
A Low-Cost Storage Server for Movie on Demand 

Databases 

Banu 6zden Alexandros Biliris Rajeev Rastogi Avi Silberschatz 

AT&T Bell Laboratories 
600 Mountain Avenue 
Murray Hill, NJ 07974 

{ozden, biliris, rastogi, silber}Oresearch.att.com 

Abstract 

With recent advances in storage and network 

technology it is now possible to provide movie 
on demand (MOD) service, eliminating the in- 

flexibility inherent in todays broadcast cable 
systems. A MOD server is a computer sy5 

tern that stores movies in compressed digital 
form and provides support for different por- 
tions of compressed movie data to be accessed 

and transmitted concurrently. In this paper, 
we present a low-cost storage architecture for 

a MOD server that relies principally on disks. 

The high bandwidths of disks in conjunction 

with a clever strategy for striping movies on 
them is utilized in order to enable simultane- 

ous access and transmission of “certain” dif- 
ferent portions of a movie. We also present a 
wide range of schemes for implementing VCR- 

like functions. 

1 Introduction 

The movie on demand (MOD) concept has become ex- 

ceedingly popular with telecommunications, computer 
and cable companies. Viewers that subscribe to a 
MOD service have access to a much wider feature set 

Permission to copy without fee all OT pari of this material is 
granted provided Ihal Ihe copies are not made OT dislributed JOT 

direct commercial advantage, Ihe VLDB copyright notice and 
the title of the publicalion and its dale appeal; and nolice is 

given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT lo republish, requires a fee 
and/or special penniasion from the Endowmenl. 

Proceedings of the 20th VLDB Conference 

Santiago, Chile, 1994 

in comparison to the broadcast based cable and TV 

networks. For example, a viewer can start watching a 
movie, from among a particular set of movies, at any 
time the viewer wishes to do so. When watching a 

movie, a viewer can apply VCR operations like pause, 
resume, fast-forward and rewind to the movie. Thus, 
MOD systems differ substantially from today’s broad- 
cast cable systems in which, at any given time, all the 
viewers see the same portion of a movie and viewers 
of movies have no control over its transmission. 

Until recently, low network bandwidths and video 
storage technologies made offering MOD services to 
viewers a difficult task. However, today, networks built 

using optic fibers have bandwidths of several gigabits 
per second. Furthermore, not only is it now possible 

to store video data in digital form, but it is also pos- 
sible to obtain high compression ratios. For example, 
display of video at 30 frames/set that is compressed 

using the MPEG [l] compression algorithm requires 

a bandwidth of merely 1.5 Mb/s. Thus, it is possi- 
ble now to concurrently transmit independent video 

streams to thousands of viewers. 
Even though the problem of transmitting video data 

is considerably simplified due to the availability of 
high bandwidth networks, the design and implemen- 
tation of MOD storage servers that are responsible 
for the storage and retrieval of different portions of 
movies simultaneously remains a non-trivial problem. 

A storage architecture for a MOD server must address 
the following issues: low-cost, continuous retrieval of 

movies, ability to support VCR operations, and ser- 
vicing multiple viewers concurrently. 

In general, a MOD server will contain a cache to 

temporarily store the currently viewed movies. The 
popular movies will be loaded onto the cache from a 
library which stores movies permanently (e.g., a juke- 

box of tapes). The cache can be designed with random 

594 



access memory (RAM) as a flat architecture. However, 
this approach will increase the cost of the MOD server 

substantially due to the high cost of RAM and the 
high storage requirements of movies. For example, an 
MPEG compressed 100 minute movie with an average 
bandwidth of 1.5 Mb/s requires approximately 1.125 

GB of storage. Assuming the cost of RAM is $50.00 
per MB, the cost of a RAM-based cache to store 100 
popular movies will exceed $5.5 million. 

In this paper, we propose a storage hierarchy to 
design a low-cost cache for a MOD server. The hierar- 
chy consists of disks which store the popular movies, 
and a small amount of RAM buffers which store only 

portions of the movies. Due to the low cost of disks 
(approximately $1 per MB), the cost of a MOD server 

based on our architecture is substantially less than one 
in which the entire movie is loaded into RAM. How- 
ever, unlike a RAM-based architecture, access times to 
random locations on disks are relatively high. There- 
fore, clever storage allocation schemes must be devised 

to continuously retrieve different portions of a movie 

for a large number of users and at the same time to 
minimize the buffering requirements. For the same 
reasons, the implementation of VCR operations like 

fast-forward, rewind, pause and resume is a difficult 
task. We present the “phase-constrained” storage al- 

location scheme which enables a large number of differ- 
ent parts of a movie to be viewed simultaneously, and 
a variety of schemes for implementing the VCR op- 
erations. The schemes illustrate the trade-off between 

the size of the RAM buffers required and the quality of 
the VCR-type service, in particular, abruptness in dis- 
play perceived by viewers during fast-forward/rewind 
operations as well as the response time for switching 

back to normal display mode from pause, fast forward 
and rewind modes. The lower costs of schemes that 

provide limited functionality for fast-forward, rewind 

and pause make them attractive for a wide range of 
environments. 

2 Overall System Architecture 

In this section, we present an overview of the system 
architecture for supporting MOD services. The main 

system component, the MOD server, is a computer 
with one or more processors, and a cache to hold a 
set of popular movies in compressed form. The cache 

is updated from a library of movies at the same site 
or from a library or a cache at another site. Figure 1 

illustrates the overall architecture for MOD services. 

We refer to the transmission of a movie starting at 

a given time as a stream. Two streams may corre- 
spond to the same or different movies. The maximum 
number of streams that a storage server can support 
is limited by its bandwidth. This number is not, in 
general, sufficient to provide each viewer with an in- 
dependent stream, since the number of viewers will be 

typically larger than the maximum number of streams. 
The challenge is to devise clever algorithms and buffer- 
ing techniques to assign viewers to the right streams at 

the right times in order to provide on-demand movie 
service with VCR functionalities. 

The compressed movie data is transmitted at a rate The cache that stores the popular movies can be de 

of rd over a high bandwidth network individually to signed as a flat architecture consisting only of RAM. 

every viewer that subscribes to a MOD service. The Due to the high cost of RAM, however, this approach 

Movie Library MOD Server 

Q Network 

Figure 1: System architecture for MOD services. 

number of viewers serviced by a single MOD server 
would vary depending on the geographical location. 
However, we expect this number to be between 5,000 
and 10,000. Every viewer has a decoder, which con- 
sumes the compressed movie data from a local buffer 
at a rate of about rd and outputs frames to a display 
at the playback rate (which is typically 30 frames/set). 

