
Eurographics Symposium on Rendering (2005)

Kavita Bala, Philip Dutré (Editors)

A Low Dimensional Framework for Exact

Polygon-to-Polygon Occlusion Queries

D. Haumont1 and O. Mäkinen2 and S. Nirenstein3

1Université Libre de Bruxelles 2Hybrid Graphics Ltd. and University of Helsinki 3University of Cape Town

Abstract

Despite the importance of from-region visibility computation in computer graphics, efficient analytic methods are

still lacking in the general 3D case. Recently, different algorithms have appeared that maintain occlusion as a

complex of polytopes in Plücker space. However, they suffer from high implementation complexity, as well as high

computational and memory costs, limiting their usefulness in practice.

In this paper, we present a new algorithm that simplifies implementation and computation by operating only

on the skeletons of the polyhedra instead of the multi-dimensional face lattice usually used for exact occlusion

queries in 3D. This algorithm is sensitive to complexity of the silhouette of each occluding object, rather than the

entire polygonal mesh of each object. An intelligent feedback mechanism is presented that greatly enhances early

termination by searching for apertures between query polygons. We demonstrate that our technique is several

times faster than the state of the art.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Exact Visibility Culling

1. Introduction

The from-region visibility problem refers to the determina-

tion of the set of 3D primitives visible from a volumetric

region V , through a set of polygonal occluders Oi. This is a

central problem in many computer graphics algorithms, such

as global illumination and occlusion culling.

The most direct application of a from-region visibility so-

lution is the computation of Potentially Visible Sets (PVS)

[ARB90]. The navigable space of a scene is decomposed

into volumetric view cells, while the objects that are visible

from each view cell are computed using from-region visibil-

ity techniques and stored in the PVS data structure. During

an interactive exploration of the scene, only the objects as-

sociated with the view cell containing the camera position

need to be drawn. This can lead to notable speed gains when

displaying scenes with high overdraw since the number of

objects visible from each cell is usually much smaller than

the size of the database.

Until recently, analytic from-region visibility algorithms

have been considered impractical due to the costs involved

and many alternative solutions have been proposed:

�
Conservative solutions [LSCO03] usually make simplify-

ing assumptions for computational efficiency, but almost

always overestimate the visibility.�
Aggressive solutions [NB04] are typically based on a

sampling process. They are fast and simple to implement,

but the sampling practically always underestimates the

visibility, leading to errors in the output image.

Detailed surveys about conservative and aggressive occlu-

sion culling methods can be found in [COCSD02, PT02].

Analytic approaches were first introduced for 2D and 2 1

2
D

scenes [KCoC01, BWW01]. Recent works have demon-

strated that analytic computation is also possible in 3D by

formulating visibility in Plücker space [NBG02, Bit02]. In-

stead of solving the from-region visibility problem directly,

these methods replace it by several simpler from-surface

visibility problems. Since any visible ray originating from

the region intersects one of its boundary faces, the set of

primitives visible from the region is equal to the union of

the primitives seen by its boundary faces (and the primi-

tives contained in the region), showing that the problems

can be solved by using only from-surface techniques. Us-

ing this observation, existing analytic 3D methods compute

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

the from-surface occlusion information by using CSG op-

erations on polytopes (i.e. bounded polyhedra) in Plücker

space. However, current methods have a considerable com-

plexity both in terms of computation time and implementa-

tion. In practice, these drawbacks have prevented them from

being adopted by the computer graphics community and in-

dustry. In this paper, we address the issues of previous ana-

lytic from-region visibility methods by developing a simpler,

more efficient and more robust mechanism for computing

the visibility queries.

1.1. Contributions

Low dimensional algorithms in Plücker space: We show

that maintaining the occlusion in Plücker space only requires

maintaining the 1-skeleton of the polytopes (i.e. the vertices

and the edges of the polytopes), instead of the full face lattice

used in previous work (Section 3).

Efficient polygon-to-polygon occlusion query: We em-

ploy the low dimensional algorithms in the context of

polygon-to-polygon visibility query, and combine new tech-

niques to further enhance the efficiency (Section 4):�
we propose the casting of rays into the apertures left

by the already processed occluders. By construction, the

method quickly detects any aperture existing between the

polygons, and allows an early termination of the query in

the case of mutual visibility. The rays are also used for oc-

cluder selection, to ensure that each occluder we process

will block some part of the not yet processed line space.�
we propose a new occluder fusion mechanism specifically

designed to pair with the Plücker-space mapping of the

visibility query. By discarding the occluder’s edges that

are not part of the from-region silhouettes we show that

many redundant computations can be avoided.

The rest of the paper is organized as follows. After pre-

senting the general principle of previous analytic visibility

approaches in Section 2, the low dimensional algorithms

are described and used in a new polygon-to-polygon occlu-

sion query framework in Sections 3 and 4. We evaluate this

framework in Section 5 and conclude in Section 6.

2. Analytic from-region visibility

2.1. Introduction to Plücker coordinates

Let l be an oriented line in the 3D Euclidean space ✂ 3 ,

passing first through point P ✄ px ☎ py ☎ pz ✆ and then through

point Q ✄ qx ☎ qy ☎ qz ✆ . This line is parameterized in the Plücker

space by the Plücker coordinates π
l
i :

✝✞✞✞✞✞✞✞✟ ✞✞✞✞✞✞✞✠

π
l
0 ✡ qx ☛ px

π
l
1 ✡ qy ☛ py

π
l
2 ✡ qz ☛ pz

π
l
3 ✡ qz py ☛ qy pz

π
l
4 ✡ qx pz ☛ qz px

π
l
5 ✡ qy px ☛ qx py

(1)

The coordinates can be interpreted in two ways:�
as the homogeneous coordinates of a point

l ☞✌✄ πl
0 ☎ πl

1 ☎ πl
2 ☎ πl

3 ☎ πl
4 ☎ πl

5 ✆�
as the coefficients of an hyperplane Hl of equation

Hl ✍ π
l
3x0 ✎ π

l
4x1 ✎ π

l
5x2 ✎ π

l
0x3 ✎ π

l
1x4 ✎ π

l
2x5 ✡ 0 (2)

It is important to note that the Plücker space is a pro-

jective space ✏ 5, which means that the Plücker coordinates

are equivalent within a positive multiplicative coefficient de-

pending on the choice of P and Q to define the line. The

point l ☞ of ✏ 5 can be seen as a ray through the origin in ✑ 6 ,

and Hl as an hyperplane containing the origin in ✑ 6 .

