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ABSTRACT In this paper, we present a Bluetooth LowEnergy (BLE) based indoor positioning system devel-

oped for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals

with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different

locations in a home environment. The specific location of the user in the building has been pre-recorded

into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the

BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the

tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been

carried out in different home environments to verify the proposed system and methods. The results show

that our system is able to accurately track the user location in home environments and can track the living

patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show

that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the

tracking accuracy.

INDEX TERMS Bluetooth low energy, living patterns, indoor localization, received signal strength indicator.

I. INTRODUCTION

In the past few years, we have witnessed considerable BLE

progress in localization systems relying on wireless sens-

ing technologies, which have been applied in areas includ-

ing navigation, human mobility, life pattern mining and

location-based services. Moreover, with the increased growth

of ubiquitous smart sensing, both human mobility pattern

and trajectory mining are becoming popular research areas

for learning and discovering human activities and living pat-

terns [1]. GPS technologies [2] accurately geolocate users

and can also provide a level of accuracy for outdoor activity

recognition. A number of studies have been carried out to

analyze outdoor lifestyle activities [1], [3]. However, GPS

technologies cannot be used for assessing indoor activities

given that the GPS signal is not able to penetrate buildings.

More importantly, an aging population is becoming a

global challenge and there is a growing interest in monitoring

and assisting people living with dementia and people with
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disabilities in indoor environments [4], [5]. Over recent

decades, the number of old people has increased significantly.

The European Commission had predicted that between

1995 and 2025 theUK alonewill see a 44% rise in people over

60 years old [6]. An aging and disabled population presents a

significant challenge for the health care systems [7]. There is

an increasing need for home rehabilitation to understand the

needs of older users, carers and clinicians [8]. In addition,

people spend most of their time (∼90%) indoors, e.g. at a

work place or at home according to a National Human Activ-

ity Pattern Survey [9]. Therefore, indoor tracking is in great

demand for all kinds of people. Understanding the indoor

patterns of users (especially for frail people and/or people

living with dementia) will help detect any anomaly event (e.g.

fall at home, and epileptic seizure) of the user. Moreover,

the long-term monitoring of an occupant’s use of their home

will help with clinical decision making and diagnostics whilst

also providing a deeper understanding of chronic conditions

such as dementia, and neurological conditions.

Considerable research effort has been spent to explore

indoor location tracking technologies including the use of
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cameras [10], ultrasound [11], RF [12], infrared [13], Wi-Fi

[14], [15], Bluetooth [16] and etc. Among these technolo-

gies, Wi-Fi and Bluetooth based methods have been promi-

nently used for indoor positioning. Moreover, there has been

extensive work carried out on Bluetooth and iBeacons based

indoor localization systems [17], [18]. In the iBeacon-based

methods, a user’s mobile phone is localized by the iBeacons

installed at different afore-known locations in a test envi-

ronment. However, these methods are based on a proxy by

localizing the user’s mobile phone to determine the location

of the user. In real-world cases, people tend not to keep

their phones on their physical body at all times in an indoor

environment, especially in home environments. Therefore,

the location of the phone may not indicate the location of

the user. In order to accurately monitor the location of the

user in an indoor environment, a tracker or sensing object

which can be attached/worn by the user is needed. There are

existing studies for detecting the user’s activity and location at

home with a body attached sensor [8], but the battery of the

sensor is a critical issue in these sensing scenarios. Longer

term research in indoor localization needs a tracker, the size

of which is suitable to carry long hours andwith a long battery

usage, e.g. longer than a month.

The aim of this study is to develop a low-cost indoor

localization system that is able to monitor the user’s location

patterns in a home setting for long term use. In this paper,

we present our indoor localization system using BLE based

method. BLE beacons are used as the tracking object car-

ried by the user. The proposed indoor localization system is

developed based on BLE technologies integrating Raspberry

Pis (RPi) and BLE beacons. In our evaluation scenarios, the

BLE beacons can be sewed into the clothes of the users or

can be worn on the wrist of the users or placed in their

pockets. Two algorithms in indoor localization of the tracking

object are proposed including trilateration and fingerprinting.