Viewers can issue commands to control the display 
of a movie that is stored in the MOD server. These 
commands include begin, fast-forward, rewind, pause 
and resume. The commands are transmitted to the 

MOD server, which maintains information relating to 
the status of every viewer (e.g., the last command ex- 
ecuted by the viewer, the position in the movie of the 
last bit transmitted to the viewer). While a movie is 

being displayed, viewers can apply any of the above 

commands to control the display of the movie. 

595 



makes the cost of a MOD server prohibitively expen- 

sive. Therefore, we propose a two-level cache archi- 

tecture consisting primarily of secondary storage de- 

vices and a limited amount of RAM. The second level 
of the cache consists of disks, which store the popular 
movies, while the first level consists of the R.AM buffer 

to temporarily hold portions of movies currently being 
displayed. Due to the lower cost of disks, our approach 
yields cheaper MOD services. 

However, given that our primary storage device is a 
disk, it is difficult to obtain the maximum number of 

concurrent streams, since disks have high access time 
to random locations (approximately 15 ms in the worst 
case). A major portion of this paper is devoted to the 
design of a basic storage architecture which is capable 
of transmitting the maximum number of streams by 
employing only little amount of RAM buffers. 

To simplify our discussion, we will present our re- 

sults assuming that only one movie is being handled 
by the MOD server. Our results can, however, be gen- 
eralized to providing streams for multiple movies by 
simply expanding the system (bandwidth, disk stor- 
age and buffers) by the number of movies. 

3 The Basic Storage Architecture 

A MOD server must provide support for the transmis- 
sion of a movie on demand which can be initiated at 

any time. We refer to the transmission of movie data 
initiated at a certain time as a phase. Two phases are 
said to be concurrent if their transmission overlaps in 

time. We refer to the difference in the initiation times 
for two phases as their phase diflerence. 

Our basic storage architecture consists of disks that 
store the movie, and RAM buffers, referred to as movie 
buglers, that store portions of the movie temporarily. 
Due to the relatively high access time to a random 
location on a disk, clever storage allocation schemes 
must be used to concurrently support the maximum 
number of phases. Furthermore, in order to keep the 

cost of the system low, the storage allocation scheme 
must not require large amounts of movie data to be 
buffered in RAM. In this section, we propose a novel 
storage allocation scheme for movies on disk, which 
enables a MOD server to support the maximum num- 
ber of concurrent phases with fixed phase differences, 
and requires only a small amount of buffer space to be 
maintained per phase. 

3.1 Storage Allocation 

Suppose a movie is stored on a disk with bandwidth 

rt. ’ Since each phase requires movie data to be re- 
trieved from disk at a rate rd, the number of concur- 
rent phases that can be supported is clearly limited by 
the bandwidth rt. The maximum number of concur- 
rent phases, denoted by p, that can be supported by 
retrieving movie data from disk is given by: 

P= 121. (1) 

Before we present our storage allocation scheme in Sec- 
tion 3.1.2, in the following subsection, we show that 
adopting a naive approach like storing movie data con- 
tiguously on disk requires large amounts of movie data 
to be buffered in RAM in order to compensate for the 
high latency time associated with disks. 

3.1.1 Contiguous Allocation 

For every phase, movie data from disk is retrieved into 

a RAM buffer of size d bits at a rate Td. We show that 
with contiguous allocation, the amount of buffer re- 

quired for a phase increases with the number of phases 
and the latency of disk. Suppose that there are m con- 
current phases of the movie. In order to ensure that 
data for the m phases can be continually retrieved from 

disk at a rate rd, in the time that the d bits from m 
buffers are consumed at a rate rd, the d bits of the 
movie following the d bits consumed must be retrieved 
into the buffers. Since each retrieval involves posi- 
tioning the disk head at the desired location and then 

transferring the d bits from the disk to the buffer, we 
have the following equation. 

where tlot is the worst case latency of the disk. Hence, 
the size d of the buffer per phase can be calculated as 

(2) 

Thus, the buffer size per phase increases both with la- 

tency of the disk and the number of concurrent phases. 
In the following example, we compute for a commer- 
cially available disk, the sizes of portions of movies 
that need to be buffered in order to support the max- 

imum number of concurrent phases. 

‘A disk can be either a sinnle disk or a disk array. In the 
latter case, the bandwidth ~‘t ii de&led as the numb& of bits 
retrieved in parallel in a second. 

596 



Example 1: Consider a commercially available 

disk costing $3000 with a capacity of 9 GB, a transfer 

rate of 80 Mb/s and a worst case latency time of 15 ms. 
Since rd is 1.5 Mb/s (for MPEG), the maximum num- 
ber of concurrent phases that can be supported at a 
rate of 1.5 Mb/s using the device is i%J = 53. Using 
Equation 2, we compute the buffer size requirements 
d to support 53 concurrent phases to be d 2 190 Mb. 
Since we require 53 different buffers, the total storage 

requirements are 53.190 a 10 Gb, which is larger than 
the size of a movie. 0 

3.1.2 Phase-Constrained Allocation 

In order to keep the amount of buffer per phase low, we 
propose a new storage allocation scheme for a movie 

on disk, which we call the phase-constrained alloca- 

tion scheme. The phase-constrained allocation scheme 
eliminates seeks to random locations, and thereby en- 
ables the concurrent retrieval of maximum number of 
phases p, while maintaining the buffer size per phase 
as a constant independent of the number of phases and 
disk latencies. Since movie data is retrieved sequen- 
tially from disk, only “certain” concurrent phases with 
fixed phase differences are supported. 

Let 1 be the length of a movie in seconds. Thus, the 
storage occupied by the movie is 1 . rd bits. Suppose 
movie data is read from disks in portions of size d. 
We shall assume that 1 . rd is a multiple of p . d.2 Our 
goal is to be able to support p concurrent phases of 
the movie. In order to do this, we chop the movie into 

p contiguous partitions. Thus, the movie data can be 
visualized as a (p x 1) vector, the concatenation of 

whose rows is the movie itself and each row contains 

t, . fd bits of movie data, where 

t,=f. 
P 

We refer to 1, as the smallest phase difference since the 

first bit in any two adjacent rows are t, seconds apart 
in the movie. Since movie data in each row is retrieved 
in portions of size d, a row can be further viewed as 
consisting of n portions of size d, where 

tc . rd 
n=- 

d 

Thus, a movie can be represented as a (p x n) matrix 
of portions as shown in Figure 2. Each portion in 

the matrix can be uniquely identified by the row and 

column to which it belongs. Suppose we now store 
the movie matrix on disk sequentially in column-major 

2The length of the movie can be modified by appending ad- 
vertisements, etc. to the end of the movie. 

