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Abstract

The emergence of NextGen sequencing technology has generated much interest in the exploration of transcriptomes.
Currently, Illumina Inc. (San Diego, CA) provides one of the most widely utilized sequencing platforms for gene expression
analysis. While Illumina reagents and protocols perform adequately in RNA-sequencing (RNA-seq), alternative reagents and
protocols promise a higher throughput at a much lower cost. We have developed a low-cost and robust protocol to
produce Illumina-compatible (GAIIx and HiSeq2000 platforms) RNA-seq libraries by combining several recent
improvements. First, we designed balanced adapter sequences for multiplexing of samples; second, dUTP incorporation
in 2nd strand synthesis was used to enforce strand-specificity; third, we simplified RNA purification, fragmentation and
library size-selection steps thus drastically reducing the time and increasing throughput of library construction; fourth, we
included an RNA spike-in control for validation and normalization purposes. To streamline informatics analysis for the
community, we established a pipeline within the iPlant Collaborative. These scripts are easily customized to meet specific
research needs and improve on existing informatics and statistical treatments of RNA-seq data. In particular, we apply
significance tests for determining differential gene expression and intron retention events. To demonstrate the potential of
both the library-construction protocol and data-analysis pipeline, we characterized the transcriptome of the rice leaf. Our
data supports novel gene models and can be used to improve current rice genome annotation. Additionally, using the rice
transcriptome data, we compared different methods of calculating gene expression and discuss the advantages of a strand-
specific approach to detect bona-fide anti-sense transcripts and to detect intron retention events. Our results demonstrate
the potential of this low cost and robust method for RNA-seq library construction and data analysis.
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Introduction

The advent of ultra-high-throughput sequencing (UHTS) technol-

ogy has invoked a paradigm shift in the field of genomics and

transcriptomics [1,2]. It is now possible to obtain whole-genome scale

information at a highly accelerated rate. This advancement in

sequencing technology has led to new opportunities to explore global

genomic and transcriptomic landscapes; such studies include whole-

genome de novo/re-sequencing [3,4], bisulfite-sequencing [5,6],

chromatin immuno-precipitation-sequencing (Chip-seq) [7,8], and

RNA sequencing (RNA-seq) [9,10]. Together, these newly developed

technologies provide new insight into biological systems. In particular,

RNA-seq provides highly resolved gene expression data, enables the

identification of alternatively spliced transcripts and facilitates gene

discovery through annotation improvements. When compared to the

standard platform of transcriptomics, microarray analysis, RNA-seq

provides orders of magnitude increased throughput for a comparable

cost, increased sensitivity and superior resolution and accuracy for

expression profiling experiments [2].

Much of the advantage and added functionality of RNA-seq over

microarray analysis lies in the methodology of transcript detection.

Microarray analysis uses an indirect hybridization-based detection

method where a population of pre-synthesized and immobilized

nucleotides serve as probes to monitor gene expression through

fluorescence signals. Gene expression values are calculated from the

fluorescence intensity or a ratio of the intensities. In contrast, RNA-

seq uses direct sequence-based detection to quantify gene

expression. Since no pre-determined probes are used, RNA-seq is

considered an open platform, as no previous annotation of the

target genome is needed. The dynamic range of gene expression

derived from RNA-seq is much higher relative to microarray

analysis, and is largely due to the fact gene quantification is

performed by simply counting reads, while fluorescent intensity is

usually constrained by a saturation ceiling as an innate property of

the probes or the instruments used to detect the signal. For instance,

in leaf sections photosynthesis-related genes are so highly expressed

that they constitute over 30% of the total transcriptome [11] and

can easily saturate detection limits in microarray analysis [12].

Despite the many advantages RNA-seq offers, it is still a relatively

new methodology with developments continuing for both experi-

mental procedures and subsequent data analyses. For instance,

strand-specific RNA-seq protocols been developed [13], but they
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have not yet been widely adapted by the community. As one may

expect from such a rapidly evolving field, no official strand-specific

RNA-seq pipeline is yet publicly available from Illumina and only

few are available from other companies (e.g. Epicenter). Additionally,

no standard has been established for methods of processing RNA-seq

data for gene expression estimation, normalization, comparison and

experimental design. A few noteworthy computational pipelines are

currently being developed, however, that are gaining community

acceptance, these include the ‘‘Tuxedo package’’ - Bowtie, Tophat

and Cufflinks [14,15,16] that align RNA-seq reads to the genome,

determine and align reads to splice junctions and calculate FPKM/

RPKM (fragments/reads per kilobase of exon per million fragments/

reads mapped) - a normalized value representing gene expression

[17]. The Burrows-Wheeler Aligner (BWA) that was designed to

quickly align reads to a genome, allowing gaps or deletions [18], is

also widely utilized, but lacks the ability to align reads to splice

junctions. Supersplat is another software program that aligns RNA-

seq reads to the genome and splice junctions but does not support

strand-specific protocols [19].

Although RNA-seq has a relatively short history, it has quickly

become the method of choice for analyzing transcriptomes.

However, one obstacle that hinders broad acceptance of RNA-seq

is cost. While UHTS technologies have decreased the overall cost of

sequencing on a base pair basis, the direct cost remains inhibitory for

many laboratories to perform a large number of UHTS-based

experiments. The current dominate RNA-seq platform provider

Illumina (www.illumina.com) [1] and its latest sequencing machine -

Hiseq2000 (first commercialized during mid-2010) is capable of

producing approximately 200 million clusters per lane that typically

yield 180–190 million sequencing reads post filtering (TruSeq

Cluster Kit v3). When considering the cost of reagents for library

construction, costs/sample can run close to $50 with additional costs

for sequencing. Thus, cost remains a serious limitation to broader

application of RNAseq technology in high-throughput applications.

In this report, we describe a low-cost and robust method of

generating strand-specific Illumina-compatible libraries for RNA-

seq and a data analysis pipeline to improve gene quantification and

detection. By using the alternative reagents and protocols, we are

able to reduce the cost to approximately $5 per library. We designed

a series of expandable multiplex adaptors that permit pooling of

multiple samples into one lane of an Illumina flowcell to reduce

sequencing costs and improve experimental design. We also

incorporate an aRNA spike-in control to validate library construc-

tion and sequencing and as an optional method for normalization.

