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Abstract: The observation of mobility tests can greatly help neurodegenerative disease diagnosis.
In particular, among the different mobility protocols, the sit-to-stand (StS) test has been recognized
as very significant as its execution, both in terms of duration and postural evaluation, can indicate
the presence of neurodegenerative diseases and their advancement level. The assessment of an
StS test is usually done by physicians or specialized physiotherapists who observe the test and
evaluate the execution. Thus, it mainly depends on the experience and expertise of the medical
staff. In this paper, we propose an automatic visual system, based on a low-cost camera, that can be
used to support medical staff for neurodegenerative disease diagnosis and also to support mobility
evaluation processes in telehealthcare contexts. The visual system observes people while performing
an StS test, then the recorded videos are processed to extract relevant features based on skeleton joints.
Several machine learning approaches were applied and compared in order to distinguish people with
neurodegenerative diseases from healthy subjects. Real experiments were carried out in two nursing
homes. In light of these experiments, we propose the use of a quadratic SVM, which outperformed
the other methods. The obtained results were promising. The designed system reached an accuracy
of 95.2% demonstrating its effectiveness.

Keywords: computer vision; machine learning; mobility test; neurodegenerative disease detection

1. Introduction

In recent years, a growing body of literature has presented both technologies and
methodologies in the context of active assisted living (AAL) for addressing several
issues [1] related to the health and well-being of people. Wearable sensors, smart ev-
eryday objects and environmental sensors have been proposed to develop systems for
basic activity monitoring (vital signs monitoring, physical activity, cognitive training and
many others) and also for preventive measures and telehealthcare diagnosis [2–4]. Data
processing can be afforded with simple data analysis techniques when threshold-based
or distance-based methods can be applied, or with more complex methodologies such as
machine learning ones, when complex data have to be analyzed and processed [5–7].

In this paper, we consider one issue that is relevant for medical staff and mainly
concerns the older population, particularly people with dementia or neurodegenerative
diseases. The assessment of the motor skills of the elderly can significantly assist in the
diagnosis of neurodegenerative diseases and the evaluation of their progress. Motion
skills are generally evaluated through the observation of mobility tests administrated and
rated by physicians or specialized physiotherapists in controlled situations [8–10]. The
resulting assessments depend on the experience and expertise of the evaluator. The use
of technologies for the automatic evaluation of mobility tests can guarantee an objective
assessment of the mobility abilities of the elderly. Different mobility protocols are available
to check the motion abilities of older people. These protocols, defined by medical staff,
consist of several mobility tests such as balance, walking, or sit to stand (StS).
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In this paper, we focus our attention on the StS test, as it is significant for quantifying
the functional strength of the lower limbs or identifying the movement strategies a person
uses to complete transitional movements between sitting and standing. Thus, its execution,
in terms of duration and body posture, can indicate the presence of neurodegenerative
disease and its level of advancement. In the StS test, the person sits down and stands up
several times with their arms crossed on the chest.

Various instrumented systems have been proposed for real-time assessment of the mo-
bility capabilities of older people. The majority of works propose wearable sensors based
on inertial measurement units or inertial and magnetic measurement systems for the phys-
ical function evaluation of individuals such as postural stability or fall detection [11–13].
Among the possible mobility tests, the walking test is undoubtedly the one that has received
the most significant attention from the scientific community [14], and several technologies,
both wearable and environmental, have been used to provide data on gait parameters
for automatic analysis [15–17]. These sensors include accelerometers, gyroscopes and
magnetometers, which are used to measure the acceleration or angular velocity of the body
or of the body segments they are attached to [18]. Although wearable sensors return valid
information related to the movement of people, they present some drawbacks as their
output strictly depends on the position at which they are placed, their orientation and the
activities to be monitored [19,20]. As a consequence, different wearable sensor modalities
were proposed in [21] to mitigate the shortcomings of each sensor. In [22–26], wearable
sensors were mostly used to monitor StS transitions and duration. The main drawback
of the approaches based on wearable sensors is that older people, especially those with
neurological disorders, do not readily accept wearing unfamiliar devices.

