The electrical 

power extracted by the load resistor is 2.12 W. Consequently, the obtained acoustic-electric conversion efficiency, ȘA-E, 

is about 48%. This is relatively high for an off-the-shelf audio loudspeaker. However, the engine efficiency defined by 

the absorbed acoustic power over heat input, ȘH-A, and the generator efficiency defined by the electrical power over heat 

input, ȘH-E, are only 0.7% and 0.35%, respectively. 

 

 

Figure 3 A sample measurement of alternator performance at heat input of 600 W and load resistance 10.44 ȍ. Five 

curves are shown: pressure oscillations in front (P1) and behind (P2) of the alternator diaphragm, displacement of the 

diaphragm, voltage drop on the load resistor and calculated volumetric velocity. 

 

 

4.2. Varying the input heat 

 

Using the same measurement procedure, the generator performance can be tested by varying the input heat and the 

load resistance. This subsection shows the results obtained when the input heat varies from 300 to 800 W in 100 W 

steps, but the load resistance is fixed at 28.4 っ. For each case, the measurement is conducted after the steady state is 
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reached. The results are shown in Figure 5. Here, the measured power is plotted against the temperature difference 

between the two ends of the regenerator (T1-T4). The triangles show the measured acoustic power transported from the 

thermoacoustic core to the alternator. The squares show the acoustic power absorbed by the alternator. The diamonds 

show the electrical power extracted by the load resistor. Interestingly, they all increases linearly with (T1-T4). The 

dashed line which is associated with the secondary axis on the right shows the dependence between the heat input and 

the generated temperature difference. For the input power of 800 W, the measured pressure amplitude is 5667 Pa at P3, 

which is around 5.6% of the mean pressure. The acoustic power that goes to the alternator is about 49.3 W, The acoustic 

power absorbed by the alternator is 10.3 W. The load resistor extracts 5.17 W of electrical power. Here, ηA-E = 50%, ηH-

A = 1.29%, and ηH-E = 0.65%. 

 
 

Figure 4 Phasor diagram related to the oscillations shown in Figure 3. 

 

 
 

Figure 5 The measured powers (left vertical axis) versus the temperature difference between the two ends of the 

regenerator. Triangles show the measured acoustic power transported from the thermoacoustic core to the alternator. 

The squares show the acoustic power extracted by the alternator. The diamonds show the electrical power extracted by 

the load resistor. Dashed line with solid circles shows the dependence of the temperature difference on the value of heat 

input which can be read from the right vertical axis. 
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Figure 6 The temperature profiles along the regenerator for the cases studied in Figure 5. 

 

For further analysis, the temperature profiles along the axis of the regenerator are plotted in Figure 6. The locations 

of the thermocouples are normalized by the regenerator length. It can be seen that the temperature profiles are not quite 

linear. As is well known, the temperature profile should be nearly linear in the absence of streaming within the 

regenerator. Therefore the temperature profiles in Figure 6 suggest that there is some acoustic streaming within the 

regenerator from hot end to the cold end. Of course, the diaphragm of the alternator separates the air on its two sides, 

which stops possible Gedeon streaming [2]. Therefore, there must be another reason for the nonlinear temperature 

profiles. The rig is mounted in such a way that the thermoacoustic core is vertical, with the regenerator above the hot 

heat exchanger. Therefore it is thought that natural convection is a possible reason for the nonlinear temperature 

profiles. 

 

The above discussion indicates that the engine is very inefficient in converting heat to acoustic power. However 

Delta EC [11] simulations predict engine efficiencies as high as 5-6% (here the engine efficiency is understood as the 

ratio of acoustic power to heat input). Clearly, the engine still needs debugging and optimization. According to 

preliminary experiments, the heat loss is potentially an issue. To estimate the heat loss, two additional thermocouples 

are installed on the external surface of the ceramic insulation material and the 4 inch flange adjacent to the thermal 

buffer tube. For 800 W heat input, the metal temperature of the hot heat exchanger is 638 ºC. However, the surface 

temperature of the ceramic insulation is 304 ºC, and the surface temperature of the flange between the two thermal 

buffer tube sections is 196 ºC. These temperatures are relatively high and may explain high heat losses, although clearly 

calculating the heat losses precisely is not possible on the basis of the crude temperature measurements. 

 

 Furthermore, the impedance matching between the alternator and the engine needs more attention. As mentioned 

above, a �stub� is connected to the looped tube to improve impedance matching. Without the �stub�, the onset 

temperature difference is 40-50 ºC higher, and the extracted electrical power is 10-15% lower.  The location and the 

length of the �stub� are selected experimentally to tune the acoustic impedance at the cold end of the regenerator to 
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nearly real. There is still some room for the optimization. Finally, at this stage, the alternator is installed next to the 

secondary cold heat exchanger. This location is a low impedance zone along the loop. In fact, almost a maximum 

alternator stroke is achieved for 800 W heat input. Therefore, if more electrical power is to be extracted, it should be 

installed at a high impedance zone to avoid the limitation of the alternator stroke. 