Let Ha be the dual hyperplane of the oriented line a and

b ☞ the dual point of the oriented line b. The sign of the ex-

pression Ha ✄ b ☞ ✆ , gives the relative orientation of the lines a

and b in 3D space ✂ 3 . If Ha ✄ b ☞ ✆✓✒ 0 the lines are skew and

pass each other in the left handed way. If Ha ✄ b ☞ ✆✕✔ 0, they

are skew and right handed oriented. If Ha ✄ b ☞ ✆ ✡ 0, the lines

intersect each other. All lines in ✂ 3 map to points in ✏ 5, but

the opposite is not true. The only points in ✏ 5 that have a cor-

respondence in ✂ 3 belong to a manifold, called the Plücker

quadric, given by the equation

G ✡✗✖ Hx ✄ x ☞ ✆ ✡ 0 : x ✘✙✏ 5 ✚✜✛ ✖ 0 ✚ (3)

The Plücker quadric is a 4D manifold, whose 3D analog

would be a hyperboloid of one sheet. The other points in ✏ 5

correspond to lines with imaginary coefficients that do not

exist in ✂ 3 .

2.2. General principle of analytic visibility

The from-surface visibility problem refers to the determina-

tion of the set of polygonal primitives of a scene that are vis-

ible from the polygonal surface S through a set of polygonal

occluders Oi. In the case of occlusion culling, S is the face

of a view cell and R is a target of the visibility query: e.g., a

scene primitive or a face of a bounding box. We call a stab-

bing line an oriented line that intersects a set of polygons.

Let R be a convex polygonal scene primitive. To determine

if R is visible from at least one point of S, analytic methods

represent the sets of lines between S and R as polyhedra in

dual space (see Figure 1). The set of lines stabbing simulta-

neously S and R is represented by the polyhedron ✢✣✄ S ☎ R ✆ .
Each occluder intercepts a set of lines that can also be repre-

sented by the polyhedron ✤ i ✄ S ☎ R ✆ .�
The convex polyhedron ✢✦✥✧✤ i contains the subset of lines

stabbing S and R, and blocked by Oi.�
The non-convex polyhedron ✢ ☛ ✤ i contains the set of

lines stabbing S and R, and not blocked by Oi. To avoid

dealing with a non-convex polyhedra it is usually split into

convex parts, forming together a complex of convex poly-

hedra (in the rest of the paper a complex ★ designates a

set of convex polyhedra ✢ i).

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

The set of lines that are not blocked by a set of n convex

occluders Oi are computed by successive subtraction of the

n occluder polyhedra ✤ i from ✢ , using CSG in dual space.

The result is maintained as a complex of polyhedra ★ , rep-

resenting the set of lines that are not blocked by the already

processed occluders. The subtraction operation itself is per-

formed by splitting the polytope ✢ by the hyperplanes of ✤ i,

and the subset of ✢ that is located inside ✤ i is eliminated.

Figure 1: (a) The polytope ✢ , representing in primal space

the set of lines stabbing the query polygons. (b) The occluder

Oi blocks a set of lines. (c) The complex ★ ✡✩✖ ✢ 1 ☎ ✢ 2
✚

con-

taining the result of the operation ✢ ☛ ✤ i. In primal space

it represents the set of lines that were not blocked by the oc-

cluder Oi

If the polytope ✢ becomes entirely eliminated by the sub-

traction of a set of polytopes ✤ i, R is hidden by the set of

occluders Oi. Otherwise, some unblocked lines exist and R

is visible from S (see Figure 2).

Figure 2: After all the occluders have been processed, the

remaining complex represents the set of lines that have not

been blocked.

In 2D, the dual space is also two-dimensional, and effi-

cient algorithms exist [KCoC01, BWW01]. In 3D, the prob-

lem is more involved because the dual space is the five-

dimensional projective Plücker space. The transformation of

the problem into this dual space is obtained by using equa-

tion (2) to transform the lines containing the edges of the

scene polygons to hyperplanes in Plücker space (see Fig-

ure 3). It can be shown that the set of stabbing lines through

one polygon can be represented by a polyhedron (i.e. an un-

bounded convex region of space), and the set of stabbing

lines between two polygons can be represented by a poly-

tope (i.e. a bounded polyhedron) [Nir03] (the edges of the

query polygons must be ordered so that any stabbing line

b passes them with the same relative orientation). In both

cases, the set of stabbing lines is represented by the portion

of the Plücker quadric delimited by the polyhedron. In par-

ticular, the dual point b ☞ of the stabbing line b is located on

the Plücker quadric surface and inside the polyhedron. The

intersection points s ☞ of the edges with the Plücker quadric

are the extremal stabbing lines of the polygons [Tel92]. In

3D, the line s is incident on four polygons edges (or more

in degenerate configurations) (see Figure 3). A subtraction

operation can possibly create a polytope that does not inter-

sect with the Plücker quadric: this polytope can be deleted

because it does not contain any real stabbing lines [Pu98].

The next section presents the previous analytic from-region

visibility techniques using these general principles.

Figure 3: Correspondence between 3D and Plücker Space

(Note: this is an evocation of the reality, because the dual

Plücker space is actually ✏ 5). The initial polygon edges are

mapped to hyperplanes in Plücker space. The lines incident

on four polygon edges are the extremal stabbing lines s. The

curves on the Plücker quadric are the traces of the 2-faces of

the polytope (i.e. the faces of dimension 2), and correspond

to lines incident on 3 polygon edges.

2.3. Previous work

In 2D, Koltun et al. proposed to determine the visibility

of each geometric primitive individually by using polygon-

to-polygon occlusion queries [KCoC01]. The dual space is

also two dimensional, and the problem can be discretized,

which gives the possibility to implement the subtraction op-

eration with graphics hardware rasterization. The polygon-

to-polygon query mechanism was extended to 3D by Niren-

stein et al. [NBG02]. The visibility of a polygon R is de-

termined by first constructing a bounded polytope ✢ , repre-

senting the set of stabbing lines crossing R and the source

polygon S. Each occluder polytope is iteratively subtracted

from ✢ . The polygons S and R are proven to be hidden if✢ gets completely removed. The authors proposed a frame-

work including several optimizations for PVS computation.

Bittner et al. represent all the unblocked rays leaving

the query polygon. The approach was first proposed in 2D

[BWW01] and then extended to 3D [Bit02]. The rays are

encoded in an occlusion tree [BHS98], which is a BSP tree

in Plücker space. Each internal node contains a hyperplane

equation that corresponds to the edge of an occluder. A leaf

node represents either an unblocked region of Plücker space

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

(out-leaf) or a blocked line region (in-leaf). The occlusion

tree construction necessitates a front-to-back ordering of the

occluders. A bounded polytope ✤ i is constructed for each

occluder Oi, representing the set of stabbing lines intersect-

ing Oi and the source polygon S. The polytope ✤ i is fil-

tered down in the tree, from the root to the leafs. Each in-

ternal node splits the initial polytope into two fragments that

are processed in the node’s two subtrees. When a fragment

reaches an out-leaf node, the node is replaced by a subtree

constructed from the polytope’s hyperplanes. If an in-leaf is

reached, the fragment is eliminated. After all the occluders

have been inserted, the occlusion trees can be used to test the

occlusion of the geometric primitives of the scene.

Recently, Mora et al. [MAM05] proposed to reduce the

fragmentation of the polytope complex, induced by the

method of Nirenstein et al. [NBG02], by detecting and dis-

carding the redundant split operations.