The experimental protocol was streamlined so that over 32 samples

can be constructed in less than two days by a single researcher. Using

this custom protocol and computational pipeline, we analyzed the

rice leaf transcriptome. We detect previously un-annotated genes,

improve existing gene models and map novel anti-sense transcripts.

We also compare methods of normalization for calculating gene

expression and describe a novel statistical approach to detect intron

retention events. In summary, our method and data analysis pipeline

substantially improve both library construction and data analysis,

providing the RNA-seq community with an accessible, easily

adaptable and robust tools for transcriptomics studies.

Results and Discussion

Overview of the library construction protocol
The primary workflow of our improved RNA-seq library

construction protocol does not diverge significantly from the

standard Illumina library construction procedures illustrated in

Figure 1. However, we have implemented a number of key

improvements at steps marked with red asterisks (Fig. 1). Most

Figure 1. Overview of RNA-seq library construction. mRNA is
purified from total RNA and fragmented to the desired size range. Next,
the sheared RNA is reverse-transcribed to cDNA to form a DNA/RNA
hybrid. The double-stranded cDNA is then synthesized, end-repaired
and adenylated. Illumina adaptors are ligated to the processed double-
stranded DNA and size selected. Finally, the size-selected ligated DNA
products are amplified using primers to produce a sequence-ready
library.
doi:10.1371/journal.pone.0026426.g001

Illumina RNA-Seq Protocol and Data Analysis
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importantly, we incorporated a step that preserves the strand-

specific nature of mRNA molecules. In addition, we incorporated

aRNA spike-in controls added to each RNA input before

fragmentation. The aRNA spike-in controls are synthesized in vitro

from four distinct human cDNA sources that have no homology to

plant species (e.g. maize, rice, Arabidopsis, Setaria, Brachypodium,

Barley, potato and tomato). The added aRNA spike-in control was

used to validate sequencing results and provided an alternative

parameter for normalization. However, as shown in Figure S1,

spike-in based normalization underperforms when compared to

other methods of normalization. The principle of how strand-

specific information is retained is illustrated in Figure 2 and is an

adaptation of a robust technique where the second-strand cDNA is

marked with deoxyuridine triphosphate (dUTP) in place of

deoxythymidine triphosphate (dTTP) [13,20]. We also simplified

the fragmentation procedure for the RNA input: instead of using a

specific fragmentation buffer, we opted to use reverse transcription

(RT) first-strand buffer (Invitrogen, CA) directly, which eliminated

the need to purify fragmented RNA. The average size of the RT-

buffer fragmented RNA is approximately 200 bps with a 5 minute

treatment at 94 degrees as measured by the Agilent Bioanalyzer

(Figure S2), which is the suggested size distribution for RNA-seq

library on Illumina platform.

The other important enhancement in our protocol is the

simplification of purification steps during library construction.

Purification is particularly important for the dUTP-based strand-

specific protocol to ensure there is no carryover of dTTP after first

strand synthesis that may compromise the strand-specificity of the

final library. For all the purification steps, we used SPRI (Solid

Phase Reversible Immobilization) paramagnetic beads (Beckman

Coulter, Danvers, MA), which reduces the cost and time needed

for purification, as it is no longer necessary to use nucleotide

purification columns (e.g. Qiagen RNA/DNA purification col-

umns). Furthermore, using the SPRI beads, we developed a novel

method to obtain the desired size distribution of fragmented RNA

by replacing the stock buffer of the SPRI bead suspension with

varying concentrations of polyethylene glycerol m.w. 8000 (PEG-

8000). Our approach replaces the time-consuming gel-based size-

selection method, and improves yield of purified fragments. Figure

S3 demonstrates the use of different PEG-8000 concentrations to

size fractionate RNA and the corresponding library size

distribution analyzed by ImageJ (http://rsbweb.nih.gov/ij/). It is

known that variation in library size affects how clusters are

generated on the Illumina flowcell and base-calling quality. When

the size distribution is large, fewer clusters are generated that are

suitable for base-calling (www.illumina.com). When the library is

of desired uniform size, more clusters can be generated on a flow

cell to produce a greater number of high quality reads. Using our

approach, the library size distribution can be controlled (e.g. the

GAIIx and HiSeq2000 platforms have different optimal library

size requirements).

An important consideration when designing RNA-seq experi-

ments is cost. With the recent increases in Illumina per lane read

counts (up to 190 million), it is now desirable to pool multiple

samples on a single flow cell lane. Based on our previous findings,

30 million reads is sufficient to detect approximately 90% of

differentially expressed genes in maize cultivar B73 [11]. For

organisms with much smaller genomes such as bacteria and yeast,

current read depth/lane is well beyond what is required for

accurate gene detection and quantification. Pooling multiple

samples into one lane using indices decreases cost and can reduce

experimental variation (e.g. lane effects). Additionally, using the

methods described in this report and purchasing reagents from

alternative sources, it was possible to reduce library construction

costs approximately 10-fold from the current manufacture’s

recommendations (Illumina TruSeq kit). The list of reagents are

listed in Table S1. In summary, our improved protocol reduces

both the time and cost of library preparation and increases the

quantity and quality of reads over standard protocols.

Comparison to non strand-specific protocols
To compare the output from the strand-specific (SS) and

standard non strand-specific (NSS) versions, we performed two

RNA-seq experiments in parallel using two-week old rice seedling

leaf tissue following nearly identical procedures, with the exception

of the dUTP labeling step. For the SS protocol, dUTP was used in

second strand synthesis, whereas dTTP was used for the NSS

protocol. Libraries were sequenced on six lanes of the GAIIx

platform (three lanes for each library). Approximately 100 million

35-nt processed reads were generated for each library and RPKM

values calculated. As shown in Figure 3A, the correlation of log10
RPKM values from the two datasets is high with a correlation

coefficient, r=0.976. As illustrated by the shaded portion of the

chart in Fig. 3A, there appears to be a subset of genes with higher

estimated gene expression values when the NSS protocol was used

relative to the SS protocol. We reason that this shift likely occurs

when a large number of sense and antisense reads map to the same

gene. In the SS protocol only sense alignments are counted,

whereas both sense and antisense alignments contribute to the

RPKM in the NSS protocol. To test this hypothesis, we re-

analyzed the data generated from the SS protocol and added the

reads from both sense and antisense strands together. Indeed the

new comparison, as shown in the Figure 3B, has a higher

correlation with the r value of 0.987, suggesting that the NSS

Figure 2. Enforcing strand specificity using dUTP. dTTP is
substituted with dUTP during second strand cDNA synthesis. Y-shaped
(partial-complementary) adapters are ligated and the dUTP-marked
strand is digested with uracil-DNA gylcosylase (UDG). PCR amplification
of this single strand confers strand specificity.
doi:10.1371/journal.pone.0026426.g002