Considering the potential noise and obstacles in an indoor

environment, Kalman filter and Particle filter-based noise

reduction methods have been used to smooth the collected

raw RSSI values.

The rest of paper is organized as follows. Section II

presents a literature review of the relatedwork in indoor local-

ization. Section III presents the system design including the

hardware and software of our developed BLE based indoor

localization system. Section IV discusses the methods used

in localization based on the developed system. Section V

presents our Experimental results. Section VI concludes the

paper.

II. RELATED WORK

Our work is related to a range of areas including human

tracking and indoor localization. In the recent years, var-

ious solutions have been developed for indoor tracking

e.g. camera based method [10], [19], inertial sensing based

method [20], sound based method [11], [21] and RSSI based

method [22]–[24]. Combining two or more sensing technolo-

gies can provide better positioning accuracy.

Radio-frequency identification (RFID) is a wireless tech-

nology has been used in indoor localization [25] and there

are two main categories: tag-oriented and reader-oriented.

Though the RFID is flexible in tag size, the cost of the

RFID reader and unstable received signal strength make it

unmatured for the indoor localization applications. Besides,

other types of RFID evolutions including millimeter wave

and THz passive tags are emerging [26].

With the increasing use of smartphones, the method of

integrating inertial sensingmethods andWi-Fi basedmethods

has become a popular method for indoor positioning [27].

In the area of Wi-Fi based localization, both device-based

[28] and device-free [15] solutions have been developed. The

device-free based method has the advantage where a device

does not need to be carried by the user, but the disadvantage

is the complexity of the system and that the system normally

only works with and for one user.

A number of research studies focused on using Wi-Fi

based positioning method in large buildings [29]–[31] for

mobile device users. More recently, researchers started to

use BLE based positioning method [32], [33] in indoor

localization. Researchers [34] have also combined Wi-Fi

fingerprinting and BLE trilateration. Most of the recent

works focus on tracking the user’s location via locating the

smartphones [35]–[37]. In [38], indoor localization has been

tracked by fusing the information from analysis of RSSI from

BLE beacons and inertial sensor data from a smartphone.

Similarly, in [39] probabilistic localization algorithm has

been proposed to employ both inertial sensor from smart-

phones and BLE beacons. However, the disadvantage of these

system is that the phone is required to be with the tracking

object at all times, which is not realistic in real indoor envi-

ronment especially for occupant with long term chronic con-

ditions and users who do not own a smartphone. The current

commercial indoor localization systems are very expensive

e.g. Infsoft [40] locator node is around £150 per device.

Our proposed system provides a low-cost solution and it is

feasible for real world deployment. In this study, we focus on

exploring the location of interest based approach for indoor

localization instead of grid based approach [41], [42] as the

user’s use of their home is our main concern. The location of

interest-based approach simplifies the procedure of labelling

in a home environment. Furthermore, in this study, a number

of different BLE beacons including tracker beacon and smart

wearables are evaluated.

In our previous study [43], we had used Wi-Fi and

Bluetooth sensing technologies to monitor bus occupancy.

The technologies have been further extended in this work,

in particular, focusing on the issue of performing tracking of

the occupant’s locations in home settings for low cost long-

term use. In this work, we present the detailed development

of a localization system using an RSSI based method and

discuss the related work on RSSI based methods using Wi-Fi

or Bluetooth sensing.

When considering the different obstructions within indoor

settings, it is difficult to develop a suitable radio propagation
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FIGURE 1. System overview.

model. Traditionally, trilateration and triangulation methods

are used as positioning algorithms. In this work, trilateration

is screenshot of blueZ BLE sensing. used and methods to mit-

igate the measurement errors are developed. In [44], Running

Average, Kalman Filter and cascaded Kalman Filter-Particle

Filter algorithms had been explored to improve proximity

detection accuracy. In our work, in order to improve the

accuracy in trilateration, Kalman filter is applied to reduce

the measurement error of RSSI.