The existing methods indicate that representing the occlu-

sion by a complex of polytopes in Plücker space requires

two fundamental operations: the creation of a polytope rep-

resenting the set of lines stabbing two polygons, and a poly-

tope split algorithm to perform the CSG operations.

The polytope representing the set of lines stabbing two

polygons was obtained from a vertex enumeration algo-

rithm [AF96] in all the previous approaches: the edges of the

polygons are transformed to hyperplanes that correspond to

the facets of the polytope. From these equations, the vertex

enumeration algorithm outputs the 1-skeleton of the poly-

tope. In his thesis, Nirenstein proposed a direct construction

algorithm, but no implementation was evaluated [Nir03].

The polytope splits are also performed using a vertex enu-

meration algorithm in [Bit02]: the two polytopes are ob-

tained by adding the splitting hyperplane to the list of facets

of the initial polytope. In [NBG02], Nirenstein et al. pro-

posed a more efficient split algorithm adapted from [BP96],

based on the face lattice of the polytope [FR94]. A polytope

split consists of iterating through all the k-faces of the poly-

tope in all dimensions, starting with the 1-dimensional faces

and finishing with the d-dimensional faces, and performing

symbolic and numerical computation on the polytope’s face-

lattice. This split operation was also used in [MAM05].

3. Low dimensional algorithms in Plücker space

Maintaining visibility relationships in Plücker space requires

two fundamental operations: a polytope split procedure and

the creation of a polytope representing the set of lines stab-

bing two polygons. In this section we propose new algo-

rithms for performing these tasks using only the 1-skeleton

of the polytopes (i.e. their vertices and edges) and the com-

binatorial description of their vertices (i.e. the list of facets

they belong to).

This approach is conceptually similar to the introduction

of the Visibility Skeleton for global visibility computation

[DDP97], instead of the Visibility Complex [DDP96]. How-

ever, this comparison is not entirely correct, because the 1-

skeleton of the polytopes contains different information than

the visibility skeleton. The visibility skeleton encodes the

critical swaths (i.e. the surfaces delimiting the visibility dis-

continuities) and the extremal stabbing lines, while the 1-

skeleton only encodes the extremal stabbing lines explicitly.

However, they are still grouped into polytopes, correspond-

ing to higher dimensional cells of the visibility complex: this

latter can still be reconstructed from the 1-skeleton represen-

tation.

Section 3.1 gives a general d-dimensional polytope split

algorithm. In section 3.2, we show how to construct the

1-skeleton of a polytope ✢ in Plücker space from its in-

tersection with the Plücker quadric representing the set of

lines stabbing two convex polygons S and R. A polygon-to-

polygon occlusion query framework, based on top of these

algorithms, is presented in the section .

3.1. d-dimensional polytope splitting algorithm

Let ✢ be a bounded polytope in ✑ d , Hi the hyperplane sup-

porting its facet i, Vi one of its vertices and E ✪Vi ☎ V j ✫ one of its

edges. We split this polytope by the hyperplane Hs to obtain

the two polytopes ✢✭✬ and ✢✯✮ .

Figure 4 shows an illustrative example in 2D, in which

case the convex polytope is a convex polygon, and its facets

are equal to its edges. We indicate with each vertex its com-

binatorial description. Note that the algorithm is identical re-

gardless of the dimensionality of the polytope. The splitting

algorithm is divided into 3 steps: classification of the ver-

tices, splitting of the edges, and finally linking of the new

vertices:

Step 1: The first step is to classify each vertex Vi as✖ - ☎ = ☎ +
✚
, with respect to its relative position with the

hyperplane Hs. The vertices - are copied into a new poly-

tope ✢✭✬ , while the vertices + are copied in a new polytope✢✯✮ . If a vertex in ✢ belongs to Hs, it is classified = , and

added to ✢✭✬ and ✢✯✮ . Hs is added to the combinatorial de-

scription of the vertex.

Step 2: For each edge E ✪Vm ☎ Vn ✫ linking two vertices Vm

and Vn of different signs, a new vertex Vs, labeled = , is

added at the intersection of the edge and of the hyperplane

Hs. The combinatorial description of this vertex is equal to

the combinatorial description of the edge E ✪Vm ☎ Vn ✫ , aug-

mented by the hyperplane Hs. The split edge E ✪Vm ☎ Vn ✫ of✰
becomes the edge E ✪Vm ☎ Vs ✫ of

✰ ✬ and the edge E ✪Vs ☎ Vn ✫
of
✰ ✮ . The edges of

✰
linking two vertices - (resp. +)

are duplicated into
✰ ✬ (resp.

✰ ✮).

Step 3: The last step creates the new edges of
✰ ✬ and✰ ✮ . All these edges are located on the hyperplane Hs, and

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

link together vertices equal to = . We use the combinato-

rial description of the vertices = to create the new edges. If

the polytope is simple, the vertices labeled = that must be

linked by an edge are those that have d ☛ 1 common facets

(d-1 is equal to 4 in Plücker space) in their combinatorial

description. When the polytope is not simple, the edges can

have more than d ☛ 1 facets in their combinatorial descrip-

tion. In that case, a new edge is created only if the common

facet hyperplanes intersect in a line (i.e. the matrix built from

their equations is of rank d ☛ 1).

(a) (b)

(c) (d)

Figure 4: (a) The polytope ✢ . (b) The 1-skeleton
✰

of ✢ . (c)

Classification of the vertices of ✢ with respect to the splitting

hyperplane Hs. (d)
✰ ✬ and

✰ ✮ after the split.

3.2. Constructing the stabbing lines between two 3D

polygons

In previous works [NBG02, Bit02], a vertex enumeration

algorithm is used for the construction of initial polytopes.

The approach is the most general possible, and is much

slower than a dedicated algorithm, since it does not take the

specifics of the problem into account. Furthermore, the ap-

proach is very sensitive to numerical imprecision, and does

not always produce a correct solution in particular polygon

configurations. In contrast, our approach is based on the ex-

plicit construction of the extremal stabbing lines between the

two polygons, and always produces a valid result. A similar

method was mentioned in [Nir03] and in [MAM05], but was

neither evaluated nor detailed.

Let PlS and PlR be the oriented planes containing the

query polygons S and R respectively. Before computing ✢ ,

we first clip S with PlR and R with PlS, and keep the parts

of the polygons located on the positive side of the splitting

planes. If one of the polygons is removed completely in the

clipping stage, no stabbing lines exist, and the polytope is the

empty set. Otherwise, line r is computed as the intersection

of PlS and PlR (see Figure 5). (Note: if Pls and Plr are paral-

lel, r ☞ is equal to ✄ 0 ☎ 0 ☎ 0 ☎✱☛ nx ☎✱☛ ny ☎✱☛ nz ✆ , with n ✄ nx ☎ ny ☎ nz ✆
the normal of Pls.)