Contrary to wearable sensors, nonwearable ones, such as vision-based systems, are
noninvasive for people as they are placed in the environment. For instance, they can be
characterized by cameras that acquire video information about the human body, and then,
by using image processing techniques, extract relevant parameters useful for the analysis of
motion abilities [27–30]. A preliminary experiment for the analysis of the StS test, based on
vision systems, was presented in [31] to demonstrate the ability of web cameras to detect
sits transitions and stands phases in the StS test. Successively, two orthogonal cameras
were used in [32] to create a 3D model in voxel space and identify the regions of the StS
transitions. An RGB camera was used with an instrumented chair in [33] to have additional
information related to the movement of the center of pressure of the observed subject.
In [34], instead, a motion capture system was employed to demonstrate that video-based
approaches could extract events in the StS test as well as force plates or inertial sensors. A
Kinect camera was employed in [35] to measure the mean velocity of the StS transitions in
order to assess fall risks.

The central leitmotif of the cited works is the segmentation over time of the phases
of the StS for an estimate of the time required for the execution of several repetitions
(typically a five-time StS). However, recent evidence supports posture analysis during the
test execution to provide insight into disease diagnosis [36,37]. For this reason, we focus on
using low-cost RGB cameras to extract skeletal information that can evaluate the execution
of the StS test in terms of duration and postural attitude, as well as what physicians do
within their evaluations. In addition, vision-based motion analysis systems can collect
accurate kinematic data in a noninvasive way and represent good support for medical
diagnosis in hospitals and clinics or telehealthcare contexts.

This paper proposes a complete framework, consisting of a low-cost vision-based experi-
mental setup and processing modules, that observes older people while performing the StS
mobility test and automatically distinguishes patients with neurodegenerative diseases from
healthy subjects. In particular, the main contributions of this work are as follows:

• The experimental setup is based on a low-cost RGB camera, usually employed for
video surveillance applications. This makes the sensorial framework more flexible and
practical as it can be easily used in hospitals or retirement homes to support medical
staff or in domestic contexts for telehealthcare applications.
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• Real data were acquired and processed to validate the proposed system. A surveillance
camera was installed in two nursing homes hosting patients with neurodegenerative
diseases and healthy elderly. Several video acquisition sessions were carried out while
subjects performed an StS test.

• The proposed system automatically classifies patients with neurodegenerative prob-
lems and healthy subjects, emulating the complex decision process of expert physio-
therapists. The video data were processed to select the most informative features and
to provide a more generalized model to improve the decision process.

• Different machine learning methods were compared using metrics such as accuracy,
sensitivity and precision, to extract the one with the best performance in correspon-
dence with the selected features.

• In light of the carried out comparisons, we propose the best combination of fea-
tures and machine learning methodology that provides the best performance in this
real context.

The remainder of this paper is structured as follows. Section 2 gives an overview of
the proposed system and a description of data acquisition and feature extraction phases. In
Section 3, the experiments carried out to compare different classifiers with different features
are deeply described, and the results are commented on. Finally, the discussion is reported
in Section 4, whereas Section 5 gives conclusive remarks.

2. Materials and Methods

Neurodegenerative diseases affect motor neurons, reducing functional mobility. There-
fore, people suffering from neurodegenerative disorders could present limitations in func-
tional mobility, especially with the progress of the disease. Everyday movements such
as standing, bending and walking can be compromised, contributing significantly to the
subject’s quality of life. In this work, we propose a vision-based system aiming to predict
whether a person is suffering from neurodegenerative disorders by observing the execution
of the StS test. Patients with neurodegenerative diseases and control subjects were asked
to perform the five-time StS test (see Figure 1). Specifically, the participant started the test
sitting on a chair with their arms crossed at the wrists and held against the chest. Then, the
participant rose from the chair by levering on both legs, reached a standing position with
complete distention of the spine (where possible), and then resat and repeated the exercise.
The participant was instructed to sit fully between each stand. The test ended when the par-
ticipant resat for the fifth time. A video camera, placed in front of the subject, recorded the
StS exercise. The camera was a low-cost RGB camera usually used in surveillance contexts.
The videos were preprocessed to collect and extract information about people’s postures
during the exercise execution. A feature extraction phase was then applied to select the
most significant features useful for training machine learning approaches. Meanwhile,
machine learning approaches were applied to the acquired data and compared to gain
insight into those performing better than others in this challenging context.

