
Mobile Information Systems 4 (2008) 13–32 13
IOS Press

A low-cost hybrid coordinated checkpointing

protocol for mobile distributed systems

Parveen Kumar
Department of Computer Sc & Engineering, Asia Pacific Institute of Information Technology, Panipal

(Haryana), India

Tel.: +91 0180 2620043; E-mail: pk223475@yahoo.com

Abstract. Mobile distributed systems raise new issues such as mobility, low bandwidth of wireless channels, disconnections,
limited battery power and lack of reliable stable storage on mobile nodes. In minimum-process coordinated checkpointing, some
processes may not checkpoint for several checkpoint initiations. In the case of a recovery after a fault, such processes may rollback
to far earlier checkpointed state and thus may cause greater loss of computation. In all-process coordinated checkpointing, the
recovery line is advanced for all processes but the checkpointing overhead may be exceedingly high. To optimize both matrices,
the checkpointing overhead and the loss of computation on recovery, we propose a hybrid checkpointing algorithm, wherein an
all-process coordinated checkpoint is taken after the execution of minimum-process coordinated checkpointing algorithm for a
fixed number of times. Thus, the Mobile nodes with low activity or in doze mode operation may not be disturbed in the case of
minimum-process checkpointing and the recovery line is advanced for each process after an all-process checkpoint. Additionally,
we try to minimize the information piggybacked onto each computation message. For minimum-process checkpointing, we
design a blocking algorithm, where no useless checkpoints are taken and an effort has been made to optimize the blocking of
processes. We propose to delay selective messages at the receiver end. By doing so, processes are allowed to perform their
normal computation, send messages and partially receive them during their blocking period. The proposed minimum-process
blocking algorithm forces zero useless checkpoints at the cost of very small blocking.
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1. Introduction

In the mobile distributed system, some of the processes are running on mobile hosts (MHs). An MH

communicates with other nodes of the system via a special node called mobile support station (MSS) [1].

A cell is a geographical area around an MSS in which it can support an MH. An MH can change its

geographical position freely from one cell to another or even to an area covered by no cell. An MSS

can have both wired and wireless links and acts as an interface between the static network and a part of

the mobile network. Static network connects all MSSs. A static node that has no support to MH can be

considered as an MSS with no MH.

Wang and Iqbal [30] describe the applications of mobile technology in healthcare. In paper [24],

alternative data storage solution for mobile messaging services is provided. Location Management

techniques for mobile systems are given in [11,27]. Christoph Endres [10] provides a survey of soft-

ware infrastructures and frameworks for ubiquitous computing. Jayaputera and Taniar [14] propose an

approach of mobile query processing when the users location moves from one Base Station to another

and the queries cross multi-cells. Cooperative caching, which allows sharing and coordination of cached

data among clients, is a potential technique to improve the data access performance and availability in
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mobile ad hoc networks. N. Chand et al. [7] propose a utility based cache replacement policy to improve
the data availability and reduce the local cache miss ratio.

A checkpoint is a local state of a process saved on stable storage. In a distributed system, since
the processes in the system do not share memory, a global state of the system is defined as a set of
local states, one from each process. The state of channels corresponding to a global state is the set of
messages sent but not yet received. A global state is said to be “consistent” if it contains no orphan
message; i.e., a message whose receive event is recorded, but its send event is lost. To recover from
a failure, the system restarts its execution from a previous consistent global state saved on the stable
storage during fault-free execution. This saves all the computation done up to the last checkpointed state
and only the computation done thereafter needs to be redone. In distributed systems, checkpointing can
be independent, coordinated [3,9,15,29] or quasi-synchronous [2,12]. Message Logging is also used for
fault tolerance in distributed systems [25].

In coordinated or synchronous checkpointing, processes take checkpoints in such a manner that the
resulting global state is consistent. Mostly it follows two-phase commit structure [3,9,15]. In the first
phase, processes take tentative checkpoints and in the second phase, these are made permanent. The
main advantage is that only one permanent checkpoint and at most one tentative checkpoint is required to
be stored. In the case of a fault, processes rollback to last checkpointed state. The Chandy-Lamport [6]
algorithm is the earliest non-blocking all-process coordinated checkpointing algorithm. In this algorithm,
markers are sent along all channels in the network which leads to a message complexity of O(N 2), and
requires channels to be FIFO. Elnozahy et al. [9] proposed an all-process non-blocking synchronous
checkpointing algorithm with a message complexity of O(N). In coordinated checkpointing protocols,
we may require piggybacking of integer csn (checkpoint sequence number) on normal messages [5,9,16,
19,29]. Kumar et al. [18] proposed an all-process non-intrusive checkpointing protocol for distributed
systems, where just one bit is piggybacked on normal messages. It results in extra overhead of vector
transfers during checkpointing.

The existence of mobile nodes in a distributed system introduces new issues that need proper handling
while designing a checkpointing algorithm for such systems. These issues are mobility, disconnection,
finite power source, vulnerable to physical damage, lack of stable storage etc. These issues make tradi-
tional checkpointing techniques unsuitable to checkpoint mobile distributed systems [1,5,26]. To take a
checkpoint, an MH has to transfer a large amount of checkpoint data to its local MSS over the wireless net-
work. Since the wireless network has low bandwidth and MHs have low computation power, all-process
checkpointing will waste the scarce resources of the mobile system on every checkpoint. Prakash and
Singhal [26] gave minimum-process coordinated checkpointing protocol for mobile distributed systems.
In minimum-process coordinated checkpointing algorithms, only a subset of interacting process (called
minimum set) is required to take checkpoints in an initiation. A process Pi is in the minimum set only
if checkpoint initiator process is transitively dependent upon it. Pj is directly dependent upon Pk only
if there exists m such that Pj receives m from Pk in the current checkpointing interval [CI] and Pk has
not taken its permanent checkpoint after sending m.

A good checkpointing protocol for mobile distributed systems should have low overheads on MHs
and wireless channels and should avoid awakening of MHs in doze mode operation. The disconnection
of MHs should not lead to infinite wait state. The algorithm should be non-intrusive and should force
minimum number of processes to take their local checkpoints [26]. In minimum-process coordinated
checkpointing algorithms, some blocking of the processes takes place [4,15], or some useless checkpoints
are taken [5,16,19].