Figure 5: Initial query polygons configuration. The line r is

the intersection of planes PlS and PlR. All the edges of S and

R are incident on r.

The edges of the query polygons are mapped to hyper-

planes in Plücker space, and form a projective polytope. Af-

ter its projection on an arbitrary projection hyperplane, the

polytope becomes an unbounded ’pyramid’. The line r maps

to the point r ☞ , which is the apex of the pyramid, since r is

the line on which all bounding edges are incident (cf. Figures

5 and 6).

(a) (b)

Figure 6: Geometric properties of polytope ✢ . (a) After pro-

jection onto an arbitrary hyperplane: the apex of the pyra-

mid r ☞ belongs to the quadric. (b) After projection onto H ✲ :

r ☞ becomes a point at infinity. The intersection of the ver-

tical edges with the Plücker quadric are the points s ✳ ☞i j cor-

responding to the extremal stabbing lines. (Note: this is an

evocation, the polytope is actually embedded in an hyper-

plane in ✑ 6 . For clarity, we have represented only 5 of the

16 vertical edges that define the polytope in this configura-

tion).

The pyramid could possibly be degenerate if r ☞ became

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

a stabbing line, but this situation is avoided by the initial

clipping of the query polygons. The set of stabbing lines be-

tween the query polygons map to points on the intersection

of the pyramid with the Plücker quadric. The extremal stab-

bing lines are incident to four edges: they always contain

a vertex Pi of S and a vertex Pj of R, and are noted si j. In

projective space, they map to the rays s ☞i j on the intersection

of the edges of the pyramid with the Plücker quadric, and

become the points s ✳ ☞i j after the projection (see Figure 6 (a)).

The split algorithm in Section 3.1 requires the polytope to

be bounded, and we use the following steps to transform the

projective polytope into a bounded polytope. First, we take

a particular hyperplane H ✲ , chosen so that the point r ☞ be-

comes a point at infinity, corresponding to the direction r ☞
(the details can be found in the Appendix A). The projection

onto H ✲ effectively transforms the projective polytope into

a prism with principal axis r ☞ and edges parallel to the di-

rection r ☞ . These edges are the vertical edges of the prism

(see Figure 6 (b)). It is easier to clip this prism than to clip

an unbounded pyramid obtained with an arbitrary projection

hyperplane. Indeed, two capping hyperplanes H ✮c and H ✬c ,

with normals r ☞ and ☛ r ☞ , are enough to obtain a closed poly-

tope (see Figure 7). The independent terms of the capping

hyperplanes, fixing their translation, are chosen so that they

completely enclose the region of the Plücker quadric located

inside the prism (the details are given below).

Figure 7: On the capping hyperplanes H ✮c and H ✬c , the

two vertices V ✮i j and V ✬i j created from si j share four hyper-

planes with each other and with the vertices created from✖ si ✮ 1 j ☎ si ✬ 1 j ☎ si j ✮ 1 ☎ si j ✬ 1
✚
.

In Plücker space, a vertex of polytope ✢ is located at

the intersection of five hyperplanes (i.e. we suppose that the

polytope is simple and that its vertices are contained in ex-

actly five facets; this supposition is valid if S and R do not

contain any degenerated edges). Four of these are the dual

hyperplanes of the edges of the query polygons and the fifth

is one of the capping hyperplanes. The vertex positions are

computed as the intersections of the vertical edges of the

prism and the capping hyperplanes. This can be efficiently

done by forming the lines of the edges from the dual points

s ☞i j of the extremal stabbing lines and the direction r ☞ .

An edge is located at the intersection of four hyperplanes

meaning that the edges of the skeleton should be created be-

tween pairs of vertices sharing four hyperplanes (see Fig-

ure 7).

The complete algorithm to create the 1-skeleton of ✢ is as

follows: compute the direction r ☞ and all the extremal stab-

bing lines si j, as well as their dual point s ☞i j . Project these

points onto the projection hyperplane to obtain s ✳ ☞i j . You are

now able to find the capping hyperplanes H ✮c and H ✬c : their

normals are r ☞ and ☛ r ☞ and their independent terms are

computed so that all the s ✳ ☞i j are inside the delimited poly-

tope. Let di j be the orthogonal projection of s ✳ ☞i j onto the di-

rection r ☞ , computed with the classical dot product in ✑ 6 :

di j ✡ ✔ s ✳ ☞i j ☎ r ☞ ✒ . The independent terms are the minimum

and maximum values of all di j . To ensure the polytope con-

tains all the stabbing lines, they must be clamped to 0 (the

mathematical details are out of the scope of this paper, but

this clamping enables to take the curvature of the Plücker

quadric into account).

Then compute all the vertices V ✮i j and V ✬i j as the inter-

sections of the vertical edges passing through the points s ✳ ☞i j

with hyperplanes H ✮c and H ✬c . The last step is to create the

edges. For each extremal stabbing line si j, connect:�
vertex V ✮i j and vertex V ✬i j (to form a vertical edge)�
vertex V ✮i j and vertices V ✮i ✬ 1 j ,V ✮i ✮ 1 j ,V ✮i j ✬ 1

,V ✮i j ✮ 1
.�

vertex V ✬i j and vertices V ✬
i ✬ 1 j ,V ✬

i ✮ 1 j ,V ✬
i j ✬ 1

,V ✬
i j ✮ 1

.

4. Fast and Simple Polygon-Polygon Occlusion Query

A polygon-polygon occlusion query consists of determin-

ing whether the polygons S and R are visible through a set

of convex polygonal occluders Oi. After the construction of

the polytope ✢ representing the set of lines stabbing S and

R, the set of lines blocked by each occluder are subtracted

incrementally, and the resulting polytopes are stored in the

complex ★ . Previous methods [MAM05] treat each polyg-

onal occluder Oi individually and use every edge of every

polygonal occluder as a splitting hyperplane, causing a lot

of extra work. Furthermore, they perform poorly when the

two polygons are partially visible because the visibility is

only established after all the occluders have been subtracted.

In this section, a new framework, using the low level algo-

rithms presented in Section 3, is proposed to cope with these

problems. We first present the two ideas it is based on: a new

occluder selection process guided by visibility (Section 4.1),

and a new from-region silhouette occluder aggregation (Sec-

tion 4.2). The framework combining these ideas is presented

in Section 4.3 and discussed in Section 4.4.

4.1. Visibility guided occluder selection

During a query, the polytope ✢ is split by the hyperplanes

of the occluder edges, and the polytopes corresponding to

blocked line-space regions are eliminated. Each remaining

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

polytope represents a subset of the initial stabbing lines that

are not blocked by the previously processed occluders. In

other words, any line of this subset passes through an aper-

ture left by the occluders (see Figure 8).

Figure 8: ✢ i represents a set of lines through the aperture

left by the occluders. m is the representative line of ✢ i.

For each polytope ✢ i, such a line m is extracted and in-

tersected with the geometry. If m does not intersect any oc-

cluders, S and R are mutually visible and the query stops.