Figure 1. Sit-to-stand test.
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2.1. Acquisition Setup

For the data acquisition, a low-cost RGB monocular camera was installed in two
different nursing institutes [38]. The camera used in this work was the HIK-Vision
DS-2CD2385FWD-I camera with a 2.8 mm focal length and a 4K resolution at 20 fps. The
camera was installed in the gym of the institutes, where people usually execute mobility
tests, so the medical staff periodically can monitor the motion abilities of older people
following a defined protocol. The camera was placed as shown in Figure 2, at a height
h = 2 m above the floor and a horizontal distance d = 3 m from the wall against which the
chair was leaning. The camera was tilted down to an angle of about 45◦.

Figure 2. System setup: the HIK Vision camera is placed in front of the subject.

2.2. Data Acquisition and Preprocessing

The older people who participated in this study gave their written informed con-
sent. There were 13 people affected by neurodegenerative diseases at the early stage and
18 healthy people, both aged in a range between 60 and 95 years. The subjects were recorded
while performing the StS test in two separate acquisition sessions three months apart. Sev-
eral problems emerged during the acquisition phase, as some people who participated in
the first acquisition session were no longer able to perform the test independently in the
second session. However, at the end of the acquisition phase, 32 videos of patients with
neurodegenerative diseases and 19 videos of healthy subjects were recorded during the
execution of the StS test.

Once the video sequences of RBG images were acquired, they were appropriately pro-
cessed in order to remove image distortion. Both extrinsic and intrinsic camera parameters
were extracted in a calibration phase to correct the image distortion.

Then, the videos were processed to extract the skeletons of the observed people by
using the OpenPose library [39]. OpenPose is a multiperson 2D pose estimation algorithm
that detects the skeletons of all people present in the scene, returning the 2D coordinates
of skeleton joints. In our study, the videos had to be analyzed to extract and track only
the skeleton relative to the subject performing the StS test. Figure 3 shows two sample
frames of the videos acquired in the two different nursing homes. The skeletons of other
persons present in the scene, such as the physiotherapist or relatives, had to discarded. For
this reason, a skeleton tracking procedure was developed to maintain only the skeleton
information of the subject of interest while discarding the others.
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Figure 3. Sample frames of the videos acquired in the two different nursing homes.

Figure 4 shows the result of the developed tracking procedure. For the sake of clarity,
only the (x, y) coordinates of one joint (the nose) are plotted both in the case of a sick
patient (Figure 4a) and a healthy subject (Figure 4b). As can be seen, before tracking, the
coordinates of the joint are misaligned among skeletons. Once the skeleton of the patient is
manually indicated in the first frame, the procedure tracks the skeleton in the entire video.
Thus, after tracking, the joint coordinates are correctly assigned to the skeleton of interest.

Before Tracking After Tracking Before Tracking After Tracking

(a) (b)

Figure 4. Plots of x and y coordinate of nose joint (joint 1) before and after applying the tracking
procedure, in the case of a sick patient (a) and healthy subject (b), respectively.

2.3. Feature Extraction and Data Augmentation

In this work, the skeleton model used in the OpenPose procedure was the Body_25
model, which considers 25 joints as shown in Figure 5a. In our study, the joints relative to
the feet, eyes and ears were discarded, as they did not affect the analysis of movements
involved in the StS test. Therefore, the total number of considered joints was K = 15 as
shown in Figure 5b.

Considering the 2D coordinates of the skeleton joints, calculated by OpenPose, signifi-
cant features could be extracted before training the classifiers. This study estimated two
types of geometric features to capture the subjects’ posture during the execution of the StS
test. Furthermore, the derivatives of the geometric features were also estimated to capture
the dynamics of the posture. Due to the difference in body sizes of the subjects and the
variations in camera location and orientation, features were first normalized to make them
invariant to these variations.
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(a) (b)

Figure 5. (a) Skeleton joints extracted by using Body_25 model in OpenPose. (b) Skeleton joints used
in this study.