Acharya and Badrinath [1] gave a checkpointing protocol for mobile systems. In this approach, an MH
takes a local checkpoint whenever a message receipt is preceded by the message sent at that MH. This
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algorithm has no control over checkpointing activity on MHs and depends totally on communication

patterns. In worst case, the number of local checkpoints taken will be equal to the number of computation

messages, which may lead to high checkpointing overhead.

Cao and Singhal [5] achieved non-intrusiveness in the minimum-process algorithm by introducing the

concept of mutable checkpoints. The number of useless checkpoints in [5] may be exceedingly high in

some situations [19]. Kumar et al. [19] and Kumar et al. [16] reduced the height of the checkpointing

tree and the number of useless checkpoints by keeping non-intrusiveness intact, at the extra cost of

maintaining and collecting dependency vectors, computing the minimum set and broadcasting the same

on the static network along with the checkpoint request.

Koo and Toeg [15], and Cao and Singhal [4] proposed minimum-process blocking algorithms. Neves

et al. [22] gave a loosely synchronized coordinated protocol that removes the overhead of synchroniza-

tion. Higaki and Takizawa [13] proposed a hybrid checkpointing protocol where the mobile stations

take checkpoints asynchronously and fixed ones synchronously using the algorithm [15]. Kumar and

Kumar [20] proposed a minimum-process coordinated checkpointing algorithm where the number of

useless checkpoints and blocking are reduced by using a probabilistic approach. A process takes its

mutable checkpoint only if the probability that it will get the checkpoint request in the current initiation

is high.

Transferring the checkpoint of an MH to its local MSS may have a large overhead in terms of

battery consumption and channel utilization. To reduce such an overhead, an incremental checkpointing

technique could be used [28]. Only the information, which changed since last checkpoint, is transferred

to MSS.

In the present study, we design a hybrid coordinated checkpointing algorithm for mobile distributed

systems, where an all-process checkpoint is taken after executing minimum-process algorithm for a fixed

number of times. By proposing a hybrid scheme, we try to balance the checkpointing overhead and the

loss of computation on recovery. We also reduce the piggybacked information onto each computation

message. For minimum-process checkpointing, we propose a blocking algorithm, where processes are

allowed to perform their normal computation, send messages and partially receive them during the

blocking period.

The rest of the paper is organized as follows. We formulate the hybrid checkpointing algorithm in

Section 2. The correctness proof is provided in Section 3. In Section 4, we evaluate the proposed scheme.

Section 5 presents conclusions.

2. The proposed hybrid checkpointing algorithm

2.1. System model

Our system model is similar to [5,19]. There are n spatially separated sequential processes

P0, P1, . . . , Pn−1, running on MHs or MSSs, constituting a mobile distributed computing system. Each

MH/MSS has one process running on it. The processes do not share memory or clock. Message passing

is the only way for processes to communicate with each other. Each process progresses at its own speed

and messages are exchanged through reliable channels, whose transmission delays are finite but arbitrary.

A process in the cell of MSS means the process is either running on the MSS or on an MH supported by it.

It also includes the processes of MHs, which have been disconnected from the MSS but their checkpoint

related information is still with this MSS. We also assume that the processes are non-deterministic. The
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ith CI (checkpointing interval) of a process denotes all the computation performed between its i th and

(i + 1)th checkpoint, including the ith checkpoint but not the (i + 1)th checkpoint.

When an MH sends an application message, it is first sent to its local MSS over the wireless cell.

The MSS piggybacks appropriate information with the application message, and then routes it to the

destination MSS or MH. When the MSS receives an application message to be forwarded to a local MH,

it first updates the data structures that it maintains for the MH, strips all the piggybacked information, and

then forwards the message to the MH. Thus, an MH sends and receives application messages that do not

contain any additional information; it is only responsible for checkpointing its local state appropriately

and transferring it to the local MSS.

2.2. Basic idea

In minimum-process checkpointing, some processes, having low communication activity, may not

be included in the minimum set for several checkpoint initiations and thus may not advance their

recovery line for a long time. In the case of a recovery after a fault, this may lead to their rollback

to far earlier checkpointed state and the loss of computation at such processes may be exceedingly

high. Furthermore, due to scarce resources of MHs, this loss of computation may be undesirable. In

all-process checkpointing, recovery line is advanced for each process after every global checkpoint

but the checkpointing overhead may be exceedingly high, especially in mobile environments due to

frequent checkpoints. MHs utilize the stable storage at the MSSs to store checkpoints of the MHs [1].

Thus, to balance the checkpointing overhead and the loss of computation on recovery, we design a

hybrid checkpointing algorithm for mobile distributed systems, where an all-process checkpoint is taken

after certain number of minimum-process checkpoints. The number of times, the minimum-process

checkpointing algorithm is executed, depends on the particular application and environment and can be

fine-tuned.

In coordinated checkpointing, an ever-increasing integer csn is generally piggybacked onto normal

messages [9,29]. We propose a strategy to optimize the size of the csn. In order to address different

checkpointing intervals, we have replaced integer csn with k-bit CI. Integer csn is monotonically increas-

ing, each time a process takes its checkpoint, it increments its csn by 1. k-bit CI is used to serve the

purpose of integer csn. The value of k can be fine-tuned. If we use p-bit CI, we will be able to distinguish

only 2p different CIs and it will be implicitly assumed that no message is delivered after 2p − 1 CIs. The

lower limit of k is ‘1’ which will lead to CI of ‘1’ bit [18].

In the present study, we assume that all-process coordinated checkpoint is taken after the execution of

minimum-process algorithm for seven times which requires only three-bit CI. In this case, any delay of

a message that extends to more than seven CIs may cause a false checkpoint [18], i.e., it may trigger a

checkpoint even if an initiator does not trigger checkpointing activity. Thus, in this algorithm, such delay

needs to be avoided. The limit of maximum delay period of a message can be extended to fifteen CIs

by using four-bit CI, but it will increase the information piggybacked onto each computation message

by 1-bit. By using four-bit CI, we have the option of executing minimum-process algorithm for 3, 7 or

15 number of times before taking an all-process checkpoint. If we use two-bit CI, the maximum delay

of a massage should not exceed three CIs, which seems to be unreasonably small in mobile systems. In

this case, minimum-process algorithm needs to be executed for three times before taking an all-process

checkpoint.