Illumina RNA-Seq Protocol and Data Analysis
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method does overestimate RPKM for a subset of genes. To

visualize this discrepancy, we examined four genes with high

differential RPKM values between NSS and SS protocols. Figure

S4 shows alignment profiles using the Integrative Genomics

Viewer (IGV; [21]). Interestingly, some of the discrepancies arise

from incorrectly annotated gene models. In a few cases,

convergent genes were incorporated into the one gene model

(Figure S4a–c). In other cases, numerous anti-sense and sense

reads mapped to the same gene model (Figure S4d), thus

confirming our hypothesis that the SS method is a more accurate

method to calculate RPKM values and can be used to validate

gene models.

It is important to note that the average gene coverage profile is

slightly different for the NSS and SS methods. As shown in

Figure 3C, the NSS protocol provides better coverage at the 59-

end compared to the SS-method. This is a consequence of the SS

protocol; fragmented RNA molecules are always sequenced from

the 39 end, and depending on the sequence length, sequencing

may not proceed to the 59 end. This bias can be partially negated

by generating longer reads (in this study, we used 35-bps reads) or

completely overcome with paired-end sequencing, where sequenc-

ing starts from both ends. We also observed a higher coverage

towards the 39 end of the average gene body. This is possibly

caused by RNA degradation, since we used an oligo-dT based

purification method that captures mRNA at the 39 end. The other

possibility is a PCR bias resulting from high GC-content that

increases near the 59 end of rice genes. Indeed, when we plot the

average GC content across the average rice gene body, it show a

gradual drop from over 50% GC to just over 40% GC (Fig. 3C).

Analyzing anti-sense alignments
As previously mentioned, we used a slightly modified version of

the dUTP method to enforce the strand specificity in our final

libraries [20]. We increased the incubation time with UDG

(Uracil-DNA Glycosylase) to 30 minutes to enforce the complete

degradation of dUTPs. From the 82 million aligned reads that

were generated using the SS protocol, we detected approximately

3.88% anti-sense reads according to the most current rice version

6.1 genome annotation [22]. This is slightly higher than the

percentage of antisense reads detected in yeast using multiple

strand specific protocols [13]. This discrepancy may reflect a true

biological difference or a technical limitation related to the

maturity of the genome annotation. That is, annotation for the

yeast genome is highly refined, enabling a very accurate mapping

of antisense reads to the gene space. Given the fact that the rice

genome annotation is still being improved, some of the anti-sense

reads are due to incorrectly annotated gene models. Figure 4A

shows an example where an incorrectly annotated gene model

contributes to the over-estimation of anti-sense coverage. Based on

sense-strand alignments, the upper gene model is likely incorrect

(Os07g36090.3). The other two gene models (Os07g36080.1,

Os07g36090.1) running opposite directions are supported by the

aligned reads. In this case, if Os07g36090.3 is used for calculating

the anti-sense alignment, a substantial number of reads would

align to the opposite strand. This example clearly demonstrates the

advantage of utilizing a strand-specific protocol, as it is difficult to

Figure 3. Correlation of RPKM calculated from NSS and SS
protocols and coverage statistics. (a) Scatter plot of log10
correlation of SS- and NSS-derived RPKM values. SS-derived RPKM
values are calculated from the sense strand only. r is the correlation

coefficient. (b) Scatter plot of log10 correlation of SS- and NSS-derived
RPKM values. Derived RPKM values are calculated from both strands of
SS-data (c) Coverage plot along average gene body from 59 to 39
calculated from both NSS and SS methods. The percent GC content is
also plotted.
doi:10.1371/journal.pone.0026426.g003

Illumina RNA-Seq Protocol and Data Analysis
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resolve the validity of gene models with only NSS reads alignment

(compare top and middle panels in Fig. 4A).

The other interesting aspect of anti-sense alignments as detected

by the SS-protocol is the distribution of reads relative to the

transcript model. As shown in Figure 4B, a large number of anti-

sense reads map to transcript termini (likely the UTR regions). We

considered the possibility that a lower thymine (T) content at the

ends of genes may have resulted in this profile, as regions with few

Ts would serve as poor substrates for the UDG. However, this is

clearly not the case, as the average percentage of T is in fact higher

at transcript ends (Fig. 4C). Previous reports in animals and yeast

also support our observation that antisense transcripts are more

abundant in the 59 and 39 UTR regions, and these anti-sense

transcripts likely play regulatory roles in modulating gene

expression [23,24,25]. Although similar analyses have not been

published for plant species, our results suggest that comparable

mechanisms are employed in rice.

The validity of anti-sense transcripts captured by strand-specific

RNA-seq protocols is of great interest to the research community. To

examine this within our data, we first compared the average

percentage of anti-sense transcripts captured relative to the total

transcript pool as shown by Levin et al [13]. Our analysis shows a

relatively constant 2% anti-sense transcripts over the middle potion of

rice genes, which is comparable to previous findings in other species

[13]. Yet, we cannot rule out the possibility that these detected anti-

sense reads are a baseline of anti-sense ‘‘noise’’ generated from either

the limitations of the technique or a low level of antisense transcription

present throughout the genome [26,27,28]. Interestingly, we also

detected 1.88% of anti-sense alignments from the two most abundant

aRNA spike-ins synthesized by in vitro transcription, which technically

should not generate anti-sense reads. While it is possible that this is an

artifact of our experimental method (e.g. incomplete digestion), it is still

likely that the synthesized aRNA would contain a finite amount of

anti-sense transcript (e.g. through template switching).

It is important to note that our results are derived from oligo-dT

enriched mRNA populations, and it has been reported that most

natural antisense RNA are not polyadenylated in mouse [29] and

possibly in other organisms, suggesting there may be more anti-

sense transcripts that escape detection using our approach.

Alternative non oligo-dT-based mRNA enrichment methods

(e.g. rRNA depletion) would overcome this limitation and provide

a more complete coverage of natural anti-sense RNA.