III. SYSTEM DESIGN

We propose an approach to monitor a user’s location auto-

matically in an indoor environment. A low cost BLE beacon

is worn by the user and worked as a tracking target. The BLE

beacon broadcasts regularly (every 100millis to 1000millis).

The sensing system is composed of a few BLE enabled Rasp-

berry Pis that are strategically positioned around the home

to maximize detection and triangulation/ fingerprinting. The

BLE antennas mounted on the Raspberry Pis are used as the

sensing module that are used to detect the BLE packets that

are sent periodically from the BLE beacons. In the sensing

stage, there is no operation needed from the user given that

the sensors automatically sense the BLE beacon worn by the

user and record the sensed raw data (the MAC address of the

BLE beacons and its corresponding RSSI) to the Raspberry

Pi which is then uploaded to a server. Initial data processing

is done on the Raspberry Pi and processed data will be sent

to the server for further analysis including the training of

a machine learning classifier to recognize the location of

the tracking object. The overall framework of the system is

illustrated in Fig. 1.

A. BLE BEACONS

A series of different types of BLE beacons have been used

in the study as the tracking targets. The tracker beacons used

in this study include the Estimote beacons [45] and JAALEE

beacons [46]. These beacons are designed for the purpose of

indoor localization and proximity detection related purposes.

The broadcast intervals of these beacons are around 1 second

(1Hz) which can be modified through a mobile application.

The advantage of these beacons is the battery can last for a

few months, up to several years.

Nevertheless, there is an increasing popularity for smart

watches and wristbands. Most of these bands use BLE tech-

nology to communicate with a smart phone. Unlike the

tracker BLE beacons, the broadcasting frequency of some

smart wearables are not changeable and are usually lower

than that of the tracker BLE beacons. This can be an issue

if the aim of a study is to monitor the trajectory of the user

in an indoor environment and in real time however these

wristbands can still be used in detecting the stay points in

the indoor environment. In this work, experiments have been

carried out on different types of currently available com-

mercial BLE wearables on their broadcasting frequency and

detection accuracy, which will benefit the future work related

to BLE beacons based low cost indoor positioning system

(See Section V.B.3).

B. RASPBERRY PIS

To sense the Bluetooth packets sent by the BLE beacons,

a Bluetooth 4.0 LE module (BLE CSR 4.0) is attached to a

Raspberry PI via a USB interface as shown in Fig. 2. The

Raspberry Pi uses the BlueZ package [47] to sense the raw

RSSI data from the BLE beacons. Data is saved locally to the

Pi and then regularly uploaded to a web server. An example of

the sensed raw data is shown in Fig. 2. Only theMAC address

used to identify the beacon and its corresponding RSSI value

were saved in this study.

FIGURE 2. Sensing node & screenshot of BlueZ BLE sensing.

IV. METHODOLOGY

A. POSITION CALCULATION

1) RSSI & DISTANCE

To localize the user, the first proposed method uses the

changes in RSSI signal with respect to the signal propagation
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distance. The relationship between the RSSI and distance

is modelled by using a path loss model as the equation

below [48].

RSSI = −10 ∗ m ∗ lgD+ A (1)

D = 10[(A−RSSI )/(10∗m)] (2)

where D is the distance. The parameters m and A are deter-

mined in real field tests. Line of sight experiments have been

done to calculate these parameters (See Section V.A.1).

2) TRILATERATION

We also implemented a trilateration-based algorithm which

is illustrated in Fig. 3. Based on the known location of the

three reference sensors (Pi-1, Pi-2, and Pi-3), equations (3)

and (4) are used to calculate the position of the beacon. In the

Cartesian coordinate system, the coordinates of the three

sensors Pi-1, Pi-2, and Pi-3 are (x1, y1), (x2, y2) and (x3, y3).