Otherwise, the next occluder Oi to be subtracted from ✢ i

is selected among the polygons intersected by m. Once Oi

has been chosen, its polytope ✤ i, however, will not be sub-

tracted from every polytope in the complex as was done

in previous work [NBG02]. Instead, ✤ i is only subtracted

from the polytope ✢ i. Since the occluder was chosen by in-

tersecting the representative line m with the geometry, this

guarantees that ✤ i contains at least the point m ☞ of ✢ i, and

that the intersection of ✢ i and ✤ i is never empty (see Fig-

ure 9). Furthermore, every subtraction operation alters the

intersection of the polytope ✢ with the Plücker quadric, and

all splits which would not remove any real stabbing lines

are avoided. In constrast to the method proposed recently by

Mora et al. [MAM05], the advantage of this occluder selec-

tion mechanism is that the unnecessary split operations are

discarded before being performed.

Figure 9: (a) Even if the hyperplanes of ✤ i intersect ✢ i,

these two splits are redundant because ✤ i ✥✴✢ i is empty. (b)

With our ray sampling strategy, ✤ i ✥✴✢ i is never empty, and

the intersection contains at least m ☞ .
The representative line m of the polytope ✢ i is computed

in Plücker space, where the polytopes are convex sets, rather

than in ✂ 3 , where they often represent complicated sets of

lines (these line sets are delimited by swath surfaces that are

not necessarily planar nor convex). In dual space, the point

m ☞ must respect the following constraints:�
located inside ✢ i: every linear convex combination of its

vertices defines a valid point.�
belongs to the Plücker quadric.

To find m ☞ , we compute two convex linear combinations

of vertices on each side of the Plücker quadric that together

define a line segment. The intersection of this line segment

with the Plücker quadric is the point m ☞ . If it is not possible

to find a point for both sides of the quadric, an extremal

stabbing line is taken as a representative line (this happens

in degenerate configurations, when all the polytope’ vertices

are on the same side of the quadric or belong to the

quadric). The problem of selecting one occluder among

the occluders intersected by the line m is solved by using

a line counting strategy, like the one used in the case of

random ray sampling in [NBG02]. Each occluder maintains

a counter representing the number of representative lines it

intersects, and the chosen occluder is the one that intersects

the most lines. For a given polytope ✢ i, only a subset of the

representative lines is taken into account: the ones having

a dual point inside ✢ i. Of course, every time a polytope is

deleted, its representative line is also discarded. It is possible

to reduce the number of line-geometry intersection tests

by ‘recycling’ the representative lines: each split creates

two sub-polytopes, and the line m can be used again as a

representative line for one of them (i.e. for the sub-polytope

located on the same side of the splitting hyperplane as m ☞).
4.2. Silhouette occluder aggregation

We define the from-region silhouette as the set of edges that

are from-point silhouette edges simultaneously for at least

one point of the polygon S and one point of the polygon R.

In the case of connected polygonal occluders, only the from-

region silhouette edges of the objects can cause visibil-

ity events (i.e. separate the Plücker space between blocked

and free set of lines). The other ones, called the internal

edges, are redundant for the visibility determination (see

Figure 10).

(a) (b)

Figure 10: (a) The shaded region represents the set of rays

blocked by the occluders. b and e are internal edges, while

a, c and d are from-region silhouette edges. (b) Only the sil-

houette edges have to be used to obtain the set of blocked

rays.

Rather than splitting the complex of polytopes by all

the edges of every occluder, it is possible to avoid many

redundant splits by verifying that the splitting edge is

effectively a from-region silhouette edge. Let e be the edge

that connects the occluder polygons P1 and P2. The planes

containing P1 and P2 define a double wedge which delimits

the regions W1 and W2 (see Figure 11).

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

(a) (b)

Figure 11: The edge e connects the occluder polygons P1

and P2. The planes containing P1 and P2 define a double

wedge region. (a) 3D view. (b) 2D view (e is perpendicular

to the sheet of paper).

The wedge of the from-region silhouette edges have an

intersection with both query polygons S and R. We deduce

the from-region silhouette edge condition (see Figure 12 for

some examples):

From-region silhouette edge. e is a from-region silhouette

edge if and only if S has at least one point in W1 (resp. in

W2) and R have at least one point in W2 (resp. in W1).

Figure 12: Illustrative example of the silhouette condition.

The edges a and b belong to the from-region silhouette, con-

trary to the edges c and d.

The from-region silhouette edges partition the occluder

mesh into connected patches Fi (i.e. each occluder polygon

belongs to one and only one Fi, see Figure 13).

(a) (b)

Figure 13: Using a connected polygonal mesh as an oc-

cluder for a query (S and R are not shown, but they are lo-

cated on both sides of each bunny) (a) Classical approach:

the polygonal primitives are treated individually and all the

edges are used. (b) Silhouette occluder aggregation: the

polygons are grouped into patches, and only the from-region

silhouette edges are used .

In our line counting mechanism used for occluder

selection, each patch is considered an occluder. Since

the silhouettes depend on the configuration of the query

polygons, the patches Fi are explicitly extracted for each

query the first time a polygon occluder is hit by a ray.

An extraction is a flood-fill traversal of the initial mesh’s

face-adjacency graph that stops when from-region silhouette

edges are met.

4.3. Framework for analytic occlusion query

Our framework builds on the described new techniques and

can be summarized by the following pseudo-code:

1: Procedure areVisible(S, R)

2: Construct the initial polytope ✢ for S and R

3: return recursiveSplit(✢)

4:

5: Procedure recursiveSplit (✢)

6: m = representative line of ✢
7: X = set of patches intersected by m

8: if X ✡ empty then

9: return Visible //early termination

10: Select a patch Fi from X

11: Search for a valid edge e in Fi

12: if e ✵✡ empty then

13: { ✢ ✬ , ✢ ✮ } = Split (✢ , He)

14: if (recursiveSplit(✢✣✬)=Visible then

15: return Visible

16: if (recursiveSplit(✢ ✮)=Visible then

17: return Visible

18: return Hidden

The complex ★ is not represented explicitly, but im-

plicitly by successive calls to the recursive procedure

recursiveSplit(✢). For each polytope, a representative line

m is extracted and intersected with the scene geometry to se-

lect Fi (lines 6 and 7). As described in Section 4.1, m passes

through an aperture remaining after the already processed

occluders. If m does not intersect any occluders, the query

polygons are mutually visible and the query terminates early

(line 9). Otherwise the patch Fi is selected from the set of

patches intersected by m (line 10). Its boundary edges are

inspected, until an edge e verifying the following split con-

dition is found (line 11):✝✟ ✠ He, the dual hyperplane of e, is not a facet of ✢
e belongs to the from-region silhouette (Section 4.2)

e divides the set of lines inside polytope ✢
The last test is not trivial, and we evaluate it conserva-

tively by testing the edge e for intersection with the convex

hull of S and R. If no such edge is found, the current poly-

tope represents a set of lines completely blocked by the patch

Fi: the recursion stops, and the polytope is eliminated from

the complex. Otherwise, the polytope is split into the poly-

topes ✢✭✬ and ✢✯✮ (line 13) and the procedure is recursively

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

applied to both polytopes (lines 14-17). The recursive pro-

cedure returns when all the polytopes have been blocked: S

and R are mutually occluded (line 18).