Figure 4. Survey of anti-sense alignments. (a) An example of read alignment showing NSS- and SS-derived data for rice gene Os07g36090. The
alignment is visualized using IGV (www.broadinstitute.org/igv/). Red and blue colors designate the directionality of reads. (b) Line plot showing
percentage of anti-sense reads aligned to the average rice gene body from 59 to 39 end. (c) Line plot showing percent T along average rice gene body
from 59 to 39 end.
doi:10.1371/journal.pone.0026426.g004

Illumina RNA-Seq Protocol and Data Analysis
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Multiplexing using indexed adapters
One of the challenges of multiplexing samples is ensuring an

even distribution of read counts across indexed libraries [30]. In

the method described here, a combination of five nucleotides

serves as the index with a T as the common fifth base pair to

minimize biases caused by differences in ligation efficiency. The

index itself is incorporated into the adaptor as illustrated in Figure

S5. When samples are multiplexed using this design, they can be

processed using single-end or pair-end sequencing on the Illumina

platform. The read output starts with the index and a T followed

by the target sequence. We tested a set of adaptors by multiplexing

eleven rice leaf samples in one lane and sequenced the libraries

using a total of six lanes on a GAIIx Illumina machine. The

average ratio of indexed reads are shown in Figure 5. The

percentage of reads derived from each of the eleven indices is

relatively uniform, which is a notable improvement to an initial

study where index adaptors were used (e.g. [31]) and comparable

to Illumina’s official multiplexing scheme with a lower cost. It is

worth noting that the edit distances, or number of changes to

transform one index sequence into another, are at least two among

the 11 indices. Thus, with one sequencing error in the first five

bps, a read will be assigned to a unique index. This is important, as

we have observed higher errors rates at the 59 and 39 ends of reads.

By including reads with one mismatch to the index, it was possible

to reclaim an additional 5% of the total mappable reads (4.8

million reads).

One drawback of our current index design is that it is

incompatible with the new calibration method used on the

Hiseq2000 platform. Instead of using the first base for calibration

as in the GAIIx platform, HiSeq2000 uses the first five bases. Since

the fifth base of the multiplexing index is always T, the calibration

software overcompensates for the bias and no longer accurately calls

subsequent reads. We have explored two approaches to resolve the

compatibility issues. The most straightforward is to adapt a longer

index design. Using this method we have tested four balanced 7-bps

indices that performed well on the HiSeq2000 machine. From a

single lane of HiSeq2000 sequencing, we captured 72,903,160

reads, of which 71,960,164 could be unambiguously associated with

a specific index (98.7% of total reads) (Figure S6). Another way to

overcome the calibration issue is to spike approximately 5% PhiX

control (a common control sample for Illumina platform) into each

lane with the 5 bps indices. Although we have used a PhiX spike-in

successfully (Pinghua Li, personal communication), it nevertheless

leads to a loss of total reads. Thus, with slight modifications our

indexing design can be applied to the HiSeq2000 platform.

Illumina’s official multiplexing protocol and kit enable one to

pool of up to twelve samples, and the output can be deconvoluted

to individual samples. While Illumina’s approach to multiplexing is

adequate, the associated costs of using official Illumina library

construction kit become inhibitory for many labs when a large

number (e.g. hundreds) of libraries are constructed.

Detecting significantly expressed genes
An emerging need for RNA-seq data analysis is to determine

confidence intervals for defining significance in gene expression

values. As a part of our data analysis pipeline, we determined the

significantly expressed genes by comparing the reads that aligned

to the annotated gene space (i.e. exons and UTRs) to the ‘‘non-

coding regions’’ (NCRs) that are defined as regions of at least 5 kb

away from any annotated genes. Our method is built upon two

assumptions: first, the NCRs, by definition, do not generate a large

number of transcripts; second, that gene annotation is accurate.

Based on these assumptions, the reads mapped to the NCRs are

likely due to artifacts of the sequencing method or library

construction. For instance, DNA contamination in the RNA

samples could lead to read placements in NCRs and thus can be

used to estimate the background or ‘‘noise’’ level. As shown in

Figure 6, we calculated the significance of gene expression using

the normalized coverage in 99% of the NCRs (see methods for

more detail). Using an empirical Bayesian method based on a

Poisson distribution of reads, we calculated the posterior odds (B)

for all genes and consider a gene as expressed if the B value is less

than 1 (see methods section and Figure S8 for detail).

For SS-derived data, we detected 34,455 sense transcripts and

the corresponding false discovery rate (FDR) was estimated as

0.6%. The distribution of estimated gene expression values are

shown in Figure 7A and indicates that an RPKM value of

approximately 0.3 or greater is sufficient for defining a gene as

‘‘expressed’’. This is reasonable since a value of 0.3 corresponds to

approximately 32 reads aligning to an average 1.1 kb gene model

from a combination of approximately 90 million mapped reads.

Using the same approach, we identified 14,704 significantly

expressed anti-sense transcripts (FDR=5.6%). The average

expression levels of detected anti-sense transcripts are much lower

than that of the sense transcripts (Fig. 7). All significantly expressed

rice genes and anti-sense transcripts are listed in Table S2 and S3.

Additionally, we inspected a few significantly expressed anti-sense

transcript using IGV and further verified them by RT-PCR as

shown in Figure S7.

Detecting Intronic transcription
Another challenge in RNA-seq data analysis is interpreting reads

that map to intronic regions. Intronic reads are likely of biological

importance given the frequency of observed intron retention events

[11,32]. For instance, it is known that approximately 42% of intron-

containing genes in Arabidopsis and maize are alternatively spliced. A

subset of these isoforms appear to be under developmental control

or may be regulated by abiotic stress [32].