The distance between the beacon (green dot D (x, y) in Fig. 3)

and three sensors (D1, D2, and D3) can be determined by the

Euclidian distance equations shown below:


















D1 =

√

(x − x1)
2 + (y− y1)

2

D2 =

√

(x − x2)
2 + (y− y2)

2

D3 =

√

(x − x3)
2 + (y− y3)

2

(3)

FIGURE 3. Trilateration used in our sensing system.

To simplify the equations, the location of the sensor Pi-1

(x1, y1) is chosen as the origin point (0,0). The simplified

equation is as below:















x =
D2
1 − D2

2 + x22
2 ∗ x2

y =
D2
1 − D2

3 − 2 ∗ x3 ∗ x + y23 + x23
2 ∗ y3

(4)

3) KALMAN FILTER BASED RSSI NOISE SMOOTHER

Due to different obstructions in an indoor environment,

the raw RSSI can be very noisy. Even at a fixed location,

the RSSI values may vary significantly (See Section V.B.1).

Therefore, a Kalman filter is used to smooth the raw RSSI

values. In this case, the estimation of the state is based on

the estimation of the previous state A=1. In the measurement

process H=1. The equations for state process and measure-

ment process are as follows:

State process:

xk = xk−1 + wk (5)

Measurement Process:

zk = xk + vk (6)

Process noise covariance is Q and sensor noise covariance

is R.
Time update equation:

x̂−
k = x̂k−1 (7)

P−
k = Pk−1 + Q (8)

Measurement update equation:

Kk = P−
k (P

−
k + R)

−1
(9)

x̂k = x̂−
k + Kk (zk − x̂−

k ) (10)

Pk = (I − Kk )P
−
k (11)

Parameters tuning the Kalman filter [49] were performed

based on a trial and error basis. In this study the selected

parameters are as shown below. Process noise covariance Q=

1∗e-5, Sensor noise covariance R = (0.1)^2, and P−
0 =1.

As it can be seen in the Fig. 4, the fluctuation of the Raw

RSSI values have been significantly decreased after applying

the Kalman filter. After smoothing of the raw RSSI values,

the smoothed values are fed to the loss pathmodel to calculate

the distance between the beacons and the sensors. Then the

calculated distance is used in the above trilateration algorithm

Eq. (3) and Eq. (4) to locate the user’s position.

FIGURE 4. Raw RSSI values and RSSI values filtered by Kalman filter (the
blue plot is the raw RSSI values while the red plot is the filtered results).

B. FINGERPRINTING FOR INDOOR LOCALIZATION -

POSITION CALCULATION

We tested another approach based on fingerprinting which

usually comprises of two-phase training and predication

VOLUME 8, 2020 136861



L. Bai et al.: Low Cost Indoor Positioning System Using Bluetooth Low Energy

FIGURE 5. Overview of the fingerprinting based method in our system.

(Fig. 5). The first phase is training using the features created

from the raw sensed RSSI signals together with known

locations (ground truth). Ground truth was manually labelled

by the user. The user was asked to record the start and end

time at each stayed area (evaluation point) in the tracking

environment. Raw data collection is carried out by the RPi

sensors. The RSSI values collected by different RPi sen-

sors were used to generate the features. For each of the

RPi sensors, the mean, standard deviation and median of

the RSSI values were used as features for classification.

In the training phase, all the collected data were labelled

with ground truth in order to train classifiers. The labelling

was generated when the beacons had been placed in the

home-setting environment. Different classifiers were used in

this work including (i) Naïve Bayes (ii) SMO (iii) Random

Forests (iv) BayesNet and (v) J48. For data segmentation,

a non-overlapping windowing method was selected. Window

intervals between 1 and 10 seconds were analysed. In the

prediction phase, the BLE beacon was localised by using the

sensed RSSI values to and the built classifiers.

For the fingerprinting method, two types of scenarios were

proposed.