The minimum-process checkpointing algorithm is based on keeping track of direct dependencies

of processes. Similar to [4], initiator process collects the direct dependency vectors of all processes,
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computes minimum set, and sends the checkpoint request along with the minimum set to all processes.

In this way, blocking time has been significantly reduced as compared to [15].
During the period, when a process sends its dependency set to the initiator and receives the minimum

set, may receive some messages, which may alter its dependency set, and may add new members to the

already computed minimum set. In order to keep the computed minimum set intact and to avoid useless
checkpoints as in [16,19], we propose to block the processes for this period. We have classified the
messages, received during the blocking period, into two types: (i) messages that alter the dependency

set of the receiver process (ii) messages that do not alter the dependency set of the receiver process. The
former messages need to be delayed at the receiver side. The messages of the later type can be processed

normally. All processes can perform their normal computations and send messages during their blocking
period. When a process buffers a message of former type, it does not process any message till it receives
the minimum set so as to keep the proper sequence of messages received. When a process gets the

minimum set, it takes the checkpoint, if it is in the minimum set. After this, it receives the buffered
messages, if any. By doing so, blocking of processes is reduced as compared to [4].

2.3. Data Structures

Here, we describe the data structures used in the proposed checkpointing protocol. A process on MH
that initiates checkpointing, is called initiator process and its local MSS is called initiator MSS. If the
initiator process is on an MSS, then the MSS is the initiator MSS. All data structures are initialized on

completion of a checkpointing process if not mentioned explicitly.

(i) Each process Pi maintains the following data structures, which are preferably stored on local MSS:

ccii : Three-bit current checkpointing interval.

ncii : Three-bit next checkpointing interval. Maintenance of cci and nci is given below in point

(iv). It is the next checkpointing interval, i.e., if Pi takes a new checkpoint, the new

checkpointing interval will be ncii.

tentativei : A flag that indicates that Pi has taken its tentative checkpoint for the current initiation.

ddvi[ ] : A bit vector of size n. ddvi[j] is set to ‘1’ if Pi receives a message from Pj such that Pi

becomes directly dependent upon Pj for the current CI. Initially, the bit vector is initialized

to zeroes for all processes except for itself, which is initialized to ‘1’. For MHi it is kept

at local MSS. On global commit, ddv[ ] of all processes are updated. In all-process
checkpointing, each process initializes its ddv[ ] on tentative checkpoint. Maintenance of

ddv[ ] is given in point (vi) below.

blockingi : A flag that indicates that the process is in blocking period. Set to ‘1’ when P i receives the

ddv[ ] request; set to ‘0’ on the receipt of the minimum set.

bufferi : A flag. Set to ‘1’ when Pi buffers first message in its blocking period.

c statei : A flag. Set to ‘1’ on the receipt of the minimum set. Set to ‘0’ on receiving commit or

abort.

(ii) Initiator MSS maintains the following Data structures:

minset[ ]: A bit vector of size n. Computed by taking transitive closure of ddv[ ] of all processes

with the ddv[ ] of the initiator process [4]. Minimum set ={Pk such that minset[k]=1}.

R[ ] : A bit vector of length n. R[I] is set to ‘1’ if Pi has taken a tentative checkpoint.

Timer1: A flag; set to ‘1’ when maximum allowable time for collecting minimum-process global

checkpoint expires.
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Timer2: A flag; set to ‘1’ when maximum allowable time for collecting all-process checkpoint

expires.

(iii) Each MSS (including initiator MSS) maintains the following data structures:

D[ ] : A bit vector of length n. D[i]=1 implies Pi is running in the cell of MSS.

EE[ ]: A bit vector of length n. EE[i] is set to ‘1’ if Pi has taken a tentative checkpoint and

D[i] =1.

s bit: A flag at MSS. Initialized to ‘0’. Set to ‘1’ when some relevant process in its cell

fails to take its tentative checkpoint.

Pin : Initiator process identification.

cciin : Pin’s cci after it took its tentative checkpoint;

matdn∗8[ ] : A bit dependency matrix to determine whether a message of a particular CI will affect the

ddv[ ] of receiver or not; n rows denote the n processes and eight columns denote eight

CIs.

g chkpt: A flag which is set to ‘1’ on the receipt of (i) checkpoint request in all-process checkpointing

or (ii)ddv [ ] request in minimum-process algorithm.

chkpt A flag which is set to 1 when the MSS receives the checkpoint request in the minimum-

process algorithm.
mss id An integer. It is unique to each MSS and cannot be null.

(iv) Maintenance of Different CIs

Initially, for a process, cci and nci are [000] and [001] respectively. When a process updates its

CIs, it sets: (i) cci=nci (ii) nci=modulo 8(++nci); for simplicity, we only mention: cci=nci. When a

process takes its tentative checkpoint, it updates its CIs. This updating is undone if the checkpointing

process is aborted. During minimum-process checkpointing, all such processes, that are not part of the

minimum-set, also update their CIs on commit. In this way, when no checkpointing process is going on,

all the processes are having the same values of cci.

(v) Maintenance of matd[ ]

Initially, an all-process global checkpoint commit, with cciin= [000], is assumed. On global checkpoint

commit with cciin=ccic, matd[ ] is maintained as follows:

if (ccic ==000) // all-process global checkpoint commit

{initialize matd[ ];

for (k= 0; k<n; k++)

matd[k,0]=1;}
else

{ for (k= 0; k<n; k++) // minimum-process checkpoint commit

matd[k, ccic]=1;

if (minset[k]==1)

{ for (s=0; s<ccic;s++)

matd[k, s]=0;}}

(vi) Maintenance of ddv[ ]

In this section, we describe, how the ddv vector of a process P i is updated on the receipt of a

message or during minimum-process checkpointing. When P i sets its c state, it maintains two temporary
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bit dependency vectors, ddv1[ ] and ddv2[ ], of length n. These are initialized to all zeroes. The

dependencies created during checkpointing process are temporarily maintained in these vectors. On

checkpoint completion, these vectors update dependencies of the process.