Eli 
. 
. 

n . . . . . . . . . El 
. . . II 

+d-+- 

Figure 2: The movie viewed as a matrix. 

form. Thus, as shown in Figure 3, Column 1 is stored 
first, followed by Column 2, and finally Column n. 

We show that by sequentially reading from disk, 
movie data in each row can be retrieved concurrently 
at a rate rd. From Equation 1, it follows that: 

p.d< d 
rt -6’ (3) 

Therefore, in the time required to consume d bits of the 
movie at a rate rd, an entire column can be retrieved 
from disk. As a result, while a portion is being con- 

sumed at a rate rd, the next portion can be retrieved3. 
If we assume that once the nth column has been re- 

trieved, the disk head can be repositioned to the start 
of the device almost instantaneously, then we can show 
that p concurrent phases can be supported, the phase 
difference between any two phases being a multiple 

of t,. The reason for this is that every t, seconds 
the disk head can be repositioned to the start. Thus, 
a new phase can be initiated every t, seconds. Fur- 
thermore, for every other concurrent phase, the last 
portion retrieved just before the disk head is reposi- 

tioned, belongs to Column n. Since we assume that 
repositioning time is negligible, Column 1 can be re- 
trieved immediately after Column n. Thus, since the 
portion following portion (i, n) in Column n, is portion 
(i + 1,1) in Column 1, data for concurrent phases can 
be retrieved from disk at a rate rd. In Section 3.3, we 
present schemes that take into account repositioning 
time when retrieving data for p concurrent phases. 

3.2 Buffering 

We now compute the buffering requirements for our 

storage scheme. With every row of the movie matrix, 

3The scheme we describe guarantees a transfer rate of rd. 
It can be easily modified to guarantee the transfer of a certain 
number of frames in a given time in a given time span. This can 
be accomplished by chopping the movie into logically related 
units instead of fixing the sizes of portions to d. For example, 
each portion may contain compressed data of k frames. 

597 



1st column ( 2nd wlumn + 

(lml) (2,1) (P.2) 

7) :.. f-y+y . . . [l . . . 

-+-d+=- 

( nth column , 

(1 n) RN (pn) 

Figure 3: Placement of n columns of movie matrix. 

we associate a movie buffer, into which consecutive 
portions in the row are retrieved. Each of the movie 

buffers is implemented as a circular buffer; that is, 
while writing into the buffer, if the end is reached, then 
further bits are written at the beginning of the movie 

buffer (similarly, while reading, if the end is reached, 
then subsequent bits are read from the beginning of 
the buffer). 

With the above circular storage scheme, every % 
seconds, consecutive columns of movie data are re- 
trieved from disk into movie buffers. The size of each 
buffer is 2d, one half of which is used to read in a por- 
tion of the movie from disk, while d bits of the movie 

are transmitted to viewers from the other half. Also, 
the number of movie buffers is p to store the p different 
portions of the movie contained in a single column - 

the first portion in a column is read into the first movie 

buffer, the second portion into the second movie buffer 
and so on. Thus, in the scheme, initially, the p portions 
of the movie in the first column are read into the first 
d bits of each of the corresponding movie buffers. Fol- 
lowing this, the next p portions in the second column 

are read into the latter d bits of each of the correspond- 
ing movie buffers. Concurrently, the first d bits from 
each of the movie buffers can be transmitted to view- 

ers. Once the portions from the second column have 

been retrieved, the portions from the third column are 
retrieved into the first d bits of the movie buffers and so 
on. Since consecutive portions of a movie are retrieved 

every % seconds, consecutive portions of the movie are 
retrieved into the buffer at a rate of rd. Thus, in the 

first movie buffer, the first n portions of the movie 
(from the first row) are output at a rate of rd, while in 
the second, the next n portions (from the second row) 
are output and so on. Thus, data for p concurrent 
phases of the movie can be retrieved by sequentially 
accessing the contents of consecutive movie buffers. 

3.3 Repositioning 

The storage technique we have presented thus far en- 
ables data to be retrieved continuously at a rate of rd 
under the assumption that once the nth column of the 
movie is retrieved from disk, the disk head can be repo- 
sitioned at the start almost instantaneously. However, 
in raalitv. this sssumntion does not hold. Below. we 

present techniques for retrieving data for p concurrent 
phases of the movie if we were to relax this assumption. 

The basic problem is to retrieve data from the device 
at a rate of rd in light of the fact that no data can be 
transferred while the head is being repositioned at the 
start. A simple solution to this problem is to maintain 
another disk which stores the movie exactly as stored 
by the first disk and which takes over the function of 
the disk while its head is being repositioned. 

An alternate scheme that does not require the entire 
movie to be duplicated on both disks can be employed 
if the minimum phase difference t, is at least twice the 

repositioning time. The movie data matrix is divided 
into two submatrices so that one submatrix contains 
the first 151 1 co umns and the other submatrix, the re- 

maining 14 J columns of the original matrix, and each 

submatrix is stored in column-major form on two disks 

with bandwidth rt. The first submatrix is retrieved 
from the first disk, and then the second submatrix is 
read from the other disk while the first disk is reposi- 
tioned. When the end of the data on the second disk 
is reached, the data is read from the first disk and the 
second disk is repositioned. 