In order to survey the intronic alignments, we constructed a

database of intronic sequences from unique gene models and

performed an alignment with the SS-reads. From a total of

97,362,750 aligned reads, 7,373,258 (approximately 7.57%) mapped

to intronic regions. Reads that map to introns may indicate

alternative splicing and pre-mRNA populations but may also indicate

Figure 5. Average multiplex read distribution. Bar plot of the
read distribution among the eleven indices used for this study. Y axis
represents the average percentage of indexed reads relative to the total
number of reads from each lane. X axis shows the index sequences.
Data is averaged from six lanes of data with standard error shown.
doi:10.1371/journal.pone.0026426.g005

Illumina RNA-Seq Protocol and Data Analysis
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incorrectly annotated gene models. To assign a significance value to a

given intron, we developed a novel statistical model and an empirical

Bayes method, similar to the one used to detect significantly expressed

genes, to detect significant intronic alignments. For this test, we

considered a number of factors that would affect intron detection that

include: 1) RPKM value of the corresponding gene 2) intron length

and 3) and number of reads mapped to the intron. As described in the

Methods section, we detected 27,182 expressed introns (approxi-

mately 12.8% of all introns) from the SS-method derived RNA-seq

data with an estimated FDR level of 4.8% (Figure S9; Table S4). We

also visualized a few significantly expressed introns using the IGV and

verified the presence of introns inmature transcripts with RT-PCR as

shown in Figure S7.

Computation pipeline for RNA-seq data analysis
We have compiled our data analysis pipelines into an integrated

package of annotated Perl and R-based modules. The source

codes are easily accessible and adaptable from (http://c3c4.tc.

cornell.edu/resource.aspx). It is also possible to run the script

directly from iPlant website (Matt Vaughn, personal communica-

tion), providing a mechanism for community access. The overall

flow of the pipeline is illustrated in Figure 8. Importantly, these

scripts are well documented and can be easily modified and

improved as RNA-seq technologies advance. As such, we have

intentionally left the pipeline highly annotated and modular, so

that modification and improvement can be easily made. Thus, this

computational pipeline can serve as a useful resource that the

community can improve and adapt upon and may accelerate the

unification of RNA-seq data analysis.

Methods

Protocol for the library construction
The complete protocol for multiplex Illumina sequencing-read

library construction is compiled in a PDF available for download as

File S1. The reagents used in this protocol are also listed in Table S1.

Rice growth and harvesting
Oryza sativa Nipponbare (rice) seeds were used for expression

profiling. Husks were first removed from 5 to 10 g of seeds using a

palm de-husker and extracted seeds were soaked in 75% ethanol

for 1 minute at room temperature and then soaked in 3% bleach

(sodium hypochlorite) solution at 30uC for 30 minutes. The seeds

were then washed 6 times with tap water before adding 30 mL of

tap water and soaking at 30uC overnight with mild agitation. The

following day the tap water was changed every 3–4 hours and

again left overnight for incubation at 30uC. On the third day, the

tap water was changed twice and approximately 3 hours after the

last change of water, the seeds were planted in flats of water-

soaked soil consisting of 1 part Unimix (growing media nutrient

charge), 5 parts OsmocotePlus (15-9-12 fertilizer), 5 parts lime, 9

parts quartz sand, 9 parts top soil, 26 parts Turface (75%

montmorillonite clay), 443 parts peat moss and 933 parts

vermiculite. The seeds were planted 3 cm apart with the embryo

orientated downward. The plants were grown in a BDW-40

chamber (Conviron, Manitoba, Canada) under an 80:20 mix of

metal halide and 100w capselite halogen lamps at a light intensity

of 550 mmol/m2/sec. The temperature in the light was 31uC, the

temperature in the dark was 22uC, and the relative humidity was

Figure 6. Determination of the background cutoff for RNA-seq data. Y axis shows the number of reads that map to non-coding regions
relative to the total bp of non-coding regions (NCR). The x-axis displays the fraction of NCRs. As shown, 99% of the regions denoted as non-coding
have fewer than 0.0015 reads/bp.
doi:10.1371/journal.pone.0026426.g006
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50%. The plants were watered as needed and grown for 14 days

with a 12-hour day/night cycle.

Tissue samples were collected 2 hours after the daylight cycle

had begun. The third leaf was excised from the plants with a razor

blade, cut into 2 cm sections and immediately placed into liquid

nitrogen submerged tubes. Three biological replicates were

collected and each replicate contained tissue from approximately

40 rice seedlings grown over a separate 14-day period.

RNA isolation
Eight metal ball bearings were added to each tube (SAR-

STEDT, catalog number 60-540-016) that contained rice leaf

tissue and capped tubes were placed into an Nalgene 1000 mL

plastic Jar (Sigma, catalog number Z380334) and plunged into

liquid nitrogen. Several holes were drilled into the side of the

Nalgene Jar to allow release of vaporized liquid nitrogen. They

were then placed into a Harbil 5G-HD paint shaker (Fluid

Management, IL USA) and shaken vigorously 9 times for three

minutes intervals. Liquid nitrogen was replenished during the third

and sixth mixes to keep the tissue at low temperature. At the end of

the shaking, the homogenized rice tissue and tubes were

transferred onto dry ice for further processing.

Trizol (6.5 mL) was added to each tube containing plant tissue

on dry ice (7.5 ml of Trizol for 1 g of tissue). Tubes were vortexed

at the highest speed until the Trizol and plant tissue were

completely homogenized in a liquid state, and then placed at room

temperature for 10 minutes. HPLC-grade chloroform (1.3 mL)

was added to each tube and inverted to mix. The tubes were

placed at room temperature for another 5 minutes and then

centrifuged at 50006g for 30 minutes at 4uC using a Hermle Z383

centrifuge. After centrifugation, the upper aqueous phase was

transferred to a new tube, an equal volume of HPLC-grade

isopropanol (roughly 3.5 mL) added, and tubes left on ice for

30 minutes. The mix was then centrifuged again at 4uC at

14,0006 g in a Sorvall RC5C plus centrifuge with appropriate

Figure 7. Distribution of reads mapping to expressed and non-
expressed genes. (a) Distribution of sense alignments and (b) anti-
sense alignments. The RPKM values were calculated from three
replicates. The frequency shows the number of gene models per bin
(vertical bars). A smoothed curve is plotted. Genes with average RPKM
equal to zero are not shown in the histograms.
doi:10.1371/journal.pone.0026426.g007

Figure 8. Data analysis pipeline. Pink boxes highlight functions that
are based on genome sequence and annotation and are not dependent
on experimental data. Blue boxes highlight functions executed for each
experimental run.
doi:10.1371/journal.pone.0026426.g008
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adapters. After removing the supernatant, the precipitated pellets

were washed twice with ice-cold 75% ultra-pure and RNAse free

ethanol. In between washes, the pellets were centrifuged at 5,0006

g for 10 minutes. The pellets were re-suspended in 0.05–0.3 mL

RNA-secureTM solution (Ambion, CA) based on the pellet size and

heated at 60uC for 10 minutes before stored at280uC in a freezer.