Suppose, Pi receives m from Pj , where m.cci is the cci at Pj at the time of sending m. minset[ ] is

the exact minimum set received along with the checkpoint request. The dependency vectors at P i [ddv,

ddv1 and ddv2] are maintained as follows:

if (blockingi==0 ∧c statei==0) //no checkpointing going on

{ if ( matd[j, m.cci]==1) ddv[j]=1; //Pi becomes dependent upon Pj after receiving m

else receive(m); // Pj has taken some permanent checkpoint after sending m; no ddv[ ] is

//updated

}
else if ( blockingi==1) receive(m); // Pi is in blocking period; no ddv[ ] is updated;

//selective messages are buffered during this period [Refer Section 2.4(c) and 2.5(c)]

else if ((tentativei∧m.cci= =ccii ) ∨ (!tentativei∧m.cci= =ncii)) ddv1[j]=1;

//Pj has taken its checkpoint for the current initiation before sending m

else if (matd[j, m.cci]==1) ddv2[j]=1; // Neither Pj has taken its checkpoint for the current

//initiation nor Pj has taken any permanent checkpoint after sending m

else receive(m);

On Commit or Abort, ddv vector of Pi is updated as follows:

Case 1. The checkpointing process is aborted.

for (k= 0; k<n; k++)

if (ddv1[k]==1 ∨ ddv2[k]==1) ddv[k]=1;}
Case 2. The checkpointing process is committed and P iis in the minimum set.

for (k=0; k<n; k++)

{ddv[k]=0;

if (ddv1[k]==1) ddv[k]=1;

if (ddv2[k]==1 ∧ minset[k]==0) ddv[k]=1;}
ddv[i]=1;

Case 3. The checkpointing process is committed and P iis not in the minimum set.

for (k= 0; k<n; k++)
{ if (ddv[k]==1 ∧ minset[k]==1) ddv[k]=0;

if (ddv1[k]==1) ddv[k]=1;

if (ddv2[k]==1 ∧ minset[k]==0) ddv[k]=1;}

2.4. The proposed minimum-process checkpointing algorithm

(a) Checkpoint initiation

The initiator MSS sends a request to all MSSs (MSSs of the mobile system under consideration) to

send the ddv vectors of the processes in their cells. All ddv vectors are at MSSs and thus no initial

checkpointing messages or responses travels wireless channels. On receiving the ddv[ ] request, an MSS

records the identity of the initiator process (say mss id= mss idin) and initiator MSS, sends back the ddv[
] of the processes in its cell, and sets g chkpt. If the initiator MSS receives a request for ddv[ ] from some

other MSS (say mss id= mss idin2) and mss idin is lower than mss idin2, the current initiation (having

mss id= mss idin) is discarded and the new one (having mss id= mss id in2) is continued. Similarly,

if an MSS receives ddv requests from two MSSs, then it discards the request of the initiator MSS with
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lower mss id. Otherwise, on receiving ddv vectors of all processes, the initiator MSS computes minset[
], sends checkpoint request to the initiator process and sends checkpoint request along with the minset[
] to all MSSs.

(b) Reception of a checkpoint request

On receiving the checkpoint request along with the minset[ ], an MSS, say MSS j , takes the following
actions. It sends the checkpoint request to Pi only if Pi belongs to the minset[ ] and Pi is running in
its cell. On receiving the checkpoint request, Pi takes its tentative checkpoint and informs MSSj . On
receiving positive response from Pi, MSSj updates ccii, ncii, resets blockingi, and sends the buffered
messages to Pi, if any. Alternatively, If Pi is not in the minset[ ] and Pi is in the cell of MSSj , MSSj

resets blockingi and sends the buffered message to Pi, if any. For a disconnected MH, that is a member
of minset[ ], the MSS that has its disconnected checkpoint, converts its disconnected checkpoint into
tentative one and updates its CIs.

(c) Computation message received during checkpointing

During blocking period, Pi processesm, received from Pj , if following conditions are met: (i) (!buferi)
i.e. Pi has not buffered any message (ii) (m.cci != ncii) i.e. Pj has not taken its tentative checkpoint
before sending m (iii) (ddvi[j]=1) ∨ (matd[j, m.cci]= 0)) i.e. Pi is already dependent upon Pj in the
current CI or Pj has taken some permanent checkpoint after sending m.

Otherwise, the local MSS of Pi buffers m for the blocking period of Pi and sets bufferi. On receiving
messages, ddv vectors are updated as described in Section 2.3(vi).

(d) Termination

When an MSS learns that all of its processes in minimum set have taken their tentative checkpoints or
at least one of its process has failed to checkpoint, it sends the response message to the initiator MSS.

Finally, initiator MSS sends commit or abort to all processes. On receiving abort, a process discards its
tentative checkpoint, if any, and undoes the updating of data structures. On receiving commit, processes,
in the minset[ ], convert their tentative checkpoints into permanent ones. On receiving commit or abort,
all processes update their ddv vectors and other data structures.

2.5. Formal outline of the proposed minimum-process algorithm

(a) Actions Taken when Pi sends m to Pj:

send (Pi,m, ccii);

(b) Algorithm Executed at the initiator MSS:

1. If the checkpoint initiator process, say Pin, runs on an MH, it sends the checkpoint initiation
request to its local MSS, say MSSin.

2. if (g chkpt) { discard the checkpoint initiation request; inform initiator; exit}.
// some global checkpoint recording is already going on

3. MSSin sends request to all MSSs for ddv vectors; set g chkpt in.
4. On the receipt of request to send ddv vectors from some other process, say P k :

if (Pk .ID> Pin.ID) {discard Pin’s initiation; honor Pk’s request; exit;}
else { ignore the request of Pk ;}// it avoid concurrent initiations of the algorithm

5. On the receipt of all ddv vectors:

(i) Compute minset[ ] // compute minimum set of processes
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(ii) Send checkpoint request to Pin; cciin=nciin;

(iii) Send take checkpoint (Pin, MSSin, cciin, minset[ ]) request to all MSSs;

6. Set timer1;

7. Wait for response;

8. On receiving Response (Pin, MSSin, MSSs, EE[ ], s bit) or at timer out {timer1}:

// MSSs is the identity of MSS sending the response

// EE[ ] contains the processes at MSSs which have checkpointed

(i) If ((timer1) ∨ (s bit))

{ send message abort( Pin, MSSin, cciin ) to all MSSs; exit;}
(ii) for (k= 0; k<n; k++)

if ( EE[k]= =1) R[k] =1;

9. for (k=0; k<n; k++)

if (R[j] �=minset[j]) go to step 7; //It implies response from Pj is still awaited.

