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A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder 
is constructed. The investigation of the wake solutions for a variety of basic modes, Hilbert 
spaces, and expansion modes reveals general mathematical and physical aspects which may 

strongly effect the success of low-dimensional simulations. Besides the cylinder wake, detailed 
information about the construction of similar low-dimensional Galerkin methods for the sphere 
wake, the boundary-layer, the flow in a channel or pipe, the Taylor-Couette problem, and a 
variety of other flows is given. 

I. INTRODUCTION 

During the last decade, low-dimensional computa- 
tional techniques for flow simulations have been an active 
field of research. These techniques are typically based on 
traditional Gale&in methods’ with of the order of 100 
global modes. These methods are ideally suited for gaining 
physical insight into the temporal dynamics and the mo- 
tion of coherent structures,273 for understanding the energy 
exchange mechanisms between small and large scales,” and 
for isolating the physical mechanisms involved in the 
transition5 A low-dimensional flow description may turn 
out to be a necessary prerequisite for global, three- 
dimensional (3-D) stability analyses,6 since eigenproblems 
with of the order of many thousand numerical degrees of 
freedom are both numerically delicate and computationally 
expensive. 

The global modes for the Galerkin methods may be 
derived in a mathematical, physical, or empirical manner. 
Mathematical modes typically arise from completeness 
considerations of function sets in a suitable separable 
Hilbert space (e.g., Lorenz’s7 treatment of the Rayleigh- 
Benard problem). PhysicaZ modes (e.g., Stokes or singular 
Stokes modes*) are generally chosen as eigenfunctions of 
related stability problems. Empirical modes require addi- 
tional detailed experimental or numerical knowledge about 
the solution of the Navier-Stokes equation. The most 
prominent example of an empirical Galerkin method is the 
proper-orthogonal-decomposition (POD) technique.’ 

The present paper presents a mathematical Galerkin 
method which exploits and generalizes Zebib’s” carrier- 

field ansatz for an incompressible velocity field. In Sec. II, 
this Galerkin method is constructed for the 3-D cylinder 
wake. It should be noted that this flow is one of the com- 
putationally most challenging flows with simple boundary 
conditions-because of the spatial inhomogeneity of the 
velocity field. The velocity field at moderate and large Rey- 
nolds numbers may roughly be decomposed in potential 
and boundary-layer flow besides a near-wake region which 
is dominated by nonlinear processes and a far-wake region 
which is governed by linear convection and dissipation 
mechanisms. All these different regions result from differ- 
ent physical processes which must be resolved by the 

Galerkin method and cannot be presupposed in the choice 
of the modes. In Sec. III, the properties of the Galerkin 
solutions for the cylinder wake are compared with other 
experimental and numerical investigations. In Sec. IV the 
advantages and disadvantages of the Galerkin method as 
compared to other simulation techniques are outlined. 
Then, general guidelines for successful Gale&in methods 
are developed (Sec. V). In particular, the influence of the 
basic mode, the Hilbert space, the mode properties, and the 
chosen subset of modes are investigated. In Sec. VI, possi- 
ble generalizations of the presented Galerkin method for 
other flows are outlined. 

II. CONSTRUCTION OF THE GALERKIN METHOD 

A Galerkin method (GM) consists of a kinematical 
and dynamical part. In the kinematical part, the Galerkin 
approximation (GA), a finite Fourier expansion of the ve- 
locity field is constructed. This approximation is described 
in Sec. II A. In the dynamical part, the Galerkin projection 
(GP), the Navier-Stokes equation is projected to an evo- 
lution equation for the Fourier coefficients. The derivation 
of this evolution equation and its numerical realization is 
discussed in Sec. II B. 

In the following, all quantities are assumed to be nor- 
malized with the cylinder radius R and the velocity U, . 
The dependent variables are expressed in terms of a cylin- 
drical coordinate system (r&z), where the cylinder is de- 
fined by r= 1 and the oncoming flow is parallel to the 4 =0, 
ray in the r4 plane. The Reynolds number Re is based on 
the cylinder diameter. 

A. Galerkin approximation 

In this section, the solenoidal velocity field u at the 
position x and the time t is expressed as the sum of a basic 
mode u,(x) and a linear combination of a finitely many- 
say N-expansion modes u,(x) with time-dependent Fou- 
rier coefficients ap( t) : 

N 

u(x,t> =uo(x) + C ap(t) 
p=l 

(1) 
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FIG. 1. Basic mode for Re=l (top), Re= 10 (middle), and Re=lOO 
(bottom). In the left column, the streamlines are shown. In the right 
column, the velocity profiles y HU(X,~) and x HU(XJ)) are displayed for 
x=-4, -2, 0, 2, 4, and y= -2, 0, 2, respectively. 

This expression shall satisfy the boundary conditions (BC) 
at the cylinder and at infinity for all choices of the Fourier 
coefficients. 

The basic mode essentially represents the oncoming 
flow. This mode can be taken from the two-dimensional 
(2-D) version of the GM:“712 

uo=vx{Y,~z}, (2) 

where 4 represents the unit vector in z direction and VI, the 
streamfunction Y,=(r-l/r){l-exp[-(r-l)/Sb,]} 

Xsin qS with Sbm = abm/ 6. The requirement that the 

maximal slope of the boundary-layer profde’1”2 is l/ ,/6 
yields for the proportionality constant abm=4. This basic 
mode behaves like a boundary layer at the cylinder, ap- 
proaches the potential solution at infinity, and is diver- 
gence free. Figure 1 shows this mode for three Reynolds 
numbers. 