If the time it takes to reposition the disk to the 
start is low, in comparison to the time taken to read 

the entire movie, as is the case for disks, then almost 
at any given instant one of the disks would be idle. To 
remedy this deficiency, in the following, we present a 

scheme that is more suitable for disks. In the scheme, 
we eliminate the additional disk by storing, for some 
m, the last m portions of the column-major form rep- 

resentation of the movie in RAM so that after the first 
/rd - md portions have been retrieved from the disk 
into the movie buffers, repositioning of the head to 

the start is initiated. Furthermore, while the device 
is being repositioned, the last m portions of the movie 
are retrieved into the movie buffers from RAM instead 

of the device. Once the head is repositioned and the 

last m portions have been retrieved into the movie 

buffers, the columns are once again loaded into the 
movie buffers from disk beginning with the first col- 
umn as described earlier in the section. For the above 
scheme to retrieve data for phases of the movie contin- 
uously at a rate of rd, we need the time to reposition 
the head to be less than or equal to the time to con- 

598 



sume m portions of the movie at a rate of rd, that 

is, 
m.d 
- 2 t1ot 

rd 

Thus, the total RAM required is md + 2dp. The cost 
of retrieving data for p concurrent phases of the movie 
into the movie buffers using the disk in Example 1 

and our storage allocation scheme can be computed as 
follows. We choose the portion size d to be 50 Kb. 
Since the maximum number of concurrent phases for 

the disk is 53, the RAM required for the movie buffers 
is 50 . 53 . 2 = 5.3 Mb. Since the cost of the disk is 

$3000, if we use the additional disk to make up for 
repositioning time, the total storage cost for the sys- 
tem per movie would be approximately $6033. On the 
other hand, if we use the latter scheme that uses RAM, 
due to the low value of tlat, the cost of RAM is negli- 
gible. Thus, the storage cost of the system per movie 

would be $3033 as opposed to $62,500 if the entire 
movie were stored in RAM. 

4 Implementation of VCR Operations 

We now turn our attention to how VCR operations can 

be implemented in our basic architecture. We assume 
that movies are digitized and compressed using the 
widely used MPEG video compression algorithm [l]. 
However, our scheme for the implementation of VCR 
operations is general and can be used even if different 
compression algorithms, transfer and playback rates 
are employed. 

The MPEG video compression algorithm requires 
compressed movie data to be retrieved at a rate of 

about rd = 1.5 Mb/s in order to support the display 
of moving pictures at a rate of 30 frames per second. 

MPEG compressed video is a sequence of Intraframe 

(I), Predicted (P) and Bidirectional (B) frames. I- 

frames are stand-alone frames and can be decoded in- 
dependently of other frames. P-frames are coded with 
reference to the previous frame and thus can be de- 
coded only if the previous frame is available, while a 
B-frame requires the closest I/P-frame preceding and 

following the B-frame for decoding. I-frames consume 
the most bandwidth, while B-frames consume the least 

(the ratio of the bandwidths consumed by the frames 

is 5:3:1). We refer to a sequence of frames beginning 
with an I-frame and ending with a P-frame as an inde- 
pendent sequence of frames. Thus, since an indepen- 
dent sequence of frames contains references for every 

B-frame in it, it can be decoded by an MPEG de- 
coder. The organization of frames in MPEG is quite 
flexible, the frequency of I-frames being a parameter to 
the MPEG encoder. We shall assume that in MPEG 

I BBP BBP BBP I 

Figure 4: A possible sequence of MPEG frames. 

compressed movies stored on the MOD server, there 
are 2k + 1 BBP frames between any two consecutive I- 
frames, where k is a positive integer [l] (see Figure 4). 
In addition to I, B and P frames, there is a variation 

of a P-frame, which is a constant frame and which 
we refer to as a Repeat (R) frame, with the following 
property: when an MPEG decoder receives an R-frame 

immediately after it receives a P-frame or an R-frame, 
it outputs the same frame as the previous one output 
by it. 

MPEG compressed movie data is transmitted at a 
rate of rd = 1.5 Mb/s. Every viewer has an MPEG de- 
coder, that consumes MPEG compressed movie data 
from a local buffer at a rate of about 1.5 Mb/s and out- 
puts frames to a display at a rate of 30 frames/second. 

Since the consumption rate of the MPEG decoder may 
not be uniform (it could exceed or fall below 1.5 Mb/s), 
a process at the viewer site continuously monitors the 

decoder buffer, discarding BBP frames immediately 
preceding an I-frame if the buffer overflows and in- 
serting additional R-frames between P and I-frames in 
case the buffer underflows4. 

We now describe how the control operations like 
begin, pause, fast-forward, rewind and resume for a 
movie are executed with our basic storage architec- 
ture. As we described earlier, contiguous portions of 

the movie are retrieved into p movie buffers at a rate 
Pd. The first n portions are retrieved into the first 
movie buffer, the next n into the second movie buffer, 

and so on. 

begin: The transmission of compressed movie data to 

the viewer starts once the first movie buffer contains 
the first frame of the movie. Portions of size d are 
transmitted to the user at a rate rd from the movie 

buffer (wrapping around if necessary). After the i. nth 
portion is transmitted, transmission of movie data is 
resumed from the i+ lth movie buffer. We refer to the 

movie buffer that outputs the movie data currently 
being transmitted to the viewer as the current movie 

buffer. Since in the worst case, n. d bits may need to 
be transmitted before the first movie buffer contains 
the first frame of the movie, the delay involved in the 

transmission of a movie when a viewer issues a begin 

*We do not expect deletion and insertion of a few additioual 
frames to seriously effect the quality of the movie since each 

frame is displayed for only Y& th of a second. 

599 



command, in the worst case, is the minimum phase 
difference t, . 

pause: Once a P-frame immediately preceding an I- 
frame is transmitted, subsequent frames transmitted 
to the viewer are R-frames. 

fast-forward: Beginning with the current movie 

buffer, the following steps are executed. 

Continue transmitting compressed movie data 
normally until a P-frame is transmitted from the 

current movie buffer and the next movie buffer 
contains an I-frame. 

Transmit movie data beginning with the I-frame 
in the next movie buffer. 

Go to Step 1. 

Thus, during fast-forward, independent sequences of 
frames are transmitted, the number of bits skipped 
between any two successive sequences being approxi- 
mately n . d. 

rewind: This operation is .implemented in a similar 

fashion to the fast-forward operation except that in- 

stead of jumping ahead to the following movie buffer, 
jumps during transmission are made to the preceding 

movie buffer. Thus, beginning with the current movie 
buffer, the following steps are executed. 

1. Continue transmitting compressed movie data 
normally until a P-frame is transmitted from 
the current movie buffer and the previous movie 

buffer contains an I-frame. 

2. Transmit movie data beginning with the I-frame 
in the previous movie buffer. 

3. Go to Step 1. 

resume: In case the previously issued command was 

either fast forward or rewind, bits are continued to be 
transmitted normally from the current movie buffer. 