10. Send message commit (Pin, MSSin, cciin) to all MSSs;

(c) Actions taken when Pi receives m from Pj:

if (!blockingi) receive(m);
else if((!bufferi)∧( m.cci != ncii){

if (ddvi[j]= =1∨ (matd[j, m.cci]= 0) receive(m);}
else {buffer(m); set bufferi;}
// Pi updates its ddv[ ] on processing m as described in Section 2.3 (vi)

(d) Algorithm Executed at any MSS, say MSSs:

1. Upon receiving a message to send ddv[ ] from the initiator MSS:

if (! g chkpt)

{Send ddv[ ] of all processes in its cell ;

Set g chkpt;

for (j=0; j<n; j++)

if (D[j]==1) set blockingj ;}
else if (Pnew.ID> Pold.ID)

//Pnew is the new initiator process; Pold is the earlier initiator process.

Send ddv[ ] of all processes in its cell;

else {ignore the request;}
2. Upon receiving message take checkpoint(P in, MSSin, cciin, minset[ ]):

(i) if (chkpt) discard the checkpoint request; // duplicate request

(ii) set chkpt; initialize EE[ ]; reset s bit;

(iii) for (j=0; j<n; j++)

{ if ((D[j]==1) ∧ (minset[j]==1))

{Send the checkpoint request to Pj ; ccij=ncij;}
else { reset blockingj;

send the buffered messages to Pj , if any;}
}

3. Wait for a response to the checkpoint request;
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4. Upon receiving response to checkpoint request from P j :

(i) if (Pj has taken the tentative checkpoint successfully)

{EE[j]=1; send the buffered messages to Pj , if any;

reset blockingj;}
else set s bit;

(ii) if ((s bit)∨(∀j s.t.(minset[j]==1∧D[j]) EE[j]=1) //some relevant process has

//failed to checkpoint or all relevant processes in the cell took checkpoints

send the message Response(Pin , MSSin, MSSs, D[ ], s bit ) to MSSin;

else go to step 3;

5. On receiving Commit ( ) or Abort( ):

– send the request to all of its processes;

– update data structures;

(e) Algorithm Executed at any process Pi:

1. Upon receiving a tentative checkpoint request:

– Take a tentative checkpoint;

– Send the response to local MSS;

2. On receiving Commit( ):

if (tentativei) {
{discard old permanent checkpoint, if any;

convert the tentative checkpoint into permanent one;}
3. On receiving Abort ( ):

if (tentativei)
{discard the tentative checkpoint;}

2.6. All-process checkpointing

Our all process checkpointing algorithm is similar to Elnozahy et al. [8]. Initiator MSS sends request to

all processes to checkpoint. On receiving the checkpoint request, a process takes the tentative checkpoint

if it has not taken the checkpoint during current initiation. After taking a checkpoint, a process updates

its CIs. A process, after taking its tentative checkpoint or knowing its inability to take the checkpoint,

informs its local MSS.

When a process sends a computation message, it appends its cci with the message. When a process, say

Pi, receives a computation messagemfrom some other process, say P j,Pi takes the tentative checkpoint

before processing the message if m.cci equals nci i; otherwise, it simply processes the message.

When an MSS learns that its all processes have taken the tentative checkpoints successfully or at least

one of its processes has failed to checkpoint, it sends the response to the initiator MSS. Finally, initiator

MSS sends commit or abort to all MSSs.

On commit, all processes convert their tentative checkpoints into permanent ones and update their data

structures. For MHs, MSSs update the data structures. On abort, all processes discard their tentative

checkpoints, if any, and undo the updating of data structures.



P. Kumar / A low-cost hybrid coordinated checkpointing protocol for mobile distributed systems 23

2.7. Handling node mobility and disconnections

An MH may be disconnected from the network for an arbitrary period of time. The Checkpointing

algorithm may generate a request for such MH to take a checkpoint. Delaying a response may significantly

increase the completion time of the checkpointing algorithm. We propose the following solution to deal

with disconnections that may lead to infinite wait state.

When an MH, say MHi, disconnects from an MSS, say MSSk, MHi takes its own checkpoint, say dis-

connect ckpti, and transfers it to MSSk. MSSk stores all the relevant data structures and disconnect ckpt i

of MHi on stable storage. During disconnection period, MSSk acts on behalf of MHi as follows. In

minimum-process checkpointing, if MHi is in the minset[ ], disconnect ckpti is considered as MHi’s

checkpoint for the current initiation. In all-process checkpointing, if MHi’s disconnect ckpti is already

converted into permanent one, then the committed checkpoint is considered as the checkpoint for the

current initiation; otherwise, disconnect ckpti is considered. On global checkpoint commit, MSSk also

updates MHi’s data structures, e.g.,ddv[ ], cci etc. On the receipt of messages for MH i, MSSk does not

update MHi’s ddv[ ] but maintains two message queues, say old m q and new m q, to store the messages

as described below.

On the receipt of a messagem for MHi at MSSk from any other process:

if((m.cci= = ccii∨ (m.cci= =ncii)∨ (matd[j, m.cci]= =1))

add (m, new m q); // keep the message in new m q

else

add( m, old m q);

On all-process checkpoint commit:

Merge new m q to old m q;

Free(new m q);

When MHi, enters in the cell of MSSj , it is connected to the MSSj if g chkptj is reset. Otherwise, it

waits for g chkptj to be reset. Before connection, MSSj collects MHi’s ddv[ ], cci, new m q, old m q from

MSSk; and MSSk discards MHi’s support information and disconnect ckpti. MSSj sends the messages in

old m q to MHi without updating the ddv[ ], but messages in new m q, update ddv[ ] of MH i.