The difference u’ = u-u0 may be considered as a per- 
turbation due to the cylinder and is expressed by two gen- 
eraZized streamfunctions \I, cl1 and Yc2): 

1 ayuc’) ij2yC2) ayil) 1 a’y’2’ 
a. = -- 

i 

- 
r 3 + &-az er+ ) i 

-dr+-- 
r a#az 1 

6, 

-A2,YC2’C3 z> (3) 

where AaD = a202 + ( l/r) (a/&) + ( l/g) ( d2/&jS2) is the 
2-D Laplace operator. For 2-D flow, Y(‘) vanishes identi- 
cally and Y(l) represents the conventional streamfunction. 
For the 3-D flow, this expression is a general ansatz for an 
incompressible velocity field and has been suggested by 
Zebib.” The no-slip condition at the cylinder is enforced 
by requiring 

yycl~=-- ym-y’2’=L yY(Z)= d2 d 

dr dr 
z Y’2’=o (4) 

at r= 1. At infinity, the perturbation u’ vanishes. This con- 
dition can be achieved by 

Y”‘,Y’2’-+0 for r-9 CO. (5) 

This limit is to be carried out on any ray #=const#O. The 
asymptotic behavior of the generalized functions at infinity 
and its implication for the GM are discussed in the Ap- 
pendix. In addition, we assume an L periodicity in span- 
wise direction 

Y(l)(r$z)=YC1)(rf$z+L), > , 3 , 

Y(2)(rqSz)=Yv(2)(rf$z+L) 
(6) 

t 9 , 9 9 

as in other recent 3-D cylinder wake simulations.‘3Z14 Then, 
the domain of the dependent variables can be restricted to 

~=[(G#G): r>l,IzI<L/2]. 

It should be noted that Y H (K= 1,2) are not elements 
of the space of square-integrable functions on C$ y2(n), 
as shown in the Appendix. Yet, these generalized stream- 
functions can be embedded in the weighted space -S!‘;(Q) 
with the weight u=rma where (II > 0 is a so far undeter- 
mined exponent. The inner product of f, gEy;(fi) is 
defined by the volume integral over 0 

(f,g)n=i Jfi dvr-“.fg 

where the factor l/L has been introduced for mathemati- 
cal convenience. 

The right choice of Q( is crucial for the success for the 
GM. If the Hilbert-space parameter cx is too large, the 
weight vanishes too quickly in the wake region and the 
GM only resolves the boundary-layer physics. If, on the 
other hand, cy is too small, the generalized streamfunctions 
for the asymptotic wake solutions are not an element of 
.3$.(n) anymore, since their norms diverge. In the present 
GM, we take the borderline parameter 

a=3/2. (8) 

This value is derived in the Appendix. 
The BC at the cylinder defines two subspaces of 

Yi(rlz) for YcK’, K= 1,2: 

Fil)= YE.Y~(fl): Y=$Y=O for r=l , 
I I 

2 
sP(2)= 

I 
YEAf;(R): Y=-gY= $*=O for r=l . 

I 

The form of the inner product (7) and the boundary con- 
dition (4) suggests to express the expansion mode Y&L of 
PCK) as the product of a radial mode RjK) (r), an azi- 
muthal mode @j(4), and a spanwise mode Z,(z): 
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‘U&$,(&z) =R~qr)~j(~)Zk(Z). (9) 

The radial modes must depend on K, since the boundary 
condition explicitly depends on K, too. 

The modes {Y[~~}ijk can be constructed to be a com- 
plete, countable orthonormal system (CCONS) of ZcK) 
by requiring similar properties of the radial, azimuthal, 
and spanwise modes in the corresponding one-dimensional 
(1-D) function spaces. The radial modes {RjK)} are thus 
supposed to be a CCONS of the space 

.c’A’“‘= REA?$J [ 1,co)): R(r) 
I 

=$R(+... 

=-$R(r)=O for r=l 
I 

with the weight a.% =Y’--~ and the inner product 
(f,g)*= J ;” dr u9fg for f,geS(“‘. Analogously, the set 
of azimuthal modes {+j} is required to be a CCONS of the 
space Cp of 2r-periodic functions with the inner product 
(f,g)@=JE&j fg for f,gE@. Similarly, {Z,} is chosen 
to be a CCONS in the space of L-periodic functions 9, the 
inner product for f ,gEZ? being defined by 

(f,g)s=m/L)S- ‘$f dz fg. Then, the expansion modes 
in Z@) are also complete and satisfy the orthonormality 
relationship 

with the Kronecker symbol S,,= 1 for ,U=Y and SPY=0 
otherwise. 

The radial modes can be constructed from the CCONS 
of 3’ ( [0, CO )). This basis consists of Laguerre functions 
Sj(X) = Li(X>C X’2, where Li is a Laguerre polynomial of 
degree i and i=O,1,2 ,... . Since the interval is infinite, the 

scaled Laguerre functions Si(x) = ( l/ $)Si(x/S) (6 > 0) 
also represent a CCONS. This freedom will turn out to be 
crucial for the success of the GM. Multiplying the scaled 

Laguerre functions with l/ & and shifting the origin by 
one unit, we obtain the scaled modified Laguerre functions 

Ri = l/fir (a-‘)‘zLi[(r - l)/S]exp[(r - 1)/2S], which 
represent the CCONS of Y’,,( [l,~ )). A basis of .%‘I0 

with its BC at r= 1 can be obtained from linear combina- 
tions of Ri. For an optimal resolution of the boundary 
layer and near wake, we introduce two scales ScK), one for 
each radial Hilbert space. The resulting radial modes are 

(10) 

where P!“’ represents a polynomial of ith degree. The 
S(K)-indebendent coefficients of PI!“’ are determined from a 
successive Gram-Schmidt orthonormalization of RF’, 
R!“‘, IiF’ * * . with respect to the inner product (,)a. 
Figure 2 displays the radial modes for SK) = 1. Although 

The proportionality constants a(‘) are chosen in order 
to guarantee a minimal boundary-layer resolution due to 
the radial mode with the largest order i. In the present 
paper, this order is IcK) =6 for K= 1,2. First, we determine 
a(‘). The arc from the stagnation point += 180” and the 
“top” #=9V has the length 77-/2. (Remember that all 
quantities are assumed to be normalized with the cylinder 
radius R and the velocity at infinity U, .) The potential 
flow assumes a velocity of 2 at the top. The displacement 
thickness at the end of a plate with the same length 7r/2 in 
a flow with the velocity 2 is, according to Blasius, given by 