1) GRID BASED CLASSIFICATION

A rectangular area of 36 m^2 was selected and divided into

36 grids, each grid was 1m×1m as shown in Fig. 6 (a), where

four Raspberry Pi based sensors were installed. The data

collected from all the RPis were used to create the features for

each of the grids. In order to train the classifier, experiments

had been done to collect data from all the 36 grids (locations).

Features were extracted from processed RSSI signals includ-

ing mean and standard deviation.

2) LOCATION-OF-INTEREST (LOI) BASED CLASSIFICATION

Only certain locations in a home were of interest, for

example, beds (Label1), desks (Label2), toilets (Label3),

FIGURE 6. Grid and LoI based classification – indoor map view (in (b) the
blue circles are the locations of labeled LoI).

hobs (Label4), tables (Label5), couches (Label6) (Fig. 6 (b)),

where seven Raspberry Pi based sensors were installed. The

ground truth for these locations were collected to train classi-

fiers and the trained classifiers were used to predict the loca-

tions in unseen cases. This method simplified the procedure

of the ground truth collection and in this case, the collection of

the ground truth could be done by a final user using a simple

annotation mobile app allowing them to annotate the different

locations, increasing the wide applicability of the method.

The selection of the LoI was based on the areas of interest

and the socket availability in a home are considered.

V. EXPERIMENTAL SETUP AND RESULTS

Experiments were carried out in order to assess the accuracy

of the different approaches. They were carried out in realistic

conditions in an inhabited flat to evaluate the detection accu-

racy of the two proposed sensing methods.
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A. EXPERIMENT SET-UP

1) LINE OF SIGHT EXPERIMENT

In order to calculate the path loss model as describe in

Section IV.A.1, we have carried out a line of sight experiment

to calculate its unknown parameters: We installed the sensors

and BLE beacons in an empty corridor. The sensors were

left in fixed positions. Then we changed the position of the

BLE beacons for various distances between 0 and 14 meters,

in one-meter steps (See Fig. 7). At every position, we col-

lected data for two minutes, provided an average of 120 RSSI

samples per RPi.

FIGURE 7. Line of sight experiment set-up.

2) INDOOR LOCALISATION EXPERIMENT

The experiments were done in three different home settings

as described in Table 1. Only one user was involved in the

tracking for all three different homes in this study. The sens-

ing system and tracking object set-up is shown in Fig. 6 (b)

(Home #1) and Fig. 8 (Home #2 and 3). The location of the

sensors (red dot) were restricted by the location of the power

sockets. The experiments had been mainly done in Home #1

and different experiments had been done by implementing

the proposed sensing system in two different classification

scenarios – grid based and LoI based. Results from these two

scenarios are presented in Section V.B.2.

TABLE 1. Experiment home settings.

For the experiments done inHome #1, both tracker beacons

and smart wearables (Fig. 9) were tested. Experiments were

carried out in two ways: static tests and dynamic tests. For

the static tests, the beacons were placed in a fixed location

FIGURE 8. Floor plan of home #2 and #3 with the sensors’ location.

FIGURE 9. Different commercial wearables used as the BLE beacons.

at each labelled location (e.g. Label 1, Label 2 etc. in Fig. 8)

during the testing period. For the dynamic tests, the beacons

were worn by the user and movement of the user was within 1

squaremeter around the center of labelled location. For exam-

ple, during the dynamic testing, the user was asked to work
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on a laptop at the desk, watch movies on the couch, and cook

in the kitchen etc.

B. EXPERIMENT RESULTS

1) LINE OF SIGHT EXPERIMENT

The raw RSSI values were collected in order to analyze value

changes against the distance. Our experiments showed that

the broadcasting intervals of the beacons were not fixed.