Purification and fragmentation of mRNA
The starting total RNA concentration was measured using

NanoDrop (Thermal Scientific, DE) and 15 mg of total RNA was

used for mRNA purification (an optional DNAse-treatment using

the on-column DNAse treatment provided by Qiagen did not

show statistically detectable differences in final products). The total

RNA was topped with nuclease-free dH2O to 50 mL and heated at

65uC for 2 minutes and immediately chilled on ice. 30 mL of

Dynabeads (Invitrogen, CA) were washed twice with 100 mL of

binding buffer (Tris-HCl 20 mM, LiCl 1 M, EDTA 2 mM) and

re-suspended in 50 mL of binding buffer. The RNA samples were

then mixed with the Dynabeads mixture and incubated at room

temperature with mild agitation for 10 minutes. Beads that bound

mRNA were separated from the supernatant using a magnetic

stand (Invitrogen, CA). The beads were then washed twice with

150 mL of washing buffer (Tris-HCl 10 mM, LiCl 0.15 M, EDTA

2 mM), and eluted with 50 mL elution buffer (Tris-HCl 10 mM) at

80uC on an incubator/shaker for 2 min with mild agitation. The

elution was treated again as starting RNA material and the above

procedures were performance one more time to ensure mRNA

purity. mRNA samples were then eluted in 16 mL of elution buffer.

The concentration of mRNA was immediately measured with

1 mL of sample in a QubitH Fluorometer (Invitrogen, CA). 30 ng

of mRNA was used for cDNA synthesis and the remaining mRNA

samples were immediately stored in280uC freezer. The volume of

mRNA samples were adjusted to 4 mL. Four mL of spiking aRNA

mix and 4 mL of 56 first strand buffer (Invitrogen, CA) were then

added to each tube. The mixture was incubated at 94uC for

5 minutes to fragment RNA and then immediately chilled on ice

before the next step.

Synthesis of dUTP-marked dsDNA
The 12 mL of fragmented mRNA, 0.5 mL of Random primer

(Invitrogen, CA), 0.75 mL of SupeRase-In (Ambion, CA) and 1 mL

of DTT (100 mM) were heated at 65uC for three minutes in a

PCR machine. At the end of incubation, 4 mL of water, 1 mL of

DTT (100 mM), 0.1 mL of dNTPs (25 mM), 0.5 mL of SupeRAse-

In and 0.5 mL of Superscript II (Invitrogen, CA) were added and

incubated in a PCR machine using the following conditions: 25uC

for 10 minutes, 42uC for 50 minutes, 70uC for 15 minutes and a

4uC hold. The product was then purified with RNAClean XP

beads (see section SPRI bead-based purification and size-
selection for details) and eluted with 16 mL nuclease-free water.

The RNA/cDNA double-stranded hybrid was then added to 2 mL

of 106 NEB buffer-2 (NEB, MA), 1 mL of dUTP mix (10 mM

dATP, dCTP, dGTP and 20 mM dUTP), 0.5 mL of RNAse H

(2 U/mL), 1 mL of DNA polymerase I and 0.5 mL of DTT

(100 mM). The mixture was incubated at 16uC for 2.5 hours. The

resulting dUTP-marked dsDNA was purified using 38 mL of

AMPure XP beads and eluted with 32 mL EB buffer (10 mM Tris-

Cl, pH 8.5) and saved in the 280uC freezer until the next step.

End repair, dA-tailing and adaptor ligation
The purified dsDNA (16 mL) was mixed with 2 mL of 106End

Repair Buffer (Enzymatics, MA), 1 mL of dNTP mix (10 mM

each) and 1 mL of End Repair enzyme mix (Enzymatics, MA). The

mixture was incubated in a PCR machine for 30 minutes at 20uC

and purified with 28 mL of AMPure XP beads and eluted with

17 mL of nuclease-free water. It was then added to 2 mL of 106

NEB buffer-2 (NEB, MA), 1 mL of 10 mM dATP mix, and 0.5 mL

of Klenow 39–59 exo2 (Enzymatics, MA). The mixture was

incubated in a PCR machine at 37uC for 30 minutes, then purified

with 28 mL of AMPure XP beads and eluted with 10 mL of

nuclease-free water. The 10 mL of end-repaired and dA-tailed

product was then added to a mixture of 1 mL of indexed adaptor

(See making indexed adapter section and Table S5 for detail),

12 mL of 26 ligation buffer and 1 mL of T4 DNA ligase

(Enzymatics, MA). The final mix was incubated at 20uC for

20 minutes in a PCRmachine. Half of the product was saved in the

280uC freezer as backup. The other half (12 mL) was mixed with

12 mL of ‘‘12p XP’’ beads (see section SPRI bead-based

purification and size-selection for details) and incubated at

RT for 6 minutes. The supernatant was then mixed with 12 mL of

AMPure XP beads and 5 mL of 40% of PEG8000 and eluted with

10 mL of nuclease-free water, it was then again purified using 12 mL

of AMPure XP beads and eluted in 30 mL of EB buffer. Half of the

product (15 mL) was saved in the 280uC freezer as backup.

dUTP excision and amplification of library
The size-selected dsDNA product (15 mL) was mixed with 1 mL

of uracil DNA glycosylase (Enzymatics, MA) and incubated at

37uC for 30 minutes in a PCR machine. Without purification, the

mixture was then added to 2 mL of Illumina PE primers (5 mM

each) (Table S5), 6 mL of 56Phusion HF buffer, 1 mL of 10 mM

dNTP, 1 mL of PhusionH Hot Start 2 High-Fidelity DNA

Polymerase (NEB, MA) and 4.5 mL of water. The PCR mix was

incubated with a programmed cycle as following: 94uC for 30 sec,

11 cycles of 98uC, for 10 sec, 65uC for 30 sec, 72uC for 30 sec;

72uC for 5 min followed by a hold at 4uC. The final product was

purified with 43 mL of AMPure XP beads and eluted with 12 mL

of EB buffer.

Mixing library with different indices
The concentration of PCR products was measured using the

dsDNA-HS protocol on the Qubit Fluorometer. Equal quantities

of libraries (approximately 5 ng per sample) with different indices

were mixed and stored in 280uC freezer before sequencing.