St = 1.72 dz. In this expression, the fact that the Rey- 
nolds number is based on D=2R and not R as a reference 
scale has been taken into account. On the other hand, Eq. 
(3) yields for the tangential velocity profile due to 

T(‘):zQ= - (d/dr)@“. The first zero ril) of (d/dr)R$/) is 
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FIG. 2. The 
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first radial modes for a=3/2 and @‘I= 1. The upper 
(lower) figure illustrates @I-) for i=O,1,...,6 from top to bottom and K= 1 
(~=2). The distance between two horizontal lines corresponds to an 
ordinate difference of 0.5, i.e., the extrema of all radial modes are in the 
range (-0.3,+0.3). 

the oscillatory behavior of these modes seems to be ideal 
for the description of the von K&-man vortex street, the 
boundary-layer resolution of the first modes is far too 
coarse, This deficit can be eliminated by suitable choices of 
the scales 6’“‘. A large S (‘) - 1 implies a good resolution of 
the wake flow but a negligible resolution of the boundary 
1ayer:In contrast, a too small S’“’ yields a good approxi- 
mation for boundary-layer structures but then the radial 
modes cover only a small portion of the wake. A good 
compromise for large Reynolds numbers seems to be a 

boundary-layer scaled parameter SC”) = a(“)/& with a 
suitable proportionality constant &). For low Reynolds 
numbers, a minimal radial resolution may be guaranteed 
by removing the singularity at Re=O with a hyperbolic 
tangent: 

@=tanh(a(“)/ a). (11) 

For large Re, this expression is still proportional to Re- 1’2, 
whiles for Re-+O we obtain S’“’ -+ 1. 
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expressed by r\“- 1=0.8796’*‘. Equating this boundary- 
layer resolution of the expansion mode with the estimate 
for the boundary-layer thickness, i.e., setting ril) - 1 =St , 

yields 0.8798”’ = 1.72 &?%?e. Hence, the proportionality 

coefficient in S”’ = a”)/ & is given by a”‘=2.45. With 
this value, a (hypothetical) boundary-layer profile with an 
extremum half-way between the cylinder and St can still be 
approximated by the modes. Thus the inflectional 
boundary-layer profile r+u+( r,c$) near the separation 
point with an extremum roughly at r- 1 =Si can still be 
approximately described by the GA. This profile may be 
considered as the superposition of a linear combination of 
radial modes which describe the velocity extremum near 
r-1=-6* and a contribution of the highest-order radial 
mode with an extremum halfway between r= 1 and 
r= 1 +Si in the reverse direction and a zero near r= 1 +Sr . 
With this superposition the (lV&>u+(r= 1,4> =0 property 
of the inflectional profile can be assured without signifi- 
cantly changing the position of the velocity overshoot near 
r=l+Sr. 

Similarly, a (‘) is determined. For 2-D flows, q2 ~0 and 
the choice for ac2) is immaterial. Hence, ac2) can be con- 
sidered as a measure for the resolution of 3-D structures in 
the boundary layer. Since 3-D boundary-layer structures 
typically extend also in the potential flow, we require only 

that the 99% thickness S9946 = 5.1 ,/z of the “equiva- 
lent plate” can be resolved. On the other hand, the ~4 

component of a \I/$~J~ 
‘t 

mode coincides with the tist zero 

ri2) - I= 1.73SC2) of R &, according to Eqs. (3) and (9). 

Equating the boundary-layer estimate, Ss9% with the max- 
imal resolution of the leading expansion modes 1.73S’2’ 
yields ac2) -2.95. Summarizing, we obtain 

JK) = I 
2.45 for K=l, 

2.95 for K=2. 
(12) 

With the above parameters the best agreement between the 
Gale&in solutions (GS) and experiments is obtained as 
compared to significantly smaller or larger values. Yet, 
there is some arbitrariness in the estimate for the 
boundary-layer thickness and in the choice of the resolu- 
tion quantity. Hence, the derivation of (12) may also be 
considered as an a posteriori explanation for the optimal 
parameters. Equations ( lo)-( 12) completely define the 
CCONS in the radial Hilbert space. 

The canonical choice for the azimuthal modes is given 

by 
, 

+sin(jf$) for j>O, 

Qjt$)='& for j=O, 

,-i 
cos(j~$> for i<O. 

(13) 

The choice of trigonometric functions as azimuthal 
modes is mathematically reasonable and used in many 
spectral 2-D cylinder-wake simulations. (See, for instance, 
Patell or Zebib.“) For small Reynolds numbers with 

nearly symmetrical Stokes-like solutions, this choice is also 
physically reasonable. For large Reynolds numbers, how- 
ever, the azimuthal resolution is needed more urgently in 
the wake and not in the potential flow in the front of the 
cylinder. In contrast, the mathematical resolution is uni- 
form in all directions. For optimal resolution of the flow 
per azimuthal mode we introduce “distorted azimuthal 
modes” with an increased resolution near $=O, i.e., in the 
wake, and a decreased resolution near 4 = 180” in the front: 

[(l+rcos~)/J;;]sin[jh(~)] for j>O, 

@j(4)= [(l+~COS#)/J2?r] for j=O, 

i [(l+ycos~)/~lcos[jh(~)] for j<O, 
(14) 

with the azimuthal coordinate transformation 

h(~)=~+ysin~(l+cos~). (15) 

For y=O, Eqs. ( 13) and ( 14) are equivalent. For y > 0, the 
new azimuthal modes have a larger amplitude in the wake 
and the zeros near $=O are close together. The parameter 
y should be Reynolds-number dependent. A suitable 
choice is ycz tanh(Re/lOO). For small Re( 100, the origi- 
nal uniform azimuthal resolution is restored, while for 
large Re> 100, a Reynolds-number independent resolution 
in the wake region is obtained. The proportionality con- 
stant is chosen to be the relative deficit (1(1)-5(1))/1(1) of 
the largest azimuthal order .#I’ versus the radial order I”’ 
for the @*) modes. Then 

Y= (16) 