2.8. Example

We explain our minimum-process checkpointing algorithm with the help of an example. In Fig. 1,

at time t1, P1 initiates checkpointing process and sends request to all processes for their ddv vectors.

During the blocking time of a process, selective messages are buffered as follows. P 2 processes m0,

because, P1 has taken permanent checkpoint after sending m0. P2 processes m6, because, ddv2 [3] is

already 1 due to receive of m3. P2 buffers m7, because, ddv2 [4] is 0 due to non-receipt of any message

from P4 during current CI. P2 buffers m8 to keep the proper sequence of messages received. ddv 4 [5]

equals 1 due to m4, therefore, P4 processes m9. Similarly, P5 processes m10, because, ddv5 [4] equals 1

due to m5. P5 buffers m13, because, P3 has taken a new checkpoint before sending m13 and P5 has not

received the checkpoint request from P1.

At time t2, P1 receives the ddv[ ] from all processes [not shown in the figure], computes minset[ ]

[which in case of Fig. 1 is {P1, P2, P3}], sets cci1=nci1, sends checkpoint request along with the minset[

] to all processes, and takes its own tentative checkpoint.
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Fig. 1.

When P2 gets the checkpoint request, it finds itself a member of the minset [ ]. It takes the following

actions: (i) take its own tentative checkpoint, (ii) set cci2=nci2, (iii) send the response to P1 [not shown

in the figure], (iv) process the buffered messages, i.e., m7 and m8. When P5 receives the checkpoint

request, it is not a member of theminset[ ]; therefore, it does not checkpoint but processes the buffered

message, i.e., m13. At time t3, P1 receives responses, decides to commit or abort the checkpointing

activity, and sends abort or commit request to all processes.

2.9. Multiple concurrent initiations

We point out the following problems in allowing concurrent initiations in minimum-process check-

pointing protocols, particularly in case of mobile distributed systems:

(i) If Pi and Pj concurrently initiate checkpointing process and Pj belongs to the minimum set of Pi,

then Pj’s initiation will be redundant. Some processes, in Pj’s minimum set, will unnecessarily

take multiple redundant checkpoints. This will waste the scarce resources of the mobile distributed

system.

(ii) In case of concurrent initiations, multiple triggers need to be piggybacked on normal messages

[23]. Trigger contains the initiator process identification and its csn. This leads to considerable

increase in piggybacked information.

Concurrent initiations may exhaust the limited battery life and congest the wireless channels. There-

fore, the concurrent executions of the proposed protocol are not considered.
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2.10. Handling failures during checkpointing

Since MHs are prone to failure, an MH may fail during checkpointing process. Sudden or abrupt
disconnection of an MH is also termed as a fault. Suppose, P i is waiting for a message from Pj and
Pj has failed, then Pi times out and detects the failure of Pj . If the failed process is not required to
checkpoint in the current initiation or the failed process has already taken its tentative checkpoint, the
checkpointing process can be completed uninterruptedly. If the failed process is not the initiator, one way
to deal with the failure is to discard the whole checkpointing process similar to the approach in [15,26].
The failed process will not be able to respond to the initiator’s requests and initiator will detect the failure
by timeout and will abort the current checkpointing process. If the initiator fails after sending commit or
abort message, it has nothing to do for the current initiation. Suppose, the initiator fails before sending
commit or abort message. Some process, waiting for the checkpoint/commit request, will timeout and
will detect the failure of the initiator. It will send abort request to all processes discarding the current
checkpointing process.

The above approach seems to be inefficient, because, the whole checkpointing process is discarded
even when only one participating process fails. Kim and Park [17] proposed that a process commits its
tentative checkpoints if none of the processes, on which it transitively depends, fails; and the consistent
recovery line is advanced for those processes that committed their checkpoints. The initiator and other
processes, which transitively depend on the failed process, have to abort their tentative checkpoints.
Thus, in case of a node failure during checkpointing, total abort of the checkpointing is avoided.

3. Correctness proof

The correctness proof for the proposed minimum-process checkpointing algorithm is as under:
Let GCi = {C1,x, C2,y, . . . , Cn,z} be some consistent global state created by our algorithm, where

Ci,x is the xth checkpoint of Pi.

Theorem 1. The global state created by the ith iteration of the checkpointing protocol is consistent.
Proof: Let us consider that the system is in consistent state when a process initiates checkpointing.

The recorded global state will be inconsistent only if there exists a message m between two processes P i

and Pj such that Pi sends m after taking the checkpoint Ci,x, Pj receives m before taking the checkpoint
Cj,y, and both Ci,x and Cj,y are the members of the new global state. We prove the result by contradiction
that no such message exists. We consider all four possibilities as follows:

Case I: Pi belongs to minimum set and Pj does not:

As Pi is in minimum set, Ci,x is the checkpoint taken by Piduring the current initiation and Cj,y is the
checkpoint taken by Pj during some previous initiation i.e. Cj,y → Ci,x . Therefore rec(m) → Cj,y

and Ci,x → send (m) implies rec(m) → Cj,y → Ci,x → send (m) implies rec(m) → send (m) which
is not possible. ‘→’ is the Lamport’s happened before relation [21].
Case II: Both Pi and Pj are in minimum set:

Both Ci,x and Cj,y are the checkpoints taken during current initiation. There are following possibil-
ities:

(a) Pi sends m after taking the tentative checkpoint and Pj receives m before receiving request for

dependency:

Any process can take the checkpoint only after initiator receives the dependencies from all
processes. Therefore a message sent from a process after taking the checkpoint can not be
received by other process before getting the dependency request.
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(b) Pi sends m after taking the tentative checkpoint and Pj receives m after getting the dependency

request but before taking the checkpoint:

In this case, following condition will be true at the time of receiving m: (blockingj) &&

(m.cci=ncij). Therefore, m will be buffered at Pj , and it will be processed only after Pj takes

the tentative checkpoint.

(c) Pi sends m after commit and Pj receives m before taking tentative checkpoint:

As Pj is in the minimum set, initiator can issue a commit only after Pj takes tentative checkpoint

and informs initiator. Therefore the event rec(m) at Pj cannot take place before Pj takes the

checkpoint.