Joint-to-joint distances and angles were considered as geometric features. These were
calculated for each frame of the acquired videos. Given K skeleton joints, let us denote by
Ji,j = (xi,j, yi,j) the coordinates of joint j in frame i. The distance features, indexed by d,
were calculated between all couples of joints as follows:

Dd,i =
‖Jj,i − Jj′ ,i‖2

DNorm,i
∀i,

where DNorm,i represents the normalization factor, which was defined as the sum of two
distances: (1) the distance ‖J3,i − J6,i‖2 between the joints of the right and left shoulders and
(2) the distance ‖J2,i − J9,i‖ between the joints of the neck and mid hip. The total number of
distance features in each frame was (K

2).
Analogously, angle features, indexed by a, were calculated considering triplets of

joints. Let v = Jj,i − Jj′ ,i and w = Jj′′ ,i − Jj,i be the vectors defined by three different body
joints (Jj,i, Jj′ ,i, Jj′′ ,i) in frame i; the angle features were calculated as follows:

Aa,i = arccos
v ·w

‖v‖2 ‖w‖2
∀i.

In this case, the total number of possible angles in each frame was K(K−1
2 ). Considering both

distance and angle features, their first-order and second-order derivatives were calculated
to approximate the velocity and acceleration of the subject’s posture during the StS test.
These features could be defined as follows:

D′d,i =
(dd,i+∆i − dd,i)

∆i
∀i,

D′′d,i =
(D′d,i+∆i − D′d,i)

∆i
∀i,

where ∆i is the considered interval of frames. Analogously, the velocity A′a,i and acceleration
A′′a,i of the angle features could be similarly estimated.

The length of these feature vectors depended on the number of frames of the acquired
videos and could be very dissimilar among the subjects, as they executed the StS test
according to their abilities. Indeed, some patients affected by neurodegenerative diseases
were unable to stand up. The length of the feature vectors highly affects the dimension of
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the training set to be provided to any machine learning approach. Furthermore, since we
aimed to use only real data, the dataset of acquired videos presented some limitations, such
as a high data dimensionality, a low quantity of data and imbalanced data due to the limited
number of subjects participating in the experiment (13 patients with neurodegenerative
diseases and 18 healthy subjects). In order to enrich the dataset and to face in part the
aforementioned limitations, the SMOTE (synthetic minority oversampling technique) data
oversampling approach was applied to the training set [40]. The SMOTE technique is a
popular oversampling method that improves random oversampling, creating synthetic
new instances that balance the minority class samples augmenting the available dataset.

3. Results

As described in Section 2.2, during the data acquisition phase, 41 videos were acquired:
32 videos of patients with neurodegenerative diseases and 19 videos of healthy subjects.
The dataset was divided into a training set and a testing set by randomly considering 60% of
the videos for training and the remaining 40% for testing. The random choice of the sample
videos in the two sets was maintained fixed for all the experiments in order to be sure
to compare fairly the performance of classifiers on the same elements. Furthermore, the
training set was oversampled by applying the SMOTE procedure. The following machine
learning methods were used to classify patients with neurodegenerative diseases and
healthy subjects:

• K-nearest neighbors with K = 1 (KNN)
• Decision tree (DT)
• Support vector machines with linear kernel (SVM-L), with quadratic kernel (SVM-Q)

and with cubic kernel (SVM-C)
• Feedforward neural networks with Relu activation functions and different architecture

configurations: one fully connected hidden layer of size 10 (NN-N), of size 25 (NN-M)
and of size 100 (NN-W).

The classifiers were trained with a five-fold cross-validation technique. The popular
metrics of accuracy, sensitivity and precision (see Table 1) were used for measuring the
performance of the obtained classification models.

Table 1. Definition of metrics used to compare the classification models.

Metrics Definition

Accuracy =
TP + TN

TP + FN + FP + TN

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

In Table 1, TP = true positives, TN = true negatives, FP = false positives and
FN = false negatives. Notice that a positive prediction (output class = 1) classified the sub-
ject as affected with neurodegenerative disease, whereas a negative prediction
(output class = 0) referred to a healthy subject. Accuracy provides general information on
how correct the classification model is overall. However, when dealing with binary classi-
fication problems, especially in medical contexts, as in our study, it is important to have
information about predictions classified as false positives and false negatives. Thus, sensi-
tivity and precision better characterize model performance relative to a specific category.
Indeed, precision or positive predictive value provides the percentage of relevant results,
whereas sensitivity gives the percentage of relevant results that are successfully classified.
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Different experimental sessions were carried out in order to find the best compromise
between computational cost and classifiers’ performance. Due to the great heterogeneity of
people participating in the experiment because of different people’s characteristics such
as age, disease severity, body size and motor abilities, the variance in times of execution
of the StS was considerably high. Therefore, the acquired videos had different lengths
in terms of the number of frames. The length of the videos of healthy subjects varied
between 206 and 532 frames, whereas that relative to the videos of patients affected by
neurodegenerative diseases varied between 233 and 825 frames. Thus, considering the
whole video, the dimension of the input feature vector could be very high, producing high
computational costs. To tackle this issue, we decided to reduce the number of frames to
be processed by defining a step parameter s. Thus, we process one frame every s in the
video. Different values for s (s = 2, s = 5, s = 10) were fixed considering the minimum
and maximum lengths of the videos of the entire dataset and the camera frame rate. In
the following sections, the results obtained for the case of s = 10 are shown. This case
represents the best one considering both computational cost and feature vector dimension.
Additional experiments carried out by using values of s > 10 produced a degradation of
the classifiers’ performance.