Figure 3 illustrates the new azimuthal modes for three 
Reynolds numbers. This new set of azimuthal modes is 
only orthonormal and complete for I”’ =#‘), i.e., yr0. 
For I”)=#=$‘) this set is not orthonormal and the com- 
pleteness cannot be guaranteed too. Yet, orthonormality 
may be restored by applying the Gram-Schmidt proce- 
dure. Since this has no effect to all physical observables 
predicted with the GM we shall not pause to do so. The 
possible loss of completeness of the expansion modes is 
expected to be crucial only for pathological 2r-periodic 
functions. For the wake flow, it is natural to assume that 
also the distorted trigonometric functions arbitrarily ex- 
actly describe the cylinder flow with sufficiently many 
modes. The fact that the completeness of the new azi- 
muthal modes cannot be guaranteed for all square- 
integrable 2r-periodic functions is sweetened by the obser- 
vation that the introduction of the new azimuthal modes 
approximately halves the number of necessary modes for a 
given accuracy. For a practically oriented mind this is a 
good treat. Yet, it should noted that a guaranteed complete 
system of modes can be restored with a balanced radial and 
azimuthal resolution, i.e., 1”’ =/ ‘I, although the resulting 
Galerkin method is less efficient (see Sets. III and IV A). 

The spanwise modes are defined by 
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FIG. 4. Streamlines of the first 2-D expansion modes u# for 1”‘=6, 
5”)=4, and Re=O. 

-rr 0 v IT 

FIG. 3. The first azimuthal modes for I (‘) = 6 5(‘) =4. The figures illus- , 
trates Qj, j=-4,-3,...,3,4 for Re=O (top), Re=lOO (middle), and 
Re=200 (bottom). 

the modes can be seen to “shrink” towards the cylinder 
and to “move” in the wake region. An example of a 3-D 
mode with K= 1 is illustrated in Fig. 7. For all these modes, 
the spanwise velocity component w vanishes identically, as 
can already be inferred from Eq. (3). In contrast, modes 
with ~=2 (see Fig. 8) typically generate fluid motion in 
spanwise direction. 

l/fisin(2rkz/L) for k>O, 

Z,(Z) = l/G for k=O, 

1 l/&cos(2~kz/L) for k<O. 

(17) 

Finally, a finite subset of modes is determined. For this 
subset, we limit the indices i, j, k for the modes RI”‘, Qj, 
and Z, by non-negative, K-dependent integral numbers 
JCK), #K), K@). The radial, azimuthal, and spanwise index 
subsets for i, j, and k are expressed by 

It should be noted that the factor l/L in Eq. (7) leads to 
L-independent scaling factors of the spanwise modes. In 
particular, the Z. mode neither depends on z nor on L. 
This implies that the Fourier coefficients of the 2-D wake 
are also solutions of the 3-D GM for all spanwise periods 
L. 

NK) = {O,...,P}, 

j = -2 j z -1 j= 0 j = +l j=+2 

The scalar expansion mode defined by Eq. (9) corre- 
sponds to a 3-D velocity field 

i=O 

u$J = (VX)yw;;$J. 

Therefore, the velocity can be approximated by 

(18) 
i-1 

u(x,t) =u()(x) + i c afjp@$,,(X), (19) 
K=I ijk i=P 

where ~$2 are time-dependent Fourier coefficients. Identi- 
fying a finite set of N quadruples (K,i,j,k) with single in- 
dicesp, Eqs. ( 1) and (19) are seen to be equivalent. In the 
following, the properties of the velocity modes u$ are 
discussed and a selection of finitely many modes from an 
infinite set is proposed. 

i=3 

The 2-D flows, including the steady flow and the lam- 
inar von K&man vortex street, are spanned by I@. Fig- 
ures 4-6 display these 2-D modes for Re= 0, Re= 100, and 
Re= 200, respectively. With increasing Reynolds number 

i=4 

FIG. 5. Same as Fig. 4, but for Re= 100. 
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FIG. 6. Same as Fig. 4, but for Re=200. 

f-+=&P) ,..., 0 ,...) J(K)), 

and 

G?i+) ={ -Ii?‘,..., 0 )..., A?“)} 9 

respectively. For later reference, we define a subset of 
x-‘“’ 

*sp+)= 

I 
{ -jp) ,...,O} for K=l, 

Cl,..., K+‘) for K=2. 

z=o x=0 

FIG. 7. Velocity field of ui,:‘.-, with the parameters of Fig. 4 and L=2a. 
In the four pictures, the velocity fields in the planes z=O (top, left), 
P= L/4 (bottom, left), x=0 (top, right), and y=O (bottom, right) are 
illustrated. The arrows indicate the direction and magnitude of the veloc- 
ity component in the considered plane. The diameters of the circles are 
proportional to the velocity component normal to this plane; the symbols 
are solid for positive and open for negative values. In the planes z=O, 
z= L/4, and y=O, the normal velocity component vanishes identically. 
The tangential component is zero in the planes z= L/4 and x=0. 

Phys. Fluids, Vol. 6, No. 1, January 1994 

z=o x=0 
.. t,,,L., 
I 
. I 

: : : yy--J-y-y-/q 

FIG. 8. Same as Fig. 7, but for L@),J. 

The product ansatz (9) for the modes suggests to define 
the the product index set flz=s(l) X,/(i) for the 2-D 
flow and xp) =YCKJ x/(~) x.~‘Y(~) for the 3-D case. In 
addition, we define *fly+) =sCK) x/‘~’ X3?+). With 
this notation, the indices i,j, k in Eq. ( 19) are summed over 
one of the above index sets. For simplicity, we set 
1(‘)=1’2)=~, #1)=/2)z J, j@1)=&2)=K, since there is 

no reason to maintain the K dependency for the maximal 
radial, azimuthal, and spanwise index order. The “(K)” 

superscript of the index sets can then be dropped. We are 
now enabled to define three finite-dimensional Hilbert 
spaces for the perturbation u’, which are spanned by ~$2. 
These spaces are rr,J for 2-D simulations, %‘r,J,K for gen- 
eral 3-D simulations, and R$,$& a subspace of GY1,J,K 
[which is invariant under the autonomous system (AS) 
(24) for K- l] for 3-D stability analyses: 

P1,J= span{u$J : (i, j) EX2}, 

~l,J,K=span{uj,,$ :(K,i,j,k) l {1,2)XJs}, 

zjfk=span{u!$ ‘(K,i,j,k) ~{1,2}Xfly+)). 3 9 ‘J ’ 

The basis modes u$ selected for each of these finite- 
dimensional Hilbert spaces are illustrated in Fig. 9. 