Multiple RSSI readings were recorded within one second

and sometimes only one RSSI reading was recorded every

few seconds. It also differed from beacon to beacon. More

importantly, the raw RSSI values can vary significantly even

at fixed locations. A box plot (Fig. 10) is used to illustrate the

changes of the RSSI at different fixed locations for the line of

sight experiment. Therefore, the smoothing method for RSSI

is proposed as descried in Section IV.A.3.

FIGURE 10. A box plot of raw RSSI values collected at different locations
in a line of sight experiment.

Data collected from the line of sight experiment was used

to model the path loss model as described in Section IV.A.1.

The data from different sensors and curve fitting result are

as shown in Fig. 11. In order to determine the parameters in

Eq. (2), the curve fitting was applied on the raw data from

the in line experimental tests. The pass loss model parameters

obtained through the curve fitting tool inMATLAB are shown

in Table 2.

TABLE 2. Parameters obtained from curve fitting.

To evaluate the path loss model, the estimation of the error

was calculated based on the line of sight experiment. The

errors were obtained by comparing the actual distance with

the calculated distance from the path loss model. In addition,

Kalman filer was used to smooth the noise from the rawRSSI.

Table 3 shows the actual distance and computed distance from

FIGURE 11. Curve fitting for RSSI values at different distance for different
sensors of one beacon (for different BLE beacons sensed by three RPis).

the path loss model before and after the Kalman filtering.

According to the results from line of sight experiment in

Table 3, the average location error is 0.6 within 3 meters.

Fig. 12 shows the comparison of cumulative distribution

functions (CDF) of the location errors both before the fil-

tering and after filtering and it can be clearly seen that after

filtering reaches high probability faster.

FIGURE 12. CDF comparison of location errors before and after filtering
for line of sight experiment.

2) INDOOR LOCALISATION EXPERIMENT - FINGERPRINTING

BASED METHOD

a: GRID BASED CLASSIFICATION

The floor plan was divided into 36 grids, each grid 1m∗1m.

The averaged RSSI for each of the 36 grids were calculated.

A heat map was created to show the change in RSSI in the

home setting. The location of the Pi is shown in Fig. 13.

A 10 cross-fold validation was used to assess the performance

of a range of selected classifiers, including BayesNet, Naïve

Bayes, Random Forest, SMO and J48, and the average accu-

racy is 95.94%. The classifications were implemented using

WEKA. The error rate for each of the grid is shown in the

Fig. 14, and it can be seen that 90% of the grids have error

rates under 0.1.

b: LOCATION-OF-INTEREST BASED CLASSIFICATION

The grid-based classificationmethod presents good accuracy;

however, it is very complicated to obtain the ground truth.
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TABLE 3. Line of sight environment – empty corridor.

FIGURE 13. Heat map of different sensors in grid-based scenario in
home #1.

FIGURE 14. Error rates of each grid in grid-based scenario in home #1.

As our requirement is to provide a self-installable technol-

ogy, obtaining the ground truth for every grid for a user

would be challenging. Furthermore, we are only interested

in users’ location for context awareness. The locations in a

home setting for example, bed, couch, dining table, hob and

toilet are the locations of interest. Therefore, by using the

location-of- interest basedmethod, we only need to collect the

ground truth in these key locations. In Home #1, we carried

out experiments over multiple days including both static tests

and dynamic tests. During the static tests, the sensors were

kept stationary during the tests and in total 78440 samples

had been collected. The experimental results for different

classifiers are presented in Table 4. In our dataset, we have

partitioned 80% as the training datasets and 20% as the testing

datasets. In real world scenario, it may not be feasible to

collect so many samples, therefore, we had also trained the

classifiers using only 1% of the total collected samples for

static tests in Home #1. As shown in Table 5, the random

TABLE 4. Static experimental result (at home #1, tracker BLE beacon2).

TABLE 5. Static experimental result (at home #1, tracker BLE beacon2)
(1% training data, 99% test data).
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forest classifier had the best performance with precision and

recall above 95%. It only takes two minutes at each LoI to

collect the data to train the classifiers in a new environment.