Ablation Study

An ablation study was carried out considering different combinations of features. In
the first set of experiments, normalized distances (Dd,i) and normalized distances combined
with velocity (D′d,i) and acceleration (D′′d,i) were used as feature vectors provided to all the
considered classifiers. Table 2 lists the results obtained in these cases. SVM-L, in case of
normalized distances, performed better with respect to the other classifiers, reaching an
accuracy of 81% and 84.6% for both precision and sensitivity. However, the high sensitivity
of the NN-M was noteworthy. Figure 6 better details these percentages by comparing the
confusion matrices of SVM-L and NN-M, respectively. As can be seen, in the bottom row
of the matrices, NN-M can better predict patients with neurodegenerative diseases with
respect to SVM-L. However, NN-M reveals a deterioration in the correct classification of
healthy subjects.

Table 2. Classification results when normalized distances (Dd,i) and normalized distances plus
velocity (D′d,i) and acceleration (D′′d,i) were used as feature vectors. The maximum percentages are
highlighted in bold.

Norm. Distances Norm. Distances + Vel. + Acc.

Classifier Accuracy Sensitivity Precision Accuracy Sensitivity Precision
% % % % % %

DT 47.6 46.2 60.0 57.1 84.6 61.1
KNN 66.7 69.2 75.0 85.7 84.6 91.7

SVM-L 81.0 84.6 84.6 81.0 76.9 90.9
SVM-Q 76.2 84.6 78.6 81.0 76.9 90.9
SVM-C 66.7 76.9 71.4 81.0 76.9 90.9
NN-N 61.9 84.6 64.7 76.2 69.2 90.0
NN-M 76.2 92.3 75.0 76.2 69.2 90.0
NN-W 61.9 69.2 69.2 76.2 69.2 90.0
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Figure 6. Confusion matrices of SVM-L and NN-M when normalized distances were used as feature
vectors. The diagonal cells show the correctly classified observations (accuracies), whereas the off-
diagonal cells show the incorrectly classified ones. The far-right column of each matrix shows the
precision or positive predictive value (green) and the false discovery rate (red). The bottom row
shows the sensitivity or true positive rate (green) and the false negative rate (red). Class 0 and class 1
represent healthy subjects and sick patients, respectively.

When the geometric feature of normalized distance (Dd,i) was combined with the
kinematic features of velocity (D′d,i) and acceleration (D′′d,i), in general, all the considered
classifiers performed better than the previous case (see Table 2). The KNN classification
technique showed maximum percentages of accuracy (85.7%), sensitivity (84.6%) and
precision (91.7%), respectively. However, although a great improvement was obtained, the
high dimensionality of the feature vectors introduced a high computational cost.

The study continued by considering the angles Aa,i as geometric features and then,
the angles combined with the kinematic features of velocity (A′a,i) and acceleration (A′′a,i).
Table 3 compares the results obtained in these cases. It is evident that the combined use
of angles and kinematic features involved an increase in performance with respect to
using only the angles, but with a notable growth in computational cost. However, some
considerations must be done about the obtained results. To this aim, Figure 7 shows the
confusion matrices of two sample cases: SVM-Q on angle features and NN-W on angles
plus velocity and acceleration. It is important to notice the sensitivity values in the bottom
row of the matrices, which refer to the correct classifications within each category. The
case of NN-W on angles, velocity and acceleration provides a very good sensitivity rate for
class 0 (healthy) but poor values for class 1 (sick patient), whereas SVM-Q on angles can
reasonably classify both classes.