Case III: Pi is not in minimum set but Pj is in minimum set:

Checkpoint Cj,y belongs to the current initiation and Ci,x is from some previous initiation. The

message m can be received by Pj :

(i) before receiving request for dependency

(ii) after receiving request for dependency but before taking the checkpoint Cj,y

If m is received during above (i), Pi will be included in the minimum set. If m is received during

(ii) above, Pj will process m, before taking the tentative checkpoint, if any of the following conditions

is true:

a. ddvj[i]=1. In this case Pi will also be included in the minimum set.

b. (matd[j, m.cci]= 0). This is possible only if Pi has taken some permanent checkpoint after

sending m. In that case, m is not an orphan message.

Case IV: Both Pi and Pj are not in minimum set:

Neither Pi nor Pj will take a new checkpoint, therefore, no such m is possible unless and until it

already exists.

Theorem 2. Checkpointing Algorithm terminates in finite time.

Proof: When initiator initiates a new checkpoint, the initiator and other processes take the

following steps:

– Initiator asks all MSSs to send the ddv vectors of processes in their cells. All MSSs send the same.

– Initiator computes the minimum set and sends it to all MSSs along with checkpoint request.

– All nodes that are members of minimum set take tentative checkpoints and inform the initiator. If

the process is at MH, then the MH may be: disconnected, changing the cell or connected. In the

first case, the disconnected checkpoint of MH is used and the last MSS converts this checkpoint

to tentative on behalf of MH. In second case, the checkpoint request is delayed and MH takes the

checkpoint in the new cell. In third case, MH takes the checkpoint as it is still connected. The MSS

that have disconnected checkpoints or the tentative checkpoints of MHs, inform the initiator.

– After getting response from all processes/MSSs, the initiator sends commit message to all the

processes.

– The processes convert their tentative checkpoints into permanent ones after receiving the commit

message from the initiator.

All nodes will complete above steps in finite time unless a node is faulty. If a node in the mini-

mum set becomes faulty during checkpointing, the whole of the checkpointing process is aborted (see

Section 2.10). Hence, it can be inferred that the algorithm terminates in finite time.
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Table 1
A comparison of average number of messages blocked during checkpointing

Message sending rate 0.001 0.01 0.1 1 10

Proposed algorithm 4*10−7 4*10−6 4*10−5 4*10−4 4*10−3

Cao-Singhal algorithm [4] 8*10−7 8*10−6 8*10−5 8*10−4 8*10−3

4. Evaluation of the protocol

Our protocol is a hybrid of all-process and minimum-process coordinated checkpointing schemes. We

have also formulated a minimum-process checkpointing algorithm that can be applied independently by

using integer csn in place of k-bit CI. Therefore, we evaluate our minimum-process algorithm and the

hybrid algorithm separately.

4.1. Evaluation of the proposed minimum-process checkpointing algorithm

4.1.1. Computation of average blocking time and average number of messages blocked

The mobile distributed system considered has N MHs and M MSSs. Each MSS is a fixed host that

has wired and wireless interface. The two MSSs are connected using a 2Mbps communication link.

Each MH or MSS has one process running on it. The length of each system message is 50 bytes. The

average delay on static network for sending system message is (8*50*1000)/(2*1000000) = 0.2 ms. The

blocking time is 2*0.2 = 0.4 ms. In the proposed algorithm, selective incoming messages at a process

are blocked during its blocking period. We consider the worst case in which all incoming messages are

blocked. In Cao-Singhal [4] algorithm, a process can neither send nor receive any messages during its

blocking period. The number of messages blocked at a process during its blocking period depends upon

the message sending rate and blocking period and are shown in the Table 1.

The average blocking period of a message in both the algorithms is 0.4/2 = 0.2 ms. Hence, the number

of messages blocked in our algorithm is less than half the number of messages blocked in the Cao-

Singhal [4] algorithm, which has got the minimum blocking time of all the existing minimum-process

blocking algorithms.

4.1.2. Performance of the proposed minimum-process algorithm

We use the following notations for performance analysis of the algorithms:
Nmss: number of MSSs.

Nmh: number of MHs.

Cpp: cost of sending a message from one process to another.

Cst: cost of sending a message between any two MSSs.

Cwl: cost of sending a message from an MH to its local MSS (or vice versa).

Cbst: cost of broadcasting a message over static network.
Csearch: cost incurred to locate an MH and forward a message to its current local MSS, from a

source MSS.

Tst: average message delay in static network.

Twl: average message delay in the wireless network.

Tch: average delay to save a checkpoint on the stable storage. It also includes the time to

transfer the checkpoint from an MH to its local MSS.
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N : total number of processes.

Nmin: number of minimum processes required to take checkpoints.

Nmut: number of useless mutable checkpoints [5].
Nind: number of useless induced checkpoints [19].

Nmutp: number of useless mutable checkpoints [16].

p: number of new processes found for the minimum set after the computation of tentative

minimum set at the initiator MSS [16].

h: height of the checkpointing tree in Koo-Toueg [15] algorithm.

k: number of bits used in CI in the proposed algorithm.

m: number of times the minimum-process algorithm is executed before enforcing an all-

process algorithm in the proposed protocol.

Tsearch: average delay incurred to locate an MH and forward a message to its current local MSS.

The Blocking Time:

During the time, when an MSS sends the ddv[ ] vectors and receives the checkpoint request, all the
processes in its cell remain in blocking period. During the blocking, a process can perform its normal
computations, send messages and partially receive them. In worst case, blocking period of a process
is 2Tst.

The Synchronization message overhead:

In worst case, it includes the following:
The initiator MSS broadcasts send ddv[ ], take checkpoint() and commit() messages to all MSSs:
3Cbst.
The checkpoint request message from initiator process to its local MSS and its response: 2Cwireless.
All MSSs send ddv[ ] of their processes and response to checkpoint request: 2N mss ∗ Cst.
MSSs send checkpoint and commit requests to relevant processes and receive response messages:
3Nmh ∗ Cwl.
Total Message Overhead (say MOHminp): 3Cbst+ 2Cwireless+2Nmss*Cst+ 3Nmh* Cwl.

Number of processes taking checkpoints: In our algorithm, only minimum number of processes is
required to checkpoint.