From Table 4, it can be seen that accuracy is higher than

99% for a tracker BLE beacon in a static scenario. However,

in the real-world scenarios, the devices will be worn by users

rather than being positioned on a flat surface. Therefore,

we tested accuracy in a dynamic experimental scenario where

all the tracker beacons were placed in the pocket of a person

and all the smart wearables were worn by the human subject.

The dataset was split again into 80% as training data and

20% as testing data. In addition, the dynamic experimental

tests were carried out over four consecutive days in order to

explore the relationship between window size and classifica-

tion accuracy. Performance was tested with different window

sizes. As shown in Fig. 15 & 16, the tracker BLE beacon and

smart wearable behaved differently when the window size

was changed. In Fig. 15, for example, the selection of the

window size can affect the performance of the classifier for

the Jaalee beacon: for all classifiers, a maximum precision

is achieved with a window size of 9 sec. For other beacons

e.g. the smart wearables, the best results are achieved with

a window size of 1 sec (see Fig. 16, the classifiers J48 and

the Random Forest classifiers obtain the highest precision

with a window size of 1 sec). The classification results of

different beacons are shown in Table 6. Samples collected

for the dynamic experimental tests were 59520 for each BLE

beacon and eight beaconswere tested. However, we only need

very small number of samples to build a classifier which

is able to generalize on future data. In Table 7, we built a

FIGURE 15. System performance under different feature selection
window by using a tracker BLE beacon.

FIGURE 16. System performance under different feature selection
window by using a smart wearable.

TABLE 6. Dynamic experimental result (at home #1) (80% training data,
20% test data).

TABLE 7. Dynamic experimental result (at home #1) (5% training data,
95% test data).

classifier using only 5% data and the precision and recall can

both achieve above 90%.

The normalized confusion matrix of both tracker bea-

con and smart wearable beacon are shown in Fig. 17 and

Fig. 18 respectively. It can be seen that by using classifiers

J48 and Random Forest, all the labels achieved classification

accuracies over 90%. Label 2 and Label 4 proved more
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FIGURE 17. Confusion matrix for a tracker beacon using a window size
of 9 sec.

FIGURE 18. Confusion matrix for a smart wearable beacon using a
window size of 9 sec.

challenging in correctly classification since that fact that

Label 1 is close to Label 2 and Label 4 is very close to Label 5

(see Fig. 6 (b)).

In order to select the best position to attach the BLE

beacon on a human subject, different BLE beacons have been

attached on different parts of the body to explore how the

location of the BLE beacons affect the positioning accuracy.

The results in Table 8 shows that localization accuracy is

above 90% regardless of the attachment location of the BLE

Beacons. Therefore, the sensing system accuracy is not sig-

nificantly affected by the location of the BLE beacons. The

Beacons can be attached on different segments of the body

according to the need of the application. For example, for

people living with dementia or those with significant physical

disability, the BLE beacon can be attached onto clothing.

Fig. 19 shows the results of another dynamic test at

Home #1, of which the user was asked to follow a known path.

The user sat in front of the desk for 3 minutes and walked

to the hob in the kitchen and stayed there for 30 seconds

and came back to the desk for another 30 seconds. Then the

user walked to the couch in the living room and then walked

to the hob in the kitchen and stayed there for 30 seconds

TABLE 8. Experiment results of BLE beacons on different limb segments
of a subject.

TABLE 9. Experiment results in home #2 & home #3 (80% training, 20%
test).

TABLE 10. Experiment results in home #2 & home #3 (1% training,
99% test).

and came back to the desk at the end of the test. It can be

seen from Fig. 19, the dynamic change of the position can

be tracked accurately most of the time. There is some error

in the previous 3 mins where the location of desk has been

misclassified as bed, it is mainly because the desk is so close
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FIGURE 19. Location Prediction of a dynamic walking test.

FIGURE 20. Normalized confusion matrix of different classifiers in
experimental home #2.

to the bed as seen in the floor plan in Fig. 6 (b). This type of

error can be reduced by applying a moving average method.