In light of the results presented above, to find a good compromise between good
classification performance and computational cost, a final study was carried out combining
normalized distances (Dd,i) and angles (Aa,i) as a feature vector. As seen in Table 4, all the
considered classifiers generally showed good performance with respect to the previous
results listed in Tables 2 and 3. This emerged not only by considering the accuracy metric
but also by the sensitivity and precision rates which indicated a high percentage of correct
classifications in both classes. For completeness, the confusion matrices of two classifiers
(SVM-Q and NN-N) are shown in Figure 8 to better analyze these results. SVM-Q provided
better results among all. It is also helpful to discuss the results of the KNN, SVM-L and
SVM-C, which behaved similarly. Furthermore, NN-N was the second-best performing
classifier and exhibited similar behaviors as the remaining classifiers based on neural
networks (NN-M and NN-W). The classifiers that provided high precision rates could
better classify healthy subjects. In contrast, those with high sensitivity rates could correctly
classify patients with neurodegenerative problems.
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Table 3. Classification results when angles (Aa,i) and angles plus velocity (A′a,i) and acceleration (A′′a,i)
were used as feature vectors. The maximum percentages are highlighted in bold.

Angles Angles + Vel. + Acc.

Classifier Accuracy Sensitivity Precision Accuracy Sensitivity Precision
% % % % % %

DT 57.1 76.9 62.5 71.4 92.3 70.6
KNN 76.2 76.9 83.3 66.7 61.5 80.0

SVM-L 81.0 76.9 90.9 85.7 84.6 91.7
SVM-Q 85.7 84.6 91.7 76.2 69.2 90.0
SVM-C 81.0 76.9 90.9 81.0 76.9 90.9
NN-N 66.7 76.9 71.4 66.7 46.2 100
NN-M 81.0 84.6 84.6 66,7 46.2 100
NN-W 76.2 76.9 83.3 71.4 53.8 100

Figure 7. Confusion matrices of SVM-Q and NN-W when angles and angles plus velocity and
acceleration were used as feature vectors, respectively. The diagonal cells show the correctly classified
observations (accuracies), whereas the off-diagonal cells show the incorrectly classified ones. The
far-right column of each matrix shows the precision or positive predictive value (green) and the false
discovery rate (red). The bottom row shows the sensitivity or true positive rate (green) and the false
negative rate (red). Class 0 and class 1 represent healthy subjects and sick patients, respectively.

Table 4. Classification results when the combination of normalized distances (Dd,i) and angles (Aa,i)
was used as a feature vector. The classifier providing better performance is highlighted in bold.

Norm. Distances + Angles

Classifier Accuracy Sensitivity Precision
% % %

DT 81.0 100 76.5
KNN 90.5 84.6 100

SVM-L 85.7 76.9 100
SVM-Q 95.2 92.3 100
SVM-C 90.5 84.6 100
NN-N 90.5 100 86.7
NN-M 76.2 100 72.2
NN-W 85.7 100 81.3
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Figure 8. Confusion matrices of SVM-Q and NN-N when the combination of normalized distances
and angles was used as a feature vector. The diagonal cells show the correctly classified observations
(accuracies), whereas the off-diagonal cells show the incorrectly classified ones. The far-right column
of each matrix shows the precision or positive predictive value (green) and the false discovery rate
(red). The bottom row shows the sensitivity or true positive rate (green) and the false negative rate
(red). Class 0 and class 1 represent healthy subjects and sick patients, respectively.

4. Discussion

The aim of this work was to investigate the use of a visual system based on a single
commercial RGB camera, for distinguishing patients with neurodegenerative diseases
from healthy ones by analyzing the StS test. Many neurodegenerative disorders, such
as Alzheimer’s or Parkinson’s disease, are characterized by motor dysfunction, often
culminating in the loss of movement. Therefore, the early detection of neurodegenerative
signals, such as motor degeneration, is essential for appropriately supporting both patients
and doctors for further clinical investigations.