B. Galerkin projection 

In this section, an evolution equation for the Fourier 
coefficients in Eq. (1) is computed. This equation can be 
expressed as an autonomous system of ordinary differential 
equations, i.e., in the form 

d 
~tup=fp(al ,..., uN) for p= l,..., fV, (20) 

where the functions fP have to be derived from the Navier- 
Stokes equation. 

We follow the guidelines given by Zebib.” In Sec. II A, 
the 3-D velocity field was expressed in terms of three func- 
tions \v,, \I/“‘, qC2). While Y, can be considered as a fixed 
point, only YCK) (K= 1,2) are free and time-dependent 
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FIG. 9. Selected basis modes for the finite-dimensional Hilbert spaces. In 
the present example, the maximal radial, azimuthal, and spanwise orders 
are 1=4, J=2, and K= 1. Each of the 150 squares in the tableau corre- 
sponds to one mode u$ where the index (~,iJ,k) can be inferred from 
the corresponding row and column. The Re 2 i space is spanned by all of 
the displayed modes. The basis modes of %$,‘1 are denoted by open or 
solid circles. The solid circles represent 2-D modes, which span the 
P4s2 space. 

functions. Zebib expresses the incompressible Navier- 
Stokes equation as two coupled partial differential equa- 
tions (PDE) for YcK) (K= 1,2). (More precisely, Zebib 
derived two equations for Y =Y,+Y(‘) and <p=Yc2). He 
did not decompose Y in a basic mode and a perturbation. ) 
For these PDEs, the 2-D and 3-D Laplace operators are 
introduced: Am= a2/#+ ( l/r) (J/Jr) + ( l/g) ( a2/&$2>, 
and A = AzD + #/at. Zebib’s evolution equations resolved 
for the PDE-residua R(i) and R(‘) read 

+i&*vx (UXO), (21) 

+p(yV(') ye,) , 

=$ AA2r,Y’2’--$ A2A,DY(2)+Q (VX)‘(uXw). 

(22) 

In this context, the velocity u and the vorticity w are to be 
understood as abbreviations for 
+ (vx)2{Y’2’e } 

V X { ( Ye + Y ( ” ) 2,) 

+ ( V X ) 3{Y (2)61], 
and mx)2{(Yv,+Y’“Ez,) 

respectively. 
With Zebib’s evolution equations, the GP is a straight- 

forward problem. First, YcK’ (K= 1,2) are replaced by the 
finite expansions a$JY&. 

I/ 
In this and all following expres- 

sions, the Einstein sum convention is employed, i.e., two 
subscripts with the same index mean a summation over 

this index. In contrast, two superscripts (here: K) do not 
imply a summation. Projecting the resulting Eqs. (2 1) and 
(22) on the expansion modes Y#i and Y$, respectively, 
yields 

[yj;i,,R(K)(a(‘)y(‘) a(2)\V(2))]n=0. lmn lnm~ pqs pqs (23) 

In this system of equations, the volume integrals, specified 
by the inner product (7), are decomposed as linear com- 
binations of products with three single integrals over r, 4, 
and z. These single integrals are computed numerically. 
Extracting the time derivatives of the Fourier coefficients 
a$ and identifying quadruple indices (ic,i,j,k) with single 
indices p~{l,...,N) yields an evolution equation of the 
form (20): 

~ap=cp+&p9+qpq~ps. (24) 

The coefficients for the constant, the linear and the qua- 
dratic term, cp , Ip4, and sp,,, respectively, represent volume 
integrals, which are independent of the Fourier coefficients. 

Equation (24) is solved numerically using a predictor- 
corrector method recommended by Acton.16 Clearly, the 
storage requirement and the computational efficiency of 
the GM is determined by the quadratic term in Eq. (24). 
The memory and computation time for this term can be 
decreased by a factor of approximately f by introducing 

qPqs= 

i 

qbqs+ qpsq for q <s, 

qpps for q=s7 

0 for q>s, 

and replacing qPqgzg, by the equivalent expression &+aS, 
where the summation is carried out only for q<s. In addi- 
tion, the symmetry properties of the azimuthal and span- 
wise modes. lead to many vanishing contributions to c&. 
For the ix”ii{ GM with N= 189 modes, only some 5% of . , 
the quadratic coefficients are nonvanishing. This fraction 
depends in a complicated manner on the index bounds I, J, 
K but tends to decrease with increasing AT. Our present 
FORTRAN code exploits this “lacunary” with the sparse- 
matrix coding for all NXN matrices (qPqJqs (for details 
see Noack17). Hence, the computation time of the GM 
increases less than with 0(N3). 

III. VALIDATION OF THE GALERKIN METHOD 

In this section the validity of the Galerkin method 
(GM) is investigated. For this purpose the properties of 
the numerically computed flows are compared with pub- 
lished results. In particular, the steady flow (Sec. III A), 
its stability (Sec. III B), the 2-D periodic flow (Sec. 
III C), its stability (Sec. III D), and the asymptotically 
3-D flow (Sec. III E) with its chaos-theoretical character- 
ization (Sec. III F) are considered. If not otherwise stated 
the obtained results are based on the Fe,4 Galerkin ap- 
proximation (GA) for 2-D and the R&z,] GA for 3-D 
simulations. 
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FIG. 10. Streamlines of the steady flow for Re= 1. The flow is computed 
with a SY&, GM. 