SPRI bead-based purification and size-selection
SPRI beads used for this experiment were purchased from

Beckman Coulter (CA, USA). RNAClean XP was used for the

cleaning of the RNA/DNA hybrid product before second strand

synthesis and AMPure XP was used for all other purification steps.

For purification, with the specified amount of SPRI-beads added

to each purification, 50% (v/v) of pure ethanol was added to the

mixture. The mixture was vortexed and kept at room temperature

for at least 5 minutes before being placed on a magnetic stand to

separate the SPRI-beads from the supernatants. Once the

supernatant was removed, the beads were washed twice with

100 mL 75% ethanol and quickly dried with gentle airflow above

the tubes and subsequently re-suspended with water. The elution

suspension was incubated for 2 minutes at RT and then placed on

the magnetic stand, the supernatant was removed and placed in a

new tube.

For size-selection using the SPRI beads, we replaced the stock

buffer of AMPure XP beads with a 12% PEG-8000 and 2.5 M

NaCl solution (‘‘12p XP’’ buffer). One mL of Ampure XP beads

were placed on a magnetic stand and left for 10 minutes. The

supernatant was then removed and the beads were washed twice

with ultra-pure water and re-suspended in the ‘‘12p XP’’ solution.
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When ‘‘12p XP’’ beads were used, the beads were discarded, while

the supernatant is retained for subsequent applications.

Making indexed adapters
DNA Nucleotides were ordered from IDT with specific modifica-

tions (see Table S5 for details). Hybridization of indexed adapters was

performed in hybridization buffer (0.1 M NaCl, 10 mM Tris-HCl,

10 mM EDTA, pH 8,0) with a thermal cycler. The hybridization

program was as following: 75uC for 5 minutes, ramping down to

25uC with 1uC per second for 50 minutes, and holding at 25uC for

30 minutes. They were frozen at 220uC before use.

RT-PCR verification of anti-sense transcript and intronic
alignments
Total RNA was extracted from rice seedling leaf tissue as

described above. First stand cDNA synthesis was performed using

gene-specific primers as listed in Table S5. Total RNA was treated

with Turbo DNase (Ambion, CA) following manufacturer’s

recommendations and 200 ng was then used for subsequent

first-stand cDNA synthesis. Briefly, 4 mL of total RNA was mixed

with 1 mM of gene specific primers, 1 mL of 10 mM dNTPs, 4 mL

of water and 1 mL of RNAse-OUT (Invitrogen, CA) and

incubated at 65uC for 5 minutes and immediately chilled on ice.

The reaction mix was then added to 4 mL of 56 first strand buffer

(Invitrogen, CA), 2 mL of 0.1 M DTT, 1 mL of RNase-OUT and

1 mL of SuperScript III (Invitrogen, CA). The reaction mix was

then incubated at 50uC for 50 minutes, 85uC for 5 minutes

followed by 4uC hold in a thermal cycler. The first-strand cDNA

product was incubated with RNase-H (Invitrogen, CA) at 37uC for

20 minutes and used as the temple for PCR. Each PCR reaction

was performed using 4 mL of first-strand cDNA template along

with 11 mL of water, 10 mL of primer (2 mM each) and 25 mL of

26 GoTaq mix (Promega, WI). PCR cycles were optimized for

individual genes ranging from 25 to 32 cycles.

Determining significantly expressed genes
Let Ngj denote the observed number of reads for gene g, and

technical replicate j of a sample, where g = 1, 2, 3, …, G, G is the

total number of genes that are supported by mapped reads and

j = 1,2,..,n, n is the number of replicates. Following previous

reports, we assume Ngj follows a Poisson distribution [33,34]. By

properties of Poisson distribution and independence between

replicates, Ng~
Pn

j~1 Ngj also follows a Poisson distribution. To

detect the expressed genes based on the background expression,

we model the mean of the Poisson distribution for Ng as

Lg(lgzl0) where Lg is the length of gene g, lg is the true

expression level of gene g, and l0 is the background expression

level. For each sample, we examine whether gene g is expressed by

testing lgw0 versus lg~0.

The number of genes, G, is much higher than the number of

replicates n for each sample. To improve the performance of the

test, we used an empirical Bayes approach that uses information

obtained from expressed genes to inform the analysis. Similar ideas

were used to test for differentially expressed genes in microarray

data analysis [35,36]. Let Ig~1 where gene g is expressed and

supported by RNA-seq data and Ig~0 if the gene is not expressed

but may have mapped reads that arise from experimental artifacts.

Hence, lgw0 corresponds to Ig~1 and lg~0 is equivalent to

Ig~0. Furthermore, we assume that lg of expressed genes follow a

Gamma distribution, i.e.,

lgjIg~1*Gamma(a,b)

where a and b are parameters for the Gamma distribution with

mean a=b. Hwang and Liu showed that the maximum average

powerful (MAP) test in such multiple testing scenarios can be

approximated by the empirical Bayes likelihood ratio test [36]. A

monotonic transformation of the test statistic under our model

gives the posterior odds Bg:

Bg~
Pr(Ig~0jNg)

Pr(Ig~1jNg)

~
P0C(a)

(1{P0)b
a

ð

?

0

e{(Lgzb)l 1z
l

l0

� �Ng

la{1dl

 !

{1

where P0 is the proportion of non-expressed genes. We report the

genes with Bgv1 as detected. The associated FDR level is

estimated using the posterior probabilities [37]. The posterior odds

and associated FDR for sense and anti-sense transcripts are plotted

in Figure S8.

To calculate Bg, we first estimated the values of the parameters

l0,P0,a and b. The background expression level, l0, was estimated

based on the genomic regions that are at least 5 kb away from any

annotated exon and we call such regions non-coding regions

(NCR). We define the length-normalized coverage (LNC) for a

genomic region as the ratio of total number of mapped reads to the

length of the region. The plot of the distribution of LNC for the

NCRs in Figure 6 shows a dramatic increase above the 99-

percentile. This is likely due to incorrectly annotated gene models

where reads are mapped. Therefore, we excluded such regions

and obtained the ratio of the total mapped reads and the total

length for the remaining NCRs. The parameter l0 was estimated

to be this ratio.

The parameter P0 was calculated by the proportion of genes

with LNC lower than the estimated background expression level,

l0. Given the estimate of l0, we obtained the maximum likelihood

estimate for lg using the genes with higher LNC and these

estimates were subsequently used to calculate the maximum

likelihood estimates for a and b of the Gamma distribution.