If, however, the previous command was pause, then 
once the current movie buffer contains the I-frame fol- 
lowing the last P-frame transmitted, normal transmis- 
sion of movie data from the movie buffer is resumed 

beginning with the I-frame. Thus, in the worst case, 
similar to the case of the begin operation, a viewer 

may experience a delay of t, seconds before transmis- 

sion can be resumed after a pause operation. 
Furthermore, the basic architecture enables the 

viewer to jump to any location in the movie in t, sec- 
onds. During fast-forward and rewind, since indepen- 
dent.sequences of frames are transmitted, the MPEG 

decoder has no problems decoding transmitted data. 

Also, when switching from one movie buffer to another, 

one of the movie buffers must contain an I-frame, while 

the other must contain a P-frame. However, this is not 

really a problem, since due to the high frequency of P- 
frames in the compressed movie, it is very likely that 
every time a movie buffer contains an I-frame, adja- 
cent movie buffers would contain P-frames. Finally, 
in the extreme case, 30t, frames may be skipped for 
every IBBP sequence transmitted. Thus, fast-forward 
and rewind could give the effect that the frames are 
displayed at approximately 7.5t, times their normal 
rate. We shall refer to the number of frames skipped 
during fast-forward and rewind as their granularity. 

For the disk in Example 1, t, for a 100 minute movie 
is approximately 113 s. Thus, the worst case delay is 

113 s when beginning or resuming the display of a 
movie. Furthermore, the number of frames skipped 
when fast-forwarding and rewinding is 3390 (113 s of 
the movie). By reducing the minimum phase differ- 
ence t,, we could provide better quality MOD service 
to viewers. We now show how multiple disks can be 

employed to reduce t,. Returning to Example 1, sup- 
pose that instead of using a single disk, we were to 

use an array of 5 disks. In this case, the bandwidth 

of the disk array increases from 80 Mb/s to 265 Mb/s. 
The number of phases, p, increases from 53 to 266, 
and, therefore, the minimum phase difference t, re- 
duces from 113 s to approximately 22 s. In this sys 
tern, the worst case delay is 22 s and the number of 

frames skipped is 660 (22 s of the movie). The storage 
cost of the system would increase five-fold, from $3033 
to $15165, which is still less than the cost of storing 

the entire movie in RAM (i.e., $62500). 
Although the basic service may be sufficient for 

many viewers, there may be viewers who are willing 
to pay more for higher quality MOD service. Ideally, 

during fast-forward and rewind, we would like the 2k 
BBP frames between consecutive IBBP frames to be 

skipped (typically, the value of L ranges between 2 and 
5). In the following sections, we individually address 

the following two issues. 

1. B,eduction of the granularity of fast-forward and 

rewind. 

2. Elimination of the delay in resuming normal dis- 

play after a pause operation. 

5 Improving Fast-Forward and Rewind 

The granularity of fast-forward and rewind operations 
presented in Section 4 is dependent on the phase differ- 

ence t,. There are two possible approaches to reduc- 
ing the number of bits skipped between two successive 

600 



independent sequences of frames during fast-forward 

and rewind. We elaborate on both approaches in the 

following subsections. 

5.1 Storing a Fast-Forward Version 

A separate version of the movie that is used to perform 
fast-forward and rewind operations is stored. Since we 
assume that there are ?k BBP sequences between any 
two consecutive IBBP sequences in the movie, the fast- 
forward (FF) version is obtained from the compressed 
MPEG movie by omitting the 2k BBP sequences in be- 

tween two consecutive IBBP sequences. Thus, the FF- 
version of the movie contains only consecutive IBBP 

sequences of frames and thus, transmitting it to view- 
ers at a rate of rd would result in an effect that is sim- 

ilar to one of playing the movie in fast-forward mode5. 
The storage required for the FF-version of the movie 
can be shown to be & times the storage required 
for the movie. Since the bandwidth requirements for 

I, P and B are in the ratio 5:3:1, assuming that a B- 
frame consumes a unit of storage, it follows that P 

and I frames consume 3 and 5 units of storage, re- 
spectively. Thus, since there are 2k + 1 BBP frames 

between any two consecutive I-frames, and each BBP 
sequence consumes 5 units of storage, it can be shown 
that for every 10 + 1Ok units of the movie, the FF- 
version of it contains only 10 frames. Thus, it follows 
that the FF-version of the movie consumes 

the storage consumed by the movie. 
&J times 

One simple option is to store the entire FF-version 
of the movie in RAM. This is more cost-effective than 

the RAM-based architecture in which the entire movie 
is stored in RAM since the FF-version of the movie 

occupies only & times the storage occupied by the 
movie. The operations fast-forward and rewind cause 
the transmission of bits to switch from the movie 
buffers to the FF-version of the movie in RAM (pause 
is implemented as described in the previous section). 

Resumption from fast-forward, rewind and pause are 

implemented in a manner similar to resumption from 
pause described in the previous section. A detailed 
description of the scheme is presented in [2]. 

An alternative to storing the FF-version of the 

movie in RAM is to store it on disk using the phase- 
constrained allocation scheme described in Section 3 
as we did for the movie itself. Thus, in addition to 
movie buffers in which consecutive portions of a movie 

are retrieved, an additional set of buffers into which 

consecutive portions of the FF-version of the movie 

5Note that since only IBBP sequences are transmitted, it is 

possible that the rate at which the decoder consumes bits would 
increase beyond rd. However, the process at the viewer site can 
insert R-frames to ensure that the buffer never underllows. 

are retrieved is maintained. We refer to these as FF- 

buffers. The minimum phase difference for the stored 

FF-version of the movie is tjj , which is approximately 

& times smaller than the minimum phase difference 
t, for the movie. The number of portions, njf of size 

d in a row of the FF-version is w. 

The fast-forward command cau&s the transmission 
of bits to be continued from the FF-buffer containing 
the I-frame closest to and following the last P-frame 
transmitted. Since the number of bits between por- 
tions contained concurrently in any two consecutive 
FF-buffers is n/j-d bits in the FF-version of the movie, 
in the worst case, switching from a movie buffer to a 

FF-buffer could result in approximately n . d bits (t, 
seconds) of the movie being skipped. However, once 
transmission is switched from the movie buffer to the 
FF-buffer, 2k BBP sequences are skipped between any 
two consecutive IBBP sequences. 

The problem with storing an FF-version of the 
movie on a disk is that the implementation of the 
rewind command is not possible using the FF-buffers. 