The results shown in the previous section clearly prove the effectiveness of the pro-
posed system which represents a valid instrument in this domain. As shown in Tables 2–4,
classic machine learning methodologies were able to clearly separate patients suffering
from neurodegenerative diseases from healthy subjects reaching high accuracy rates of
up to 95.2%. Two types of geometric features were used as input to the machine learning
methods: joint-to-joint distances and angles. Furthermore, kinematic features such as
the velocity and the acceleration evaluated on both distances and angles were combined
with the geometric features in order to investigate their effect on classifiers’ performance.
In general, the SVM methods outperformed the other classifiers when using as features
the distances, the angles and the angles combined with velocity and acceleration (see
Tables 2 and 3). In these cases, an accuracy rate of up to 85.7% was achieved. In the case
of using distances combined with velocity and acceleration, the method which exhibited
better performance was KNN, reaching 85.7% for the accuracy rate (see Table 2).

These results confirmed that the considered features, both geometric and kinematic,
were able to characterize the posture variations of the subjects and to detect motor dysfunc-
tions typical of patients with neurodegenerative diseases. Finally, the last study regarding
the combination of the geometric features alone, allowed us to make an additional consid-
eration. Indeed, in this case, the highest percentages of correct classifications were obtained.
This emerged not only by considering the accuracy metric, which reached 95.2% but also
by considering the sensitivity and precision rates, which achieved percentage values of up
to 100%. These results highlighted that was possible to ignore kinematic features since only
the geometric ones were enough to characterize the postural variations of the people. At
the same time, this result is equally important as it represents a good compromise between
classification performance and computational cost.
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5. Conclusions and Future Work

In this paper, we proposed a vision-based system for automatically classifying patients
with neurodegenerative diseases and healthy subjects while they perform the StS test.
Usually, physicians or expert physiotherapists do that by observing people directly. One of
the main points of the proposed system was the analysis of real data acquired by a low-cost
commercial camera installed in two different retirement houses hosting elderly people.
The aim was to support the medical staff in diagnosing neurodegenerative disorders, by
using this type of automatic system that is less dependent on human expertise and that can
significantly support remote analysis.

The use of commercial surveillance cameras for the analysis of the StS test has rarely
been used in literature, especially for supporting neurodegenerative disease diagnosis. For
this reason, the lack of public datasets and the poor literature coverage in this context did
not allow us to make direct comparisons with other works. Nonetheless, the investigation
of such a system based on a visual sensor is very important for the development of auto-
matic devices able to monitor the health status of older people in both private homes and
nursing institutes.

Therefore, in this work, several classical machine learning methodologies, such as
SVM, decision tree, neural networks and K-nearest neighbors were applied to the acquired
video data to distinguish patients suffering from neurodegenerative diseases and healthy
subjects. At the same time, the analysis of the performance of the classifiers over different
features allowed us to identify the better one. In general, the obtained good results in terms
of classification accuracy, sensitivity and precision encourage us to continue the study
and the improvement of the proposed visual system by investigating additional machine
learning methodologies. The principal limit to applying more complex machine learning
approaches, such as deep ones, remains in the limited dimension of the actual data set.
Data augmentation can help manage this issue, but the final size often remains insufficient.
On the other side, applying deep neural networks, which are principally characterized by
multiple layers in the network, could be very helpful in this context. Deep neural networks
can manipulate more abstract representations of the data providing features at higher and
higher levels of abstraction. Furthermore, a particular type of deep neural network, known as
a recurrent neural network, can extract information from data sequences and is particularly
useful for analyzing video streams and learning long-term dependencies of data.

In light of these considerations, future work will be devoted to a massive data acqui-
sition phase during physiotherapy sessions of elderly patients for recording videos and
collecting the associated physician’s evaluations for comparisons. Particular attention will
be given to the fundamental issues related to the use of deep learning approaches regarding
data volume, data representation and overfitting. Indeed, when a model is trained on a
limited dataset, it may learn the peculiarities of the training set and fails to adapt to new
data. In conclusion, our future work will regard the acquisition of a substantial quantity
of new data in order to study and apply deep learning methods for investigating feature
selection, feature reduction and the generalization abilities of the learned models to prevent
overfitting problems.
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The following abbreviations are used in this manuscript:

StS Sit to Stand
SMOTE Synthetic minority oversampling technique
ML Machine learning
DT Decision tree
KNN K-nearest neighbors
SVM Support vector machine
SVM-L Support vector machine with linear kernel
SVM-Q Support vector machine with quadratic kernel
SVM-C Support vector machine with cubic kernel
NN-N Narrow neural network
NN-M Medium neural network
NN-W Wide neural network
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