A. Steady solution 

Figure 10 shows the creeping flow for Re= 1. The ve- 
locity field is symmetric with respect to the x axis but 
slightly asymmetric with respect to the y axis-in contrast 
to the basic mode (Fig. 1) . This asymmetry increases with 
Re. At the Reynolds number of Re,=5 the single separa- 
tion point of the Galerkin solution (GS) bifurcates into a 
pair of symmetrical separation points and gives rise to a 
vortex pair (see Fig. 11) . The value Re,= 5 coincides with 
the values given by other authors.18 The length Zvp of the 
vortex pair, i.e., the distance from the saddle point to the 
rear point of the cylinder, increases nearly linearly with the 
Reynolds number. For Re=40 (see Fig. 12), the vortex 
length is 1.91 cylinder diameters which is in reasonably 
good agreement with the theoretical values of 2.24 by 
Fornbergtg and 2.215 by Strykowski and Hannemann.“’ 

All considered GAS exhibit qualitatively the same be- 
havior. The “birth” of the vortex pair is predicted for 
Re,=5 f 1; even the Z’2,2 GM with only six symmetrical 
expansion modes yields the correct value of 5 for Re, . The 
computed length of the vortex pair increases with the Rey- 
nolds number for all GMs (see Fig. 13). With increasing 
number of modes the predicted value of Iup converges to the 
literature value of 2.2 at Re=40. For significantly larger 
Reynolds numbers the vortex lengths of the x+4, z&,j, 
and Z8,, GMs are nearly constant. This saturation may be 
attributed to the llnite azimuthal and radial resolution. If 
the GA expansions were somehow forced to describe a 
larger vortex pair, for instance by introducing a wake- 
centered weight function, this would probably lead to an 
unrealistic oncoming velocity field in the front. On the 
other hand, the Fe,4 and zg,6 GAS can describe larger 

FIG. 11. Same as Fig. 10, but for Re=5 (left), Re=6 (middle) 
Re=7 (right). 

FIG. 12. Same as Fig. 10, but for Re=40. 

vortex pairs without significantly disturbing the oncoming 
flow because of the wake-centered azimuthal modes. Un- 
fortunately there exist no experimental investigations 
about the unstable vortex pair at moderate Reynolds num- 
bers and only little published numerical results, with which 
the present data can be compared. 

B. Onset of periodicity 

The steady solution becomes eventually unstable with 
increasing Reynolds number. The GM predicts a Hopf bi- 
furcation with an isolated pair of eigenvalues.” This was 
anticipated by Sreenivasan, Strykowski, and Olinger21 and 
can also be expected from theoretical considerations. l1 The 
corresponding critical Reynolds and Strouhal numbers are 
Re,,it=53.3 and StCti,=O. 148. The critical Reynolds num- 
ber exceeds Williamson’s22 experimentally and Jackson’s23 
numerically obtained values of 47.8 and 45.4, respectively. 
The computed critical Strouhal number also exceeds Pro- 
vansal, Mathis, and Boyer’s24 experimental value of 0.12 
and Jackson’s23 result St,,,=O. 136. The reason for this de- 
viation is outlined in the following section. As expected, 
the discrepancy is reduced by increasing number of modes. 
With the jyJ6,4 GM the experimentally obtained Landau 
mode12* for the supercritical Hopf bifurcation and its co- 
efficients is reasonably well reproduced. l2 

0 
0 20 40 60 Re 100 

FIG. 13. Length of the vortex pair in terms of the Reynolds number for 

various Gale&in methods: open circles, ST+, GM with a(‘) = p (see 
Noack and Rckelmann”); solid circles, X,,a GM; open squares, PC+ 
GM; solid squares, P8,g GM, open triangles, Ps,s GM. 
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FIG. 14. Same as Fig. 10, 
Re= 100. 

C. Periodic solution 

but for an instant of the periodic flow for 

Figure 14 shows the periodic GS for Re= 100. The 
streamlines look similar to those of other simulations.” 
Yet, the theoretical Strouhal numbers (see solid circles in 
Fig. 15) significantly exceed the values obtained by 
Roshko’s25 formula St = 0.2 12 ( 1 - 2 1.2/Re), particularly 
for large Reynolds numbers. This seems to be related with 
an insufficient far-wake resolution. The far wake can be 
considered as an “additional inertia” which slows down 
the “near-wake engine.” The Z,++ GM does not resolve 
this inertia-effect properly, which explains why the theo- 
retical Strouhal values are too large and not too small. By 
increasing the far-wake resolution of the GA, the deviation 
between experimental and theoretical frequencies can be 
significantly decreased. The Strouhal values of the Zs,6 
GS (solid squares in Fig. 15) lie’ much closer to the 
Roshko curve. “Stretching” the radial modes a bit further 
into the wake at the expense of the boundary-layer 
resolution11*12 yields an even better agreement (stars in 
Fig. 15). The Xti,6 GS (open squares) is less realistic than 
the Z6,4 GS with less modes-probably for the reason 
mentioned in Sec. III A. The Strouhal frequencies of the 45 
dimensional Xa,4 GS (open circles) are obviously much 
too large. 

0.0 -- 
50 100 Re 200 

FIG. 15. Experimental and theoretical Strouhal-Reynolds-number rela- 
tionship. The solid-curve is the graph of Roshko’s formula.*5 The symbols 

FIG. 17. Stability diagram for the onset of three-dimensionality. On each 

refer to numerical values obtained with various Galerkin methods: open 
curve the spectral radius Ip,(Re,k,) 1 of the Floquet spectrum is a mul- 

circles, X.,.4 GM with a(‘) = p (see Noack and Eckelmann”), solid 
tiple of 0.1. The thick line represents the neutral stability curve 

circles, ZC,,4 GM; open squares, X6,<, GM; solid squares, Zs,6 GM 
Ipi (Re,kJ I= 1. The values of the spectral radius increase with Re for a11 
considered tixed k,. For the contour plot 35 Floquet analyses for Re 

(y-0); stars, LVs,s GM (y=-0 and a (‘I = JI’9 i.e., a further increased = 150, 175 ,..., 250 and k,= 1.0, 1.25 ,..., 2.5 have been carried out with the 
wake resolution). LPi,i,i GM. For details see Refs. 6, 17, and 27. 