The reason for this is that successive IBBP sequences 
of frames are retrieved into the FF-buffers, while for 

rewind, once an IBBP sequence of frames is transmit- 

ted, the previous IBBP sequence of frames needs to 
be transmitted. Thus, for the purpose of supporting 
rewind, we store a different version of the movie, which 
we refer to as the REW-version of the movie, on the 
disk. The REW-version, like the FF-version, contains 

only IBBP sequences of frames except that the order 
of appearance of the IBBP sequences in the FF-version 
and the REW-version are reversed. Also, a separate 
set of buffers is maintained into which consecutive por- 
tions of the REW-version of the movie are retrieved, 
which we refer to as REW-buffers. The minimum 
phase difference for the REW-version of the movie is 
also tjj seconds. For a description of schemes to sup- 
port rewind, we refer the reader to [2]. 

5.2 Buffer Based Solution 

The schemes for implementing fine granularity fsst- 
forward and rewind described in the previous subsec- 
tion either require the entire FF-version of the movie 

to be stored in RAM or resulted in an abruptness 

in switching to fast-forward/rewind mode. In this 
subsection, we present a scheme for supporting fine- 

granularity fast-forward and rewind that does not re- 
quire the entire FF-version of the movie to be stored 

(in RAM or on disk) and results in a smooth transi- 
tion to fast-forward and rewind mode. The scheme is 
especially suitable in case a few number of viewers are 
watching the movie. 

601 



buffer 

Movie Buffers 

Viewer Buffer 

Cunent Viewer 
Buffer 

(k+2) Viewer Buffer 

Figure 5: Viewer Buffers for Fast-forward and Rewind 

Informally, the basic idea underlying the scheme is 

that, at all times, if we were to buffer nd bits follow- 
ing, and nd bits of the FF-version of the movie preced- 
ing the current bit being transmitted, then it is possi- 
ble to support both fine-granularity fast forward and 
rewind without any delays. It is necessary to buffer 
bits since movie buffers output the movie at a rate of 
rd, and during fast-forward/rewind, the FF-version of 

the movie, and not the movie itself needs to be trans- 
mitted at I’d. The reason that it suffices to buffer nd 

bits of FF-version of the movie following the current 

bit being transmitted is that when a viewer issues the 
fast-forward command, in the time that the buffered 
nd bits of the FF-version of the movie are transmit- 
ted, nd bits are output by each movie buffer. Thus, 

the nd + llh bit of FF-version of the movie would be 
output by a movie buffer and by buffering it, its avail- 

ability for transmission once nd bits are transmitted 
can be ensured. 

Using a similar argument, it can be shown that 
buffering nd bits preceding the current bit being trans- 
mitted suffices to support continuous rewind. Note 

that buffering x < nd bits of the FF-version of the 
movie preceding or following the current bit being 

transmitted, could result in hiccups due to the un- 
availability of bits during fast-forward/rewind. The 
reason for this is that once z bits of FF-version of the 

movie have been transmitted, the z + lth bit may not 
be available since z < nd and thus, none of the movie 
buffers may have output it while the z bits were being 

transmitted. 

In order to buffer the required bits of the FF- 

version of the movie, 2k+4 viewer buffers are main- 
tained per viewer watching the movie (see Figure 5). 

A viewer buffer is used to store the FF-version of 

the movie output by a movie buffer and has a size 
nd-IIBBPL 

k+l 
+ IIBBP] which is the maximum number 

of bits of FF-version, that a movie buffer can out- 
put (IIBBP( is the storage required for an IBBP se- 
quence). The buffers are arranged in a circular fashion 
and each buffer is a circular buffer. One viewer buffer 
stores the FF-version of the movie output from the 
current movie buffer. k + 1 viewer buffers following 
the buffer are used to store nd bits of the FF-version 

of the movie output from the lc + 1 movie buffers fol- 
lowing the current movie buffer, while k + 1 viewer 
buffers preceding the buffer are used to store nd bits 

of the FF-version of the movie output from the k: + 1 
movie buffers preceding the current movie buffer. The 
remaining viewer buffer is used to load the FF-version 

of the movie in case the viewer issues a fast-forward or 
rewind command. 

With every viewer buffer are associated variables 
start-buf and end-buf. start-buf stores the offset from 
the start of the buffer of the bit in the viewer buffer 
with the lowest position in the movie. Variable end-buf 

stores the offset from the start of the buffer, of the 
last bit contained in the buffer. An additional vari- 

able cur-buf is used to store the current viewer buffer. 
During normal display and during pause, cur-buf is the 

viewer buffer containing the FF-version of the movie 
output by the current movie buffer, and during fast 
forward and rewind mode, cur-buf is the viewer buffer 
from which bits are transmitted. 

The FF-version of a movie is loaded into a viewer 
buffer from a single movie buffer. Consecutive bits out- 
put from the movie buffer and belonging to only IBBP 
sequences are simply copied into the viewer buffer be- 

602 



ginning from the start of the buffer. When a bit whose 

position in the movie is the smallest among all the 

bits (belonging to IBBP Sequences and) output by the 

movie buffer is copied into the viewer buffer, start-buf 

for the buffer is set equal to the offset of the bit from 
the beginning of the viewer buffer. Bits are continued 
to be copied into the viewer buffer until it contains 

all the bits output by the movie buffer that belong to 
IBBP sequences. end-buf for the buffer is set to the 
offset of the last bit from the start of the buffer. 

During fast-forward and rewind, the FF-version of 
the movie is transmitted from the viewer buffers at 

a rate of rd. While transmitting data from a viewer 
buffer, if end-buf is reached and start-buf for the buffer 
is 0, then subsequent bits are transmitted beginning 
with start-buf in the next viewer buffer. If, on the other 

hand, start-buf for the buffer is not 0, then subsequent 
bits are retrieved from the start of the buffer. Once 
one or more bits have been retrieved from a buffer, 
if the next bit to be retrieved from the buffer is at 
offset start-buf from the beginning of the buffer, then 
subsequent bits are retrieved from start-buf in the next 

buffer. 
Traversing the viewer buffers in the reverse direc- 

tion (during rewind) is carried out as follows. If the 
beginning of the buffer is reached and start-buf is not 

0, then subsequent bits are traversed beginning with 
end-buf. On the other hand, if the offset of the cur- 
rent bit from the start of the buffer is start-buf, then 
subsequent bits are accessed from the previous viewer 

buffer, beginning with 

l end-buf, if start-buf for the buffer is 0, and 

l start-buf-1, otherwise. 