4.1.3. Comparison with other algorithms

The Koo-Toueg [15] algorithm is a minimum-process coordinated checkpointing algorithm for dis-
tributed systems. It requires processes to be blocked during checkpointing. Checkpointing includes
the time to find the minimum interacting processes and to save the state of processes on stable storage,
which may be too long. Therefore, this extensive blocking of processes may significantly reduce the
performance of the system in mobile environments where some of the MHs may not be available due to
disconnections. Each process uses monotonically increasing labels in its outgoing messages. In Koo-
Toueg algorithm [15]: (i) only minimum number of processes take checkpoints (ii) message overhead
is Nmh*( 6Cwl + Csearch) (iii) Blocking time is Nmh(Tch + Tsearch + 4Twl) [Refer Table 2]. Mes-
sage overhead and blocking time is on significantly higher side in comparison to our minimum-process
algorithm.

In Cao-Singhal algorithm [4], blocking time is reduced significantly as compared to [15]. Every
process maintains direct dependencies in a bit array of length n for n processes. Initiator process collects
the direct dependencies and makes a set of interacting processes (S forced) which need to checkpoint along
with the initiator. After sending its dependencies to the initiator and before receiving Sforced, a process
remains in the blocking state. During blocking period, processes can do their normal computations but
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Table 2
A comparison of system performance of the proposed min-process algorithm

Cao-Singhal [4] Cao-Singhal [5] Koo-Toueg [15] P. Kumar et al. [16] Proposed
min-process
algorithm

Avg. blocking time 2Tst 0 Nmh(Tch+Tst+4Twl) 0 2Tst

Average no. of checkpoints Nmin Nmin+ Nmut Nmin Nmin + Nmutp Nmin

Average message overhead MOHminp 2*Nmin* Cpp Nmh*(6Cwl + Csearch 3Cbst + 2Cwl MOHminp

+Cbst +(2Nmss + p) ∗ Cst

+3Nmh ∗ Cwl

Piggybacked information Nil Integer Integer Integer Integer
Concurrent executions No Yes No No No

cannot send any messages. The authors claim that the processes can receive messages during blocking

time. The algorithm [4] is not adapted to handle the following situation. Suppose P2 is the checkpoint

initiator and it receives m from P1 such that P1 has taken permanent checkpoint after sending m and P2

receives m in the current checkpointing interval before initiation. If P1 does not send any message to any

process such that P2 becomes transitively dependent upon P1, P1 does not need to take its checkpoint

initiated by P2. But in the above situation P2 will send the checkpoint request to P1 unnecessarily.

This problem arises because no information is piggybacked onto normal messages so that the receiver

process can decide whether it becomes dependent upon the sender after processing the message. In

our algorithm, a three-bit checkpoint sequence numbers are piggybacked onto normal messages and

there is sufficient information at every MSS such that the receiver is able to maintain exact dependency

information. During blocking period, processes can do their normal computations, send messages and

can process selective messages. By doing so, we reduce the blocking of processes as compared to [4].

In algorithm [4]: (i) only minimum number of processes take checkpoints (ii) message overhead

is 3Cbst+2Cwireless+2Nmss*Cst+3Nmh* Cwl (iii) Blocking time is 2Tst [Refer Table 2]. However,

these parameters are similar to our algorithm. They have not piggybacked any information onto normal

messages. The algorithm cannot tackle some messages as mentioned earlier in this section. In our

protocol, during blocking time, processes continue their normal computation, send messages and partially

receive them.

The algorithms proposed in [5,16] are non-blocking, but they suffer from useless checkpoints. The

message overhead in these algorithms is also on higher side as compared to the proposed scheme.

4.2. Evaluation of the proposed hybrid algorithm

In the proposed hybrid algorithm, the all process algorithm proposed by Elnozahy et al. [9] is enforced

after executing proposed min-process algorithm for m times. Therefore, the performance of the hybrid

algorithm is mainly dependent upon these two algorithms and the value of m.

As shown in Table 3, the average blocking time of the Koo-Toueg [15] protocol is the highest, followed

by Cao-Singhal [4] algorithm. The average blocking time of the proposed hybrid scheme is slightly less

than [4]. The other schemes are non-blocking, [5,9,16,19]. In Elnozahy et al [9] algorithm, all processes

take checkpoints. In the protocols [4,15], only minimum numbers of processes record their checkpoints.

In non-intrusive minimum-process checkpointing scheme [5,16,19], some useless checkpoints may be

taken, which are discarded on commit. The number of useless checkpoints in [19] is negligibly small

as compared to [5]. In the minimum-process algorithms, some processes may starve to checkpoint and

the loss of computation in the case of a recovery after a fault may be exceedingly high. In the proposed
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algorithm, the average number of processes that take checkpoints in an initiation is slightly greater than

the minimum required; but it reduces the loss of computation on recovery.

The average message overhead in the proposed protocol is slightly less than [4,19], but greater than [9]

[Refer Table 3]. In coordinated checkpointing, an integer csn is generally piggybacked on normal

messages [5,9,16,19]. In the algorithm [4], no information is piggybacked on normal messages. In the

proposed algorithm, k -bit CI is piggybacked on normal messages. In the present study, we have taken

k = 3. Concurrent executions of the algorithm are allowed in [5]. W. Ni et al. [23] have shown that this

algorithm [5] may lead to inconsistencies during concurrent executions.

5. Conclusion

We have designed a coordinated checkpointing algorithm which is a hybrid of minimum-process

and all-process algorithms. The number of processes that take checkpoints is minimized to avoid

awakening of MHs in doze mode of operation and thrashing of MHs with checkpointing activity.

Further, it saves limited battery life of MHs and low bandwidth of wireless channels. Moreover, to

avoid greater loss of computation in case of a recovery after a fault, an all-process checkpoint is taken

after executing minimum-process checkpointing for a fixed number of times, which, in fact, can be fine

tuned. Checkpointing overhead in the proposed scheme is slightly greater than the minimum-process

checkpointing but is far less than the all-process coordinated checkpointing. We have introduced the

k-bit sequence numbers instead of ever increasing integer csn that is piggybacked on normal messages.

This also leads to reduction in the communication overhead. We have also reduced the blocking of

processes during checkpointing.
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