 

4.3. Varying the load resistor 

 

Following the already outlined experimental procedures, the generator was tested by varying the load resistance for 

three heat input values. Fig. 7 shows the measured electrical power extracted by the load resistor. It can be seen that 

when the heat input is fixed, there is an optimum load resistance which corresponds to the maximum electrical power 

that can be extracted. For example, for 600 W heat input, the optimum load resistance is about 31 っ. Furthermore, the 

optimum load resistance depends on the level of heat input. It can be seen that for 700 W and 800 W heat input, the 

optimum load resistance is 26 っ and 23 っ, respectively. By inspecting equation (7), one can see that the extracted 

electrical power depends on both |U1| and RL when the alternator is given. If |U1| is fixed, in order to extract more 

electrical power RL should approach Re. So reducing RL from a very high value (for example 45 っ in Figure 7) can 

increase the extracted electrical power. This can explain the tendency of the right branches of the curves in Figure 7. 

 

 
Figure 7 Measured electrical power as a function of the applied load resistance. Three curves for three different values 

of electrical heater power are plotted. 

 

However, according to equation (13), as the load resistance decreases further, the equivalent acoustic impedance of 

the alternator increases quickly, and therefore, the interaction between the alternator and the engine becomes stronger. 

As a result, high pressure amplitude is required to drive the alternator. However, as the heat input is fixed, the possible 

pressure amplitude is also limited. Consequently, this high impedance dramatically decreases |U1|. Therefore, the 

acoustic power flow through the alternator diaphragm, which is feeding back to the cold end of the regenerator, also 

decreases. Therefore, less net acoustic power can be produced in the regenerator. This is the reason for a sharp drop in 

the extracted electrical power when the load resistance decreases and approaches to Re. 
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Figure 8 shows some further information about the impact of the load resistance on the alternator acoustic-electric 

efficiency. In Fig. 8 the input heat is fixed at 700 W. The square symbols are the measurement results, while the solid 

line is the efficiency calculated using equation (10) and parameters in Table 1. However it should be noted that, the 

parameters in Table 1 are provided by the manufacturer and are average values for this product. Therefore, the 

calculations in Fig. 8 are very approximate. For more accurate calculations, the alternator parameters need to be 

accurately measured. Nevertheless, Fig. 8 shows similar trends between experiments and analytical predictions. 

Furthermore, somewhat surprisingly, at low load resistance, the measured results are very close to the calculated ones. 

As the load resistance increases, the discrepancy becomes bigger. This trend can possibly be attributed to the increase of 

the displacement of the diaphragm. The experimental results show that the displacement amplitude increases from 1.96 

mm to 5.1mm, when the load resistance increases from 5っ to 40っ. For this alternator, the maximum stroke is 6 mm. 

Therefore, the loss due to nonlinear effects becomes stronger when the diaphragm displacement approaches the 

maximum, and this will most likely decrease the acoustic-electric efficiency. 

 

 
Figure 8 The acoustic-electric conversion efficiency of the alternator when the input heat is 700 W. The solid line is 

calculated using equation (10). The square symbols are the measured efficiencies when the load resistance varies. 

 

5. Conclusions and future work 
 

 This paper describes the construction and experimental investigation of a thermoacoustic electricity generator, 

which uses the looped-tube travelling engine to convert thermal energy to acoustic power and a commercially available 

loudspeaker as an alternator, to convert the acoustic power to electricity. The device described is intended as a 

demonstration of a low-cost concept that could be further developed for rural and remote communities in developing 

countries. In this preliminary work, the alternator produced 5.17 W of electricity at an acoustic-electric conversion 

efficiency of 50%, at the heat input of 800 W. The results show that it is possible and feasible to use commercially 

available, low-cost loudspeakers to develop low-cost electrical generators based on thermoacoustic technologies. 

Furthermore, the tests of the alternator indicate that the simple linear model is still useful to describe its behaviour.  
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However, these preliminary results also show that, compared with Delta EC predictions, the engine efficiency is 

very low; as a result, the total generator efficiency is also very low (for example 5.17 W electrical output over 800 W 

heat input gives a figure of only 0.65%). Of course the considerable heat loss is likely to skew the overall performance 

figures unfavourably. Unfortunately, it is not possible to measure the exact split of the 800 W input between the actual 

heat going into the engine and lost to the environment, but preliminary estimates based on thermocouple measurements 

show that the loss to the surroundings may be as high as 40 or 50%, in which case the overall generator efficiency could 

be revised upwards to above 1%.  

While the initial results are encouraging, it should also be noted that extensive re-engineering of the demonstrator is 

required in order to improve its performance. This of course will include a substantial change in the engine 

configuration to limit the heat loss. However, it will also be necessary to investigate the impedance matching between 

the alternator and the engine and the location of the alternator. Further work may also need to include the introduction 

of appropriate hot heat exchangers demonstrating the viability of a combustion driven heat input. All of these aspects 

will be addressed as future work. 
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List of Symbols 

 

Bl force factor of the alternator  

F force  

Fs resonance frequency 

I1 current  

Km mechanical stiffness 

Le inductance of coil 

Mm total mass of the diaphragm and the coil 

p pressure oscillation 

Pa acoustic power 

Pe electrical power 

∆p pressure drop through the diaphragm of the alternator 

Qes electrical quality factor  

Qms mechanical quality factor  

Re resistance of coil 

RL load resistor 

Rm mechanical resistance  

S effective area of the alternator  

U1 volumetric velocity  

u1 velocity of the diaphragm 

VL voltage on the resistor  

Xmax maximum displacement of alternator   
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Z acoustic impedance 

ȘA-E acoustic-electric conversion efficiency 

ȘH-A engine efficiency  

ȘH-E generator efficiency 

ș           phase angle between ∆p and U1 

Ȧ   angular frequency 
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