When the user walked to the hob in the kitchen, the user

would need to pass the bed area, which can also be observed

from Fig. 19.

In addition, as described in section V.A.2, the system was

tested in two other homes which are different in floorplan

and floor size to investigate accuracy in different home

layouts. Similar as Home #1, the same number of the sen-

sors were used in Home #2 and Home #3. In Home #2

and Home #3, only static tests had been carried out. For

Home #2, 45227 samples had been collected from 8 beacons.

For Home #3, 61933 samples had been collected from eight

different types of BLE beacons. The datasets had been split

into training dataset (80%) and test dataset (20%), and the

details of the experimental results are shown in Table 9. The

confusion matrix of two Homes are presented in Fig. 20 and

Fig. 21 respectively. Additionally, we had built classifiers

FIGURE 21. Normalized confusion matrix of different classifiers in
experimental home #3.

using only 1% samples from the collected dataset and the

precision and recall of Random Forest model can still achieve

above 95% as in Table 10.

3) TEST RESULTS ON DIFFERENT WEARABLE SENSORS

Experiments were carried out to test different commercial

smart wearables in Home #1 using the classifier J48. Our

results indicate that these wearables are good enough to be

used as the object tracker to track the people for the purpose

of indoor localization (Table 11). It is interesting to see that

high accuracy is achieved with very cheap devices (e.g. The

LEMwrist band can be bought for GBP£5, around USD $10).

Wearable sensors should be selected according to the user

case. For example, in an application for real-time indoor

localisation, a wearable sensor with a small advertising inter-

val should be selected while for long-term indoor life pattern

analysis, a wearable sensor with long battery life should be

chosen.
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TABLE 11. Comparison between different wearables.

VI. CONCLUSION

In this work, we proposed a low cost BLE sensing based

system for person localization in the home. A BLE beacon

is used as the tracking object that attached on the target user.

Our BLE sensing based system localizes the position of the

BLE beacon through two proposed algorithms. One method

used the trilateration algorithm to track the position of the

BLE beacon in a known coordinate reference frame. Another

method used the fingerprinting-based method to locate the

BLE beacon in one of the 36 1m2grids or one of Location-of-

Interest. The smoothing method has been proposed in order

to remove the noise of from the raw RSSI values. Our experi-

mental results have shown good accuracy in indoor position-

ing. From our results, it can be seen that high accuracy can

be obtained in localizing around key areas/stay points (table,

bed, etc.). Our fingerprinting based method demonstrated

that as even with low cost sensors, a high accuracy (>90%)

achieved. Our results have shown this is consistently true for

different devices in different home settings. In our experi-

ments, we had collected large datasets for evaluation. How-

ever, in real world testing, there is no need to collect so many

samples. Based on our results from dynamic testing, only

5mins data collection at each labelled location will suffice.

The cost of the overall system is around USD$200 making

it scalable for a wide range of people who would benefit

from monitoring even if they are only mildly at risk (e.g.

people at the early stages of dementia). This may enable

longer independent living with beneficial impact to both the

individual, their relatives, and the national health system.

In addition, Wi-Fi passive sensing approaches shares

the similar working principle with the above BLE sensing

approach. It locates the target by tracking the RSSI changes

in the tracked object (a Wi-Fi device, usually a smartphone).

It can be useful if the mobile phone is the tracked object.

There are Wi-Fi modules available that have a smaller size

and can be attached to human body as that of a BLE beacon.

However, a Wi-Fi device usually consumes more battery than

a BLE device (a BLE beacon or a smart watch).

As for future work, we will implement our system in real

world applications to investigate the indoor pattern for people

with significant physical disabilities and for those with neu-

rological conditions e.g. people living with dementia, people

affected by stroke, Parkinson’s disease, epilepsy, etc. This

could help the clinicians and doctors understand and diagnose

the individuals in home rehabilitation.
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