4.4. Framework Analysis

The main advantage of our framework is that all splits by

internal edges are avoided. The best case is a single con-

vex occluder blocking all the rays between the query poly-

gons: all the edges are internal and the query is proven hid-

den without performing any split operations. In a sense, the

framework can be seen as an extension to the general case

of multiple occluders of the predicates presented by Navazo

et al. to detect the occlusion created by a single polygonal

occluder [NRJS03].

In terms of occlusion layers [KS00], previous analytic

frameworks were only able to fuse the occlusion for the

second or greater occluded layer. This is achieved by using

hidden cells as virtual occluders [NBG02]. In addition, our

occluder aggregation method is able to combine occlusion

from the first visible layer of occluders: this property is cen-

tral for the scalability of the approach in scenes containing

complex objects.

The possibility of early termination is increased greatly in

the case of mutual visibility, since a representative line m is

tested progressively for each aperture. The algorithm effec-

tively converges on aperture and terminates. Furthermore,

the complexity of the method is no longer a function of

the occluders within the polygon-polygon query shaft, but a

function of the complexity of the far simpler silhouette edge.

Furthermore, the conjunction of the silhouette condition and

the representative line strategy leads to a very efficient aper-

ture detection, because the lines are guided towards the sil-

houette boundaries of objects.

5. Results

We have implemented the described algorithms in the

‘VisiLib’ library; the test computer is a laptop Pentium 4

computer (1.9Ghz) with 1.28 Gb of memory.

5.1. Framework evaluation

The most direct application of the polygon-to-polygon query

framework is the computation of a PVS. However, the com-

plete visibility pre-processing of a scene requires additional

algorithms that are out of the scope of this paper (see for ex-

ample [Lai05]). For this reason we have evaluated the query

framework in context of PVS computation by using a ran-

dom sampling process.

The framework was tested by placing axis-aligned cubical

view cells of equal size along a path traversing the scene ge-

ometry. For realistic results, scenes of varying complexity

were used. For each path the mutual occlusion of 100000

randomly chosen pairs of bounding boxes were tested, the

first box corresponding to one of the viewcells and the other

one enclosing an object of the scene. At first, the two boxes

were replaced by a conservative polygonal approximation

representing the union of all the possible views of the box

from the other one, and a polygon-to-polygon query was ap-

plied to determine if they were hidden. If so, the boxes were

also proven hidden. Otherwise, the mutual visibility of the

36 pairs of box faces were tested, and the boxes were marked

hidden if all the face combinations were mutually hidden.

For efficient processing, the scenes were stored in an octree

and shaft culling was used to limit the intersection tests to the

objects inside the shaft of the two bounding boxes [HW91].

The results are summarized in Figure 14. Because of the

early termination mechanism, the distributions of the visible

and hidden queries are slightly different and they are pre-

sented separately.

Each query begins with the creation of the initial polytope✢ . Typically, when S and R are two quadrilaterals, the dou-

ble description method implementation [Fuk] used in previ-

ous work [NBG02] takes about 8 ✶ 10 ✬ 3 sec. (this time also

includes the computation of the full face-lattice of ✢), and

was a serious bottleneck (the situation is even worse in the

case of [Bit02], because the method is used for each sub-

tracted occluder). In the same situation, our direct construc-

tion method is more than 300 times faster, and performs in

about 24 ✷ 5 ✶ 10 ✬ 6 sec.

Depending on the scene, the average time for silhouette ex-

traction ranges from 1 to 36 ms. Even if it is small in com-

parison to the time that would have been needed to perform

all the split operations, it can reach up to 95% of the total

query time in worst case situations. A caching scheme simi-

lar to the one proposed by Aila et al. [AM04] should be used

to limit the cost of the extractions (optimization not imple-

mented).

To identify the bottlenecks of the framework, we measured

the average time spent in different parts of the algorithm.

The results are presented in Figure 17(a), as a function of

the number of occluders effectively subtracted during the

query (i.e. the number of effective occluders). As expected,

the most costly operations are the CSG in Plücker space and

the representative line intersection tests. The latter are con-

siderably more expensive than simple ray casting because

the intersection testing does not stop when the first object is

hit. With an average of 4000 representative lines treated by

second, our implementation is considerably slower than the

current standard in ray tracing and should certainly be im-

proved. Another possibility could be to stop the intersection

tests when a given number of occluders has been intersected.

Note that the number of representative lines was already re-

duced by ’recycling’ them among the polytopes created in

splitting (Section 4.1).

For comparison purposes, we have also implemented

the exact polygon-to-polygon occlusion query method pre-

sented in [NBG02], modified to reduce the fragmentation

by detecting and discarding the useless splits as described

in [MAM05]. To allow a direct comparison, this method

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

(a)Vienne (26k tri) (b) Level 12 (104k tri) (c) Level 1 (187k tri) (d) Bonga (4.6Mo tri)

Visible Visible Visible Visible Visible Hidden Hidden Hidden Hidden Hidden

Visible (Time) # Splits # Rep. Lines #Eff. Occ. Sil. Ex.(ms) Time (ms) # Splits # Rep. Lines #Eff. Occ. Sil. Ex.(ms) Time (ms)

a 8%(5.3%) 0/7.5/169 1/7.5/151 0/8.1/148 0/0.2/22.8 0.2/4.3/112.7 0/5.1/162 1/6.5/138 1/8.8/122 0/1.1/44.2 0.3/6.6/106.7

b 16%(5.6%) 0/19.3/2.4k 1/11.8/1.2k 0/16.8/642 0/0.2/21.7 0.2/10.7/1.5k 0/51.8/6.7k 1/32.6/3.6k 1/55.5/1.1k 0/1.5/78.3 0.3/34.5/5.4k

c 46.6%(32.3%) 0/70.1/42.9k 1/34.7/20k 0/55.4/5k 0/1.3/394.4 0.3/62/56.4k 0/117.7/20.3k 1/60.6/9.8k 0/88.9/3k 0/2.8/335.3 0.4/113.3/30.5k

d 22.3%(17.7%) 0/17.7/6.9k 1/11/3.6k 0/14.7/3k 0/17.2/7.9k 0.6/80.5/24.5k 0/15.2/15.4k 1/8.9/8.1k 0/11.6/2.9k 0/36/10.4k 0.6/107.6/35.4k

Figure 14: Vienna is a town model of 458 objects and 26k triangles; Level 12 and Level 1 are two computer game scenes: Level

12 is an interior scene of 1177 objects and 104k triangles, and Level 1 is an outdoor scene with 2160 objects and 187k triangles.