1 - 

Pi 

O- 

-1 - 

FIG. 16. Floquet spectrum for the critical point ReCnt,z= 170 and kz,,nt 
= 1.75. Each square represents one (possibly complex) Rloquet multipher 
/.L=/J~+~~Q; a solid (open) symbol is associated with a 2-D (3-D) Flo- 
quet mode. For the numerical computation the A?&,$,{ GM is chosen. For 
details see Refs. 6, 17, and 27. 

D. Onset of three-dimensionality 

The 2-D periodic flow becomes also eventually unsta- 
ble with increasing Reynolds number. Experimental26 and 
theoreticall investigations yield a 3-D instability which 
introduces a spanwise waviness. With the GM the first 
global stability analysis of this instability could be carried 
out.27 The critical Reynolds number and the critical span- 
wise wave number is computed to be ReC,it,2= 170 and 
kz,iz,crit = 1.75, respectively. At this critical point a positive 
Floquet multiplier, associated with a 3-D mode, leaves the 
unit circle (see Fig. 16) with increasing Reynolds number. 
The structure of the corresponding eigenmode indicates 
that the onset of three-dimensionality is caused by a near- 
wake instability (see Ref. 27). The critical Reynolds num- 
ber deviates less than 5% from Williamson’s26 value of 
178. Also, the critical spanwise wavelength of 1.8 diam is 
in good agreement with the experimentally obtained 1.7 
diam by Noack, Kiinig, and Eckelmann.” 

Figure 17 displays the stability diagram for the 2-D 
periodic solution. This stability diagram summarizes 35 
Floquet analyses. The critical point (Recrit,2,&crit) is the 
vertex of the parabola-shaped, thick neutral curve in Fig. 
17. For k#kz,crit the onset of three-dimensionality can be 
seen to occur at a higher Reynolds number. For k,=2, the 

2.5 

kz 
2.0 

200 Re 250 
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FIG. 18. Turbulent solution for Re=200, obtained with the S?‘$,$,] GM. 
The upper and lower rows display the instantaneous velocity field in the 
z=O and z=L/4 plane. The curves in the left pictures are parallel to the 
x and y components of the velocity. The circles in the flow field are 
proportional to the spanwise velocity component; solid symbols denote 
positive, open ones negative spanwise components. 

spanwise wave number used predominantly in the simula- 
tions of Karniadakis, Triantafyllou, and Tomboulides,‘3114 
the critical Reynolds number is approximately 205 in good 
agreement with their value range 200-210 stated in Ref. 
15. 

There seems little doubt that the Gale&in model can 
describe the onset of three dimensionality. The relative de- 
viation of the predicted critical point with experiments is 
even better than the discrepancy in the Strouhal number 
for the 2-D flow. Interestingly, 3-D vortex formationsB’2g 
can also be experimentally observed for Re < Recrit,2. This 
three dimensionality can be explained in the framework of 
the Floquet analysis as an only neutral stability with re- 
spect to long wavelengths in spanwise direction.27 

E. 3-D solution 

After the onset of three dimensionality, a time-periodic 
3-D flow for fixed k,= 1.75 and 170 < Re < 200 is observed. 
Such a flow has also been evidenced at a higher Reynolds 
number interval by Karniadakis and Triantafylloui3 for a 
slightly different spanwise wave number. The Strouhal fre- 
quency StsD of the asymptotic 3-D GS is lower than the 
corresponding frequency St,, of the unstable 2-D periodic 
GS as was to be expected from Williamson’s 
investigation.26 We observe a supercritical transition from 
2-D to 3-D shedding in agreement with the simulations of 
Karniadakis and Triantafyllou. Hence, the GM can de- 
scribe the periodic 3-D flow at least qualitatively correctly 
with only N= 189 modes. For finite-element accuracy of 
about 10% in the Strouhal number, in the velocity fields 
and other observables, a somewhat increased radial, azi- 
muthal, and spanwise resolution is necessary. 

The spatial structure of such a GS for Re-200 can be 
inferred from Fig. 18. The velocity field projected on the 
planes z=const essentially shows periodic vortex shedding 
and is nearly independent of z. The most intense spanwise 
velocity fluctuations are in the near-wake region, in agree- 
ment with the results of the Floquet stability analysis of 
Noack et a1.27 The vanishing spanwise velocity component 
in the z=O plane is due to the symmetry properties of the 
expansion modes I$$ [K= 1,2, (i,j,k) E/F+)] (see Figs. 7 

and 8). The higher dimensional ZG,4,1 GA with N=378 
modes can also describe w fluctuations at any point in the 
flow region. 

The period-doubling phenomenon, discovered numer- 
ically by Karniadakis, Triantafyllou, and Tomboulides,i3*i4 
is first observed in the Fourier spectra of the modes at 
Rez280. For the range 200 < Re < 280, the GM predicts a 
quasiperiodic how with two similar frequencies-in con- 
trast to other numerical simulations13P’4 at a somewhat 
larger wave number. With the presently available com- 
puter power it cannot be determined whether this quasi- 
periodicity is of physical origin, e.g., related to 
WilliamsonP frequency jumps, or results from a trunca- 
tion error of the GM in spanwise direction. Naturally, the 
X6 4 i GM with the lowest possible spanwise resolution of 
K(‘j L=KC2’ = 1 cannot resolve the fine-scale structure on 
the von K&man vortices observed by Williamson26 for Re 
> 260. In particular, no fully developed turbulent wakes 
can be reasonably modeled with of the order of 100 modes. 

F. Dynamics of the nonperiodic, 3-D solution 

For low-dimensional methods, it is generally of interest 
to determine the fraction of kinetic energy resolved by the 
modes, and the energy production and dissipation in terms 
of the dynamics in the mode space. In particular, the en- 
ergy tlux between small and large scales may yield addi- 
tional insights in the dynamics of the flow and in possible 
truncation errors of the GM. 

For the cylinder wake, however, both, the kinetic en- 
ergy associated with the field u and with the perturbation 

u--u,, cum. . velocity of the oncoming flow), is infinite in 
the considered domain fi (see Sec. II A). In addition, the 
structures of the cylinder wake at moderate Reynolds 
numbers are dominated by only one scale, the cylinder 
diameter or, equivalently, the vortex size. 