The various operations are implemented as follows. 

begin: 2k + 4 viewer buffers are allocated for the 
viewer and cur-buf is set to one of them (that is ar- 

bitrarily chosen). cur-buf and the k viewer buffers fol- 

lowing it are loaded with the FF-version of the movie 
from the first k + 1 movie buffers. Once the k + 1 

viewer buffers are loaded, and the first movie buffer 
contains the first frame of the movie, movie data is 
transmitted to the viewer from the first movie buffer 

and concurrently the k + lth viewer buffer following 

cur-buf is loaded from the k + Znd movie buffer. Dur- 

ing normal transmission of bits to the viewer, when 

transmission switches from the current movie buffer to 
the next, cur-buf is set to the next viewer buffer and 
the k + lth viewer buffer following cur-buf is begun 

to be loaded from the k + lth movie buffer following 
the current movie buffer. Furthermore, during normal 

display, loading of viewer buffers is restricted to only 

cur-buf, the k + 1 viewer buffers following cur-buf and 

the k + 1 viewer buffers preceding cur-buf. The max- 
imum latency to start viewing the movie is less than 
2-t,. 

fast-forward: Once a P-frame immediately preced- 
ing an I-frame is transmitted from the movie buffer, 
loading of the k + 2”d viewer buffer following cur-buf 

is initiated from the k + 2”d movie buffer following the 
current movie buffer. Concurrently, the I-frame follow- 
ing the P-frame is located in cur-buf and subsequent 

bits are transmitted from cur-buf beginning with the 
I-frame. During fast-forward, every time transmission 
of bits switches from a viewer buffer to the next buffer 
(cur-buf is set to the next buffer), the following steps 
are performed. 

1. The loading of the k +2”d viewer buffer preceding 
cur-buf from the k + 2”d movie buffer preceding 
the current movie buffer is terminated. 

2. The k + 2”d viewer buffer following cur-buf is 
loaded from the k + 2”d movie buffer following 
the current movie buffer. 

rewind: Once a P-frame belonging to an IBBP se- 
quence is transmitted from the movie buffer, loading 
of the k + 2nd viewer buffer preceding cur-buf is initi- 

ated from the k + 2nd movie buffer preceding the cur- 
rent movie buffer. Concurrently, the I-frame belonging 
to the sequence is located in cur-buf and sequences of 
IBBP frames are transmitted at a rate of Pd in the re- 
verse order of their occurrence in the viewer buffers. 
During rewind, once every bit from a viewer buffer 

has been transmitted and transmission switches to the 

previous viewer buffer (cur-buf is set to the previous 
buffer), the following steps are performed. 

1. The loading of the k + 2nd viewer buffer following 

cur-buf from the k + 2nd movie buffer following 
the current movie buffer is terminated. 

2. The k + 2nd viewer buffer preceding cur-buf is 
loaded from the k + 2nd movie buffer preceding 

the current movie buffer. 

pause: In this case, bits are transmitted normally 

from the movie buffers until a P-frame preceding an I- 
frame is transmitted. Once the P-frame is transmitted, 

subsequent frames transmitted to the viewer are R- 
frames (loading of viewer buffers is continued as before 

the transmission of R-frames). 

resume: In case the previous command was a pause, 

once the movie buffer contains the I-frame following 
the last P-frame transmitted, transmission of movie 

603 



data to viewers is resumed at a rate of rd.. Also, all 

viewer buffers that were being loaded during the pause 

operation, are continued to be loaded. 

In case the previous command was rewind or fast- 
forward, bits are transmitted from the viewer buffers 

until a P-frame is transmitted. Once the P-frame is 
transmitted, until a movie buffer contains the I-frame 

following the P-frame, subsequent frames transmitted 
to the viewer are R-frames. During the transmission 

of R-frames, loading of viewer buffers is restricted to 
the k+ 1 buffers following and the k+ 1 buffers preced- 
ing cur-buf. Once a movie buffer contains the I-frame, 
normal transmission is resumed from the movie buffer 
beginning with the I-frame. 

6 Reducing Response Time 

The schemes presented for pause in Sections 4 and 5, 
and those for fine-granularity fast-forward and rewind 
in the previous section all require a movie buffer to 
contain the first I-frame in the movie following the 

last P-frame transmitted before normal transmission 
of bits to the viewer can be resumed. In the worst 
case, this could result in a delay oft, seconds which, to 
some viewers, may be unacceptable. In the following, 
we present a scheme that can be used in conjunction 
with all the schemes presented in Sections 4 and 5 in 
order to eliminate the delay associated with only the 
pause operation. The scheme is built on the scheme 

presented in Section 4 that ensures movie buffers out- 
put continuous portions of the movie at a rate of Td. 

The scheme can be used to provide, at an additional 

cost, enhanced MOD services to few viewers since they 

require RAM buffers to be allocated on a per viewer 
basis. 

The scheme requires a circular viewer buffer to be 
maintained per user. The idea is to store in the viewer 
buffer, bits following the last bit transmitted before 

pause so that subsequent bits can be transmitted from 
the viewer buffer (instead of the movie buffer) without 

delay when the viewer issues the resume command. If 

immediate resumption of normal transmission of bits 
from pause mode is to be supported, then the size of 
the viewer buffer required must be at least n . d. The 

reason for this is that if the size of the buffer is x, where 
x -C n s d, then if the viewer issues a pause command, 

only z bits following the last bit transmitted can be 
buffered. Thus, if the viewer were to issue the resume 
command when the z+ lb* bit was output by the movie 

buffer, it would not be possible to buffer the x + lbt 
bit. Thus, it would not be possible to transmit the 
x+1*’ bit to the viewer, since z < nd and the bit needs 
to be transmitted after x bits have been transmitted, 

but is not output in the movie buffer again until nd 

bits have been transmitted. On the other hand, if 
the size of the viewer buffer is n . d, then when the 
viewer resumes after a pause, some movie buffer must 
output bits contained in the buffer and it can be used 
to replenish the bits consumed from the viewer buffer. 

We now describe how the viewer buffer can be used 
to implement pause and resume. With every viewer 
buffer are associated variables start-buf, num-bits and 

next-pos. start-buf stores the offset from the start 
of the viewer buffer, of the next bit to be transmit- 
ted to the viewer. Also, numbits stores the num- 
ber of untransmitted bits contained in the buffer, 
while next-pos stores the position in the movie of the 
next*bit to be retrieved into the viewer buffer. Fur- 
thermore, at any time, x bits output by a movie 
buffer are retrieved into the viewer buffer at offset 
((start-buf + numbits) modnd) if the following two 

conditions hold. 