Bonga is an industrial CAD model, counting 430k objects and 4.6 millions of triangles. For each scene, 100 000 random box-

to-box occlusion queries where performed. For each data, the minimum/average/maximum value observed is given. The first

column gives the percentage of visible queries and the global time spent to perform them (in parenthesis). The 3 next columns

give resp. the number of splits, of representative lines, and of effective occluders performed during the query. The column ’Sil.

Ex.’ gives the time spent in the silhouette extraction process. Finally, the total time needed to perform one polygon-to-polygon

occlusion query is given in the column ’Time’.

was implemented using the low dimensional algorithms

presented in Section 3 and the occluder selection presented

in the Section 4.1. Despite all the modifications made to

the original method, we refer to this implementation as the

classical framework. In addition to the occluder silhouette

aggregation technique, the main difference between the

classical framework and the framework presented in the

Section 4.3 is that once an occluder has been selected, all

the polytopes of the complex are split by all the edges of

its dual polytope. Time needed to perform one query, as a

function of the number of effective occluders, is given in

Figure 15 (Level 12 scene).

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

Effective Occluders

T
im

e
 (

s
e
c
)

Classical

Framework (No Silhouette aggregation)

Framework (Silhouette Aggregation

Figure 15: Comparison of different methods for Level 12.

For sufficiently large queries, the classical framework re-

sults are compatible to those presented in [NBG02]. How-

ever, our modified implementation is faster for smaller

queries because it benefits from the acceleration of the initial

polytope creation algorithm. With a least square fitting, we

evaluated the complexity of the classical framework curve:

O ✄ n1 ✸ 84 ✆ , where n is the number of effective occluders. The

second curve is for our framework presented in Section 4.3

used without the silhouette occluder aggregation (i.e. all the

edges are considered as splitting edges). In comparison to

the classical framework, the occluders are only used locally,

and the useless splits are avoided before being performed.

For 100 effective occluders, the framework is about 5 times

faster. The last curve is for our framework used with the sil-

houette occluder aggregation. Since most of the splits by in-

ternal edges are avoided, it provides a nearly constant accel-

eration over the precedent curve, equaling to about 6. For

100 effective occluders, the acceleration between the classi-

cal framework and the silhouette aggregation framework is

about 30. The complexity of the silhouette occluder aggre-

gation curve is O ✄ n1 ✸ 44 ✆ .

5.2. Occluder selection and aperture detection

To study the occluder selection and the aperture detection a

synthetic scene was used to control the test parameters. The

query polygons S and R are two equilateral triangles of the

same size, parallel to each other while random sized equilat-

eral triangles are incrementally inserted between them. After

inserting each occluder, the mutual visibility of S and R was

queried (see Figure 16).

Since the occluders are disconnected, no silhouette occluder

aggregation occurs. The results are presented in the Fig-

ure 17(b) (average over 1000 experiments). The curves are

decomposed between a visible and a hidden phase. During

the visible phase, they increase with the number of trian-

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

gles: the query polygons get less visible, and early termina-

tion happens later as the size of the aperture decreases. The

curves reach a maximum point when the shaft gets blocked

(with 310 occluders on average). After this, adding more tri-

angles gives more choices for the occluder selection heuris-

tic, and the curves begin to decrease. This shows that the

occlusion query cost is not proportional to the number of oc-

cluders present in the shaft: as soon as the shaft is blocked,

adding more occluders can even have a positive effect on the

computation time (except for the representative line intersec-

tion tests that are more and more costly in our implementa-

tion).

In previous work, early termination was obtained by testing

if free rays exist among a set of randomly chosen rays be-

tween S and R [NBG02]. If the random sampling missed the

aperture, all the occluders inside the shaft had to be treated

before the mutual visibility of the polygons could be estab-

lished. The visible queries were potentially more costly than

the hidden ones that only subtracted the subset of effective

occluders needed to prove the occlusion. Let p be the prob-

ability of detecting an aperture by using random rays. Fig-

ure 17(c) represents 1

p , the average number of random rays

needed to discover the aperture, estimated by casting a large

number of random rays. This number becomes very large as

the aperture size decreases, while our visibility guided aper-

ture detection always determines the mutual visibility with

a bounded number of representative lines. Using our frame-

work, the need to subtract all the occluders inside the shaft

to prove visibility is avoided.

Figure 16: Random occluders experiment: random sized

equilateral triangles are iteratively inserted between the

query polygons.

6. Conclusion and Future Work

We have presented a new framework for polygon-to-polygon

occlusion query that decreases the average complexity of the

previous analytic approaches on realistic scenes. Maintain-

ing the full face-lattice of the polytopes, as done in previ-

ous work, is similar to the construction of a localized subset

of the visibility complex. Our approach, using only the 1-

skeletons of the polytopes, is similar to the construction of a

localized subset of the visibility skeleton. The first benefit of

this framework is to reduce the complexity of the query by

choosing the occluder locally for each polytope: the useless

splits are avoided. Furthermore, the chance of early termi-

nation is greatly enhanced in the case of mutual visibility.

When the framework is used to perform the silhouette oc-

cluder aggregation, it becomes sensitive to the complexity

of the from-region silhouette of each occluding object, rather

than to its entire polygonal mesh. The drawbacks are linked

to the extraction of the silhouettes: the triangle adjacencies

have to be stored for each mesh, and the silhouettes must

be extracted for each occluder for each query. However, the

time needed to perform this task is small in comparison to

the time that would be needed to perform all the split op-

erations. The algorithm evaluates a silhouette condition and

a split condition for each occluder edge. These tests are not

trivial, and were replaced by simpler conservative tests in

our implementation, leading to some amount of useless split

operations. As future work, the from-region silhouette could

be extracted locally for each polytope, instead of globally as

it was presented here. We also plan to develop an accurate

test to determine if e effectively divides the set of lines in-

side each polytope to replace our conservative test using the

convex hull of S and R.

Since occluder selection is an NP-hard problem, our frame-

work uses a representative line counting strategy as a se-

lection heuristic. This greedy process does not always pro-

vide the best ordering [NBG02], and we plan to improve this

heuristic in future work.

Finally, we intend to incorporate the polygon-to-polygon

mechanism in a complete PVS computation algorithm, such

as the one presented recently in [Lai05].

Acknowledgements We would like to thank T. Aila, T. Kar-

ras, T. Haanpää, C. Thays, X. Baele, C. Laugerotte and O.

Debeir for all their help. This work is partially supported by

a grant of the ‘Région wallonne’ (Belgium).

References

[AF96] AVIS D., FUKUDA K.: Reverse search for enumeration.