Determining intron retention events
We proposed a novel statistical model to detect intron retention

events and derived an empirical Bayes test based on the model. Let

Ngi denote the sum of the observed number of reads across

replicates for a sample for the i-th intron of gene g where i = 1, 2,

…, ng and ng is the number of introns for gene g. Assume Ngi

follows a Poisson distribution with mean Lgi(lgizl0) where Lgi is

the length of this intron, Cg is the expression value of the gene and

we used the sum of RPKM values across replicates to approximate

it, lgi is the rate of the intron retention and l0 is the background

level. We normalized the intron retention rate by gene expression

under the assumption that intronic alignment is proportional to

the gene expression level. Using empirical Bayes approach with a

Gamma(a,b) prior for lgi,we derived the following posterior odds

to test whether an intron retention is detected or not:

Bgi~
Q0C(a)

(1{Q0)ba

ð

?

0

e
{(LgiCgzb)l

1z
Cgl

l0

� �Ngi

la{1dl

 !

{1

where Q0 is the proportion of non-expressed introns. The

parameters lg,Q0,a and b were estimated in the same fashion as

described in the previous method section. Introns with Bgiv1

were reported as having significant intron retention and the

associated FDR level was estimated as in Gadbury et al [37] using
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the posterior probabilities. The posterior odds and associated FDR

for intronic reads are plotted in Figure S9.

Supporting Information

Figure S1 Comparison of normalization methods for
estimating gene expression. The comparison is performed

using goodness-of-fit statistics using the SS-derived RNA-seq data.

Gene expression is normalized using TMM, Q3, Total Reads or

Spike-in. The x-axis shows the quantiles of the statistics predicted

by the Chi-Square distribution, and the y-axis shows the observed

quantiles calculated from RNA-seq data. Perfect match indicates

the theoretical scenario when no differential expression is detected

among the three technical replicates.

(TIF)

Figure S2 RNA fragmentation using 1st strand cDNA
buffer. The graphs show bioanalyzer results of fragmented

mRNA size distribution following 3, 5 and 10 minutes of

incubation. Blue line indicates 200 bps.

(TIF)

Figure S3 Library size selection using modified SPRI
buffer. Top shows the EtBr-stained gel image of final library sizes

using different concentrations of PEG-8000 in the modified buffer.

Lane 1 is the control without any input DNA. Lanes 2–6 show

results of using 8%–12% PEG-8000 in the buffer. Bottom Image

shows ImageJ analysis result of the intensity distribution of the gel

image.

(TIF)

Figure S4 Examples of read alignments from NSS and
SS RNA-seq methods. The four images display alignments

visualized using IGV for rice gene model (a) Os01g37920.1, (b)

Os01g68490.1, (c) Os03g01020.1 and (d) Os04g55150.2. Each

panel shows the genomic region, NSS read alignment, SS read

alignments, and gene models. Red and blue colors designate the

directionality of reads.

(TIF)

Figure S5 Schematic of multiplexing adaptor. Green and

blue nucleotides represent the non-complementary arms. Black

shows the paired region, and red represents the index sequences.

Purple T is the non-paired overhang at the 39-end and p stands for

phosphorylation at 59-end.

(TIF)

Figure S6 Read distribution from 7-bp indices on the
HiSeq2000 platform. Each bar represents the absolute number

of deconvoluted reads from one lane of HiSeq200.

(TIF)

Figure S7 IGV visualization and RT-PCR verification of
significantly expressed anti-sense transcripts and in-
trons. (A–D) Screenshots of IGV showing (A) Os0501600.1 (Actin),

(B) Os01g48220.1, (C) Os012g18729.1 and (D) Os012g19381.1.

Red arrows indicate the primer pairs used to detect intronic

expression. Blue arrows indicate the primers used for directional

exonic expression detection, and the dashed primers were also used

as the gene-specific primer for antisense first-strand cDNA synthesis.

The black arrow indicates the gene-specific primer for sense first-

strand cDNA synthesis. (E) Gel images of the RT-PCR results

showing the existence of intronic and anti-sense expression. Lanes

1–8 are the results of amplification from Os05g01600.1 as follows:

lane 1 sense exon primers(blue) using sense 1st strand cDNA (black);

Lane 2 intron primers (red) with sense 1st strand template; lane 3

and 4, – RT negative control of lane 1 and 2; lane 5, exon primer

(blue) with anti-sense first-strand cDNA as template (dashed blue

primer); Lane 6, intron primers (red) with anti-sense 1st strand

template; lane 7 and 8, - RT negative control of lane 5 and 6. Lane

13–20 (Os12g18729.1) and lane 21–28 (Os012g19381.1) follow the

exact format of lane 1–8. Lane 9 and 11 shows sense and anti-sense

detection of exonic expression of Os01g48220.1, while lane 10 and

12 are the –RT negative controls of lane 9 and 10 respectively.

Lane number colored yellow indicate presence of amplified PCR

product. DNA ladder of 100, 200 and 300 bps are not labeled with

numbers.

(TIF)

Figure S8 Detection of significantly expressed tran-

scribed genes and anti-sense transcripts. The plots show

the posterior odds distribution, B, and corresponding FDR at

each cutoff of the posterior odds for (a) transcribed genes and (b)

anti-sense transcripts. At the cutoff values of 1 for posterior

odds, the associated FDR levels were estimated to be 0.6% and

3.3% for the transcribed genes and anti-sense transcripts,

respectively.

(TIF)

Figure S9 Detection of significantly expressed introns.

The plot shows the distributions of posterior odds and corre-

sponding FDR at each cutoff of the posterior odds. The cutoff

value for posterior odds of B= 1 corresponds to an FDR level of

approximately 4.8%.

(TIF)

Table S1 List of reagents for library construction.

(XLSX)

Table S2 List of RPKM, FDR and B values for rice gene

models calculated from sense alignment.

(XLSX)

Table S3 List of RPKM, FDR and B values for rice gene

models calculated from anti-sense alignment.

(XLSX)

Table S4 List of RPKM, FDR and B values for detected

rice intronic expression.

(XLSX)

Table S5 List of nucleotide sequences for multiplex

adaptors and RT-PCR primers.

(XLSX)

File S1 Protocol for constructing of strand-specific

multiplex RNA-seq libraries for Illumina platforms in

PDF format.

(PDF)
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