1. z 5 nd - numbits. 

2. The position in the movie of the first among the 
x consecutive bits is next-pos. 

numbits and next-pos are incremented by x. Also, 
z bits are transmitted from the viewer buffer begin- 
ning with startbuf, if x 5 numbits. numhits is 

decremented by z and start-buf is set to ((start-buf + 

x) mod nd). 

l pause: Once a P-frame that is immediately fol- 

lowed by an I-frame is transmitted, subsequent 
frames transmitted to the viewer are R-frames. 

In addition, if bits were being transmitted from a 
movie buffer, then start-buf and numbits are both 
set to 0 and next-pos is set to the position in the 
movie of the next I-frame to be transmitted. 

l resume: Bits are transmitted to viewers from the 
viewer buffer beginning with start-buf. 

The above described scheme for pause and resume 
can be used in conjunction with the schemes for fast- 
forward and rewind described in the previous two sec- 

tions. In the schemes, implementations of fast-forward 
and rewind stay the same except that in case bits were 

being transmitted from the viewer buffer when the 
commands were issued, transmission of bits switches 
from the viewer buffer to a movie buffer (in Section 4), 

RAM or an FF-buffer (in Section 5.1), or a viewer 
buffer storing FF-version of the movie (Section 5.2). 
Furthermore, while bits are being transmitted from the 
viewer buffer, in the scheme presented in Section 5.2, 

604 



cur-buf is the viewer buffer containing the FF-version 
of the movie from the movie buffer that output the 

bits being transmitted. 

In [2], we present a scheme that eliminates the de- 

lay associated with all of the operations - pause, fast- 
forward and rewind, and that also provides smooth fine 
granularity fast-forward and rewind operations. The 
basic idea is similar to that presented in Section 5.2, 
except that the scheme requires (!z + 1)nd bits of the 

movie preceding as well as following the current bit 
being transmitted to be buffered in order to support 
continuous fast-forward and rewind. 

7 Related Work 

A number of storage schemes for continuous retrieval 
of video and audio data have been proposed in the lit- 

erature [3, 4, 5, 6, 7, 81. Among these, however, only 
[3,4, 61 address the problem of satisfying multiple con- 
current requests for the retrieval of multimedia objects 

residing on a disk. These schemes are similar in spirit 
to the contiguous allocation scheme that we presented 
in Section 3.1.1. In each of the schemes, concurrent re- 

quests are serviced in rounds retrieving successive por- 
tions of multimedia objects and performing multiple 
seeks in each round. Thus, the schemes are unsuitable 
for handling large number of requests concurrently. In 

fact, admission control tests based on computed buffer 
requirements for multiple requests are employed in or- 

der to determine the feasibility of additional requests 
with available resources. However, unlike our scheme, 
which is specifically tailored for MOD environments, 
the schemes in [3, 4, 61 can be used to concurrently 

retrieve arbitrary multimedia objects residing on disk. 

In order to reduce buffer requirements, an audio 

record is stored on optical disk as a sequence of data 

blocks separated by gaps in [7]. Furthermore, in order 
to save disk space, the authors derive conditions for 
merging different audio records. In [5], similar to [7], 
the authors define an interleaved storage organization 
for multimedia data that permits the merging of time- 

dependent multimedia objects for efficient disk space 

utilization. However, they adopt a weaker condition 
for merging different media strands, a consequence of 

which is an increase in the read-ahead and buffering 

requirements. 

In [8], the authors use parallelism in order to sup- 

port the display of high resolution of video data that 
have high bandwidth requirements. In order to make 
up for the low I/O bandwidths of current disk technol- 
ogy, a multimedia object is declustered across several 
disk drives, and the aggregate bandwidth of multiple 
disks is utilized. 

8 Concluding Remarks 

We have proposed a low cost architecture for a movie 

on demand (MOD) server. In our architecture, the 
popular movies are stored on inexpensive disks. We 

proposed a novel storage allocation scheme that en- 
ables multiple different portions of a movie to be con- 
currently retrieved from disk. Since the scheme elim- 

inates random disk head seeks, it requires only small 
portions of the movie currently being viewed to be 
buffered in RAM. 

We showed how VCR operations could be imple- 
mented in our basic architecture. We also showed how 
the quality of MOD services could be improved by al- 

locating additional RAM buffers per viewer. Thus, 
basic MOD services can be provided to all viewers at 
low cost by the basic architecture, and superior qual- 
ity services can be provided on a per viewer basis at 

an extra cost by allocating additional buffers. 

Acknowledgements: We would like to thank 
Kim Matthews and Eric Petajan for discussions that 
helped us understand details about MPEG. 

References 

PI 

M 

[31 

[41 

[51 

k51 

PI 

tf31 

D. Gall. MPEG: A video compression standard for 

multimedia applications. Communications of the A CM, 

34(4):46-58, April 1991. 

B. Ozden, A. Biliris, R. Rastogi, and A. Silberschate. A 
low-cost storage server for movie on demand databases. 

Technical Report 113880-940228-18, AT&T Bell Labo- 

ratories, 1994. 

D. P. Anderson, Y. Osawa, and R. Govindan. A file sys- 

tem for continius media. ACM Transactions on Com- 

puter Systems, 10(4):311-337, November 1992. 

P. V. Rangan, H. M. Vin, and S. Ramanathan. Design- 
ing an on-demand multimedia service. IEEE Commu- 

nications Magazine, 1(1):56-64, July 1992. 

P. V. Rangan and H. M. Vin. Efficient storage tech- 

niques for digital continuous multimedia. IEEE Tmns- 
actions on Knowledge and Data Engineering, 5(4):564- 

573, August 1993. 

J. Gemmell and S. Christodoulahis. Principles of 

delay-sensitive multimedia data storage and retreival. 

ACM Transactions on Information Systems, 10(1):51- 

90, January 1992. 

C. Yu, W. Sun, D. Bitton, Q. Yang, R. Bruno, and 

J. Tullis. Efficient placement of audio datat on optical 

disks for real-time applications. Communications of the 

ACM, 32(7):862-871, July 1989. 

S. Ghandeharisadeh and L. Ramos. Continuous re- 
trieval of multimedia data using parallelism. IEEE 

Transactions on Knowledge and Data Engineering, 

5(4):658-669, August 1993. 

605 