Discrete Applied Mathematics 65, 1-3 (1996), 21–46. 4

[AM04] AILA T., MIETTINEN V.: dpvs: An occlusion culling

system for massive dynamic environments. IEEE Computer

Graphics & Applications (2004), 86–97. 9

[ARB90] AIREY J. M., ROHLF J. H., BROOKS, JR. F. P.: To-

wards image realism with interactive update rates in complex vir-

tual building environments. In Proc. of the Symp. on Interactive

3D graphics (March 1990), pp. 41–50. 1

[BHS98] BITTNER J., HAVRAN V., SLAVÍK P.: Hierarchical vis-

ibility culling with occlusion trees. In Proc. of Computer Graph-

ics International (June 1998), pp. 207–219. 3

[Bit02] BITTNER J.: Hierarchical Techniques for Visibility Com-

putations. PhD thesis, Czech Technical University in Prague,

2002. 1, 3, 4, 5, 9

[BP96] BAJAJ C. L., PASCUCCI V.: Splitting a complex of con-

vex polytopes in any dimension. In Proc. of SoCG (1996),

pp. 88–97. 4

[BWW01] BITTNER J., WONKA P., WIMMER M.: Visibility pre-

processing for urban scenes using line space subdivision. In Proc.

of Pacific Graphics (2001), pp. 276–284. 1, 3

[COCSD02] COHEN-OR D., CHRYSANTHOU Y., SILVA C. T.,

c
✁

The Eurographics Association 2005.

D. Haumont & O. Mäkinen & S. Nirenstein / A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Effective Occluders

T
im

e
 (

s
e

c
)

Total

Silhouette extraction

CSG in Plücker space

Representative Lines Intersection

Initial polytope construction

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

Number of Occluders

A
v
e

ra
g

e
 N

u
m

b
e

r

Representative lines

Effective Occluders

Splits operations

0 50 100 150 200 250 300 350
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
ra

n
d

o
m

 r
a

y
s
 (

1
/p

)

Number of Occluders

(a) (b) (c)

Figure 17: (a) Silhouette occluder aggregation: time for the different algorithm steps vs. number of effective occluders (for

the Level 12) b) Number of representative lines, splits and effective occluders for the random occluders experiment (c) 1

p ,

the average number of random rays needed to discover the aperture, in function of the number of occluders for the random

occluders experiment.

DURAND F.: A survey of visibility for walkthrough applica-

tions. IEEE Transaction on Visualization and Computer Graph-

ics 9 (2002), 412–431. 1

[DDP96] DURAND F., DRETTAKIS G., PUECH C.: The 3d visi-

bility complex, a new approach to the problems of accurate vis-

ibility. In Proceedings of Eurographics Workshop on Rendering

(June 1996), pp. 245–257. 4

[DDP97] DURAND F., DRETTAKIS G., PUECH C.: The visibility

skeleton: a powerful and efficient multi-purpose global visibility

tool. In Proc. of Siggraph (1997), pp. 89–100. 4

[FR94] FUKUDA K., ROSTA V.: Combinatorial face enumeration

in convex polytopes. Computational Geometry 4 (1994), 191–

198. 4

[Fuk] FUKUDA K.: cdd package.

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html. 9

[HW91] HAINES E., WALLACE J. R.: Shaft culling for efficient

ray-cast radiosity. In Proc. of Eurographics Rendering Workshop

(1991). 9

[KCoC01] KOLTUN V., COHEN-OR D., CHRYSANTHOU Y.:

Hardware-accelerated from-region visibility using a dual ray

space. In Proc. of Eurographics Rendering Workshop (2001),

pp. 205 – 216. 1, 3

[KS00] KLOSOWSKI J. T., SILVA C. T.: The prioritized-layered

projection algorithm for visible set estimation. IEEE Transac-

tions on Visualization and Computer Graphics 6, 2 (2000), 108–

123. 9

[Lai05] LAINE S.: A general algorithm for output-sensitive vis-

ibility preprocessing. In Proceedings of ACM SIGGRAPH 2005

Symposium on Interactive 3D Graphics and Games (2005), ACM

Press, pp. 31–39. 9, 11

[LSCO03] LEYVAND T., SORKINE O., COHEN-OR D.: Ray

space factorization for from-region visibility. In Proc. of Sig-

graph (2003), pp. 595–604. 1

[MAM05] MORA F., AVENEAU L., MÉRIAUX M.: Coherent and

exact polygon-to-polygon visibility. In Proceedings of Winter

School on Computer Graphics (2005). 4, 5, 6, 7, 9

[NB04] NIRENSTEIN S., BLAKE E.: Hardware accelerated ag-

gressive visibility preprocessing using adaptive sampling. In

Proc. of the Eurographics Symposium on Rendering (2004),

pp. 207–216. 1

[NBG02] NIRENSTEIN S., BLAKE E., GAIN J.: Exact from-

region visibility culling. In Proc. of Eurographics Rendering

Workshop (2002). 1, 3, 4, 5, 7, 9, 10, 11

[Nir03] NIRENSTEIN S.: Fast and accurate visibility preprocess-

ing. PhD thesis, University of Cape Town, 2003. 3, 4, 5, 12

[NRJS03] NAVAZO I., ROSSIGNAC J., JOU J., SHARIFF R.:

Shieldtester: Cell-to-cell visibility test for surface occluders.

Computer Graphics Forum (2003), 291–302. 9

[PT02] PANTAZOPOULOS I., TZAFESTAS S.: Occlusion culling

algorithms: A comprehensive survey. Journal of Intelligent and

Robotic Systems (2002), 123–156. 1

[Pu98] PU F.-T.: Data structures for global illumination compu-

tation and visibility queries in 3-space. PhD thesis, University of

Maryland, 1998. 3

[Tel92] TELLER S.: Computing the antipenumbra of an area light

source. In Proc. of the Symp. on Interactive 3D graphics (1992),

pp. 139 – 148. 3

Appendix A: Transforming r ☞ into a point at infinity

Let r ✹✻✺ r ✹0 ✼✾✽ ✽ ✽ ✼ r ✹5 ✿ be a point in ❀ 5 and H a projection hyper-

plane of equation ∑
5
i ❁ 0 aixi ❂ b. The point r ✹ can be seen as a

ray ✺ tr ✹0 ✼✾✽ ✽ ✽ ✼ tr ✹5 ✿ going through the origin in ❃ 6. The projection of

r ✹ onto the hyperplane H is equal to the intersection point of this

ray with H, obtained when t is equal to tint ❂❅❄ b ❆❇✺ ∑5
i ❁ 0 air ✹i ✿ . We

are free to choose the projection hyperplane. In order to project r ✹
to a point at infinity, we take the projection hyperplane of equa-

tion H ❈❊❉ πr

3x0 ❋ πr

4x1 ❋ πr

5x2 ❋ πr

0x3 ❋ πr

1x4 ❋ πr

2x5 ❂ 1. Since

r is a real line, r ✹ belongs to the Plücker quadric, and we have

∑5
i ❁ 0 air ✹i ❂ Hr ✺ r ✹ ✿ ❂ 0 (by equation (3)): with this projection hy-

perplane, r ✹ is effectively projected to a point at infinity. A similar

projection was also used in [Nir03], but the scene had to be rotated

for each query to ensure that the line r was included in the plane

yz ❂ 0; our choice of projection hyperplane avoid this rotation step.

c
✁

The Eurographics Association 2005.