Nevertheless, some insight in the dynamics can be 
gained by computing the Lyapunov spectra and carrying 
out the Karhunen-Loewe decomposition of the attractor in 
the mode space. The Lyapunov spectrum {r,}~~, is cal- 
culated with a combined Wolf and Jacobi method. Figure 
19(a) displays this spectrum for Re=300 and k,= 1.75. 
The spectrum contains one positive and one vanishing Ly- 
aponov exponent, whereupon the remaining negative expo- 
nents decay linearly with the eigenmode index up to 
12~ 150. This implies that the simulated flow is character- 
ized by a strange attractor. Its correlation dimension can 
be estimated from the Lyapunov spectrum with the 
Kaplan-Yorke conjecture to be 3.41. This value is in good 
agreement with the correlation dimensions around 3.5 of 
constructed attractors from experimental velocity 
fluctuations.30131 This agreement suggests that at least the 
dynamics of the larger wake structures are qualitatively 
described by the GM. The true correlation dimension may 
be much larger taking the small-scale motion into account. 
Without the periodic boundary conditions in spanwise di- 
rections this dimension should even be infinite. 

The strong decay of the Lyapunov exponents for 
y1> 150 corresponds well with Rempfer’s32 observation 
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(a) 

FIG. 19. Lyapunov spectrum {~,}:8=9i (a) and Karhunen-Loewe spec- 
trum {S,}Azt (b) for Re=300 and k,= 1.75. The solid curve in the 6, 
data represents a power-law tit. The numerical computations are carried 
out with the Z$$,i GM. 

that his “turbulent viscosities” for the POD modes in- 
crease with their index. In his publication, this increase 
was attributed to a truncation effect at small scales. 

The Karhunen-Loewe eigenvalues S, can be inter- 
preted as the length of the nth principal axis of a Gaussian 
distribution fitted to the attractor. In case of 1-D motion, 
6i is simply the standard deviation. Mathematically, 6, is 
defined as the square-root of the nth (positive) eigenvalue 
of the correlation matrix. This matrix is computed from a 
sufficiently long trajectory around the mean value. This 
procedure is related to the Karhunen-Loewe procedure for 
the velocity fields with finite kinetic energies [see, for in- 
stance, Sirovich33), but is carried out in the mode space 
with obvious replacements for the correlation matrix “Kij” 
(in Sirovich’s notation) and the formulation of the eigen- 
problem formulation, etc. 

Figure 19(b) displays the lengths S, of the principal 
attractor axes. These lengths decay approximately in pro- 
portion to ne3.14. This strong decay indicates that the post- 
transient motion in the state space is essentially restricted 
to a low-dimensional manifold. Neglecting directions with 
S, < 0.1 8, the dynamics is roughly confined in a six- 
dimensional subspace. This suggests that much more effi- 
cient GMs for the post-transient dynamics can, in princi- 
ple, be constructed and that the present GM contains a 
large class of rapidly decaying transients. If, on the other 
hand, a large fraction of the eigenvalues 6, would be of 
similar size, this may be considered as an indication that 
the mode expansion has not converged and that some basic 
properties of the post-transient flow may not be correctly 
resolved. 

IV. APPLICABILITY OF THE GALERKIN METHOD 

In this section the numerical and physical applicability 
of the Galerkin method (GM) is discussed. First, the con- 
vergence properties of the GM is investigated, including 
the validity of the low-dimensional model for 3-D physical 
processes in the wake region (Sec. IV A). Then the nu- 

TABLE I. Compilation of data for various Galerkin approximations 

(GA). From the Ieft to the right column, the GA, the Reynolds number 

Rqp , at which the separation point bifurcates into a vortex pair, the 
length Z, of the vortex pair at Re=40, the critical Reynolds and Strouhal 
numbers, ReeFit and Stcnt, for the Hopf bifurcation, and the Strouhal 
values St for Re= 100 and Re=200 are displayed, respectively. A “y=O” 
superscript in the GA specification denotes that the azimuthal modes of 
Eq. (13) are chosen. A “-np-” entry at the Strouhal number indicates 
that the solution is not strictly time periodic. A Strouhal number in 
brackets represents St, of the stability analysis for the stable steady solu- 
tion. The bottom row displays the corresponding literature values. 

GA Re, LJD 

F&Z 5 0.46 

..F.%4 5 2.12 
~6,b 5 1.73 
X&t? 4 1.98 
,p,o, 10 5 2.27 

r4.2 3 1.08 
X6.4 5 1.91 

'7Fqg,6 6 2.16 
22,;O 4 1.72 

Lit. 5 2.2 

&tit St& st( 100) st(200) 

. . . . . . (0.303) (0.196) 

. . . . . . -nP- -v- 
57.1 0.165 0.210 0.254 
62.6 0.172 0.219 0.302 
56.8 0.140 0.168 0.252 

42.0 0.211 0.200 0.232 
53.3 0.148 0.211 0.249 

55.7 0.166 0.238 0.294 
52.4 0.133 0.173 0.223 

45.4 0.136 0.167 0.190 

merical efficiency (Sec. IV B) and the relative merits and 
disadvantages with respect to other computational tech- 
niques (Sec. IV C) are addressed. 

A. Convergence and physical structures resolved 

In principle, the GM may be expected to approxi- 
mately describe even the fully developed turbulent wake 
with an arbitrarily large amount of modes. This conver- 
gence property is implicitly assumed in all simulations with 
GMs of which the modes are based mathematical com- 
pleteness considerations. Mathematically, however, this 
convergence is, as to the authors’ knowledge, proven only 
for few 2-D GMs for closed flo~s.~~ In practice the amount 
of modes is restricted to a few hundred on a moderate 
workstation. In the following it will be outlined which 
physical processes can be properly described with a GM 
under this restriction. 

The qualitative features of the 2-D steady and periodic 
flow may be captured with only 25 modes of the Z4>, GA. 
With 63 modes of the Xe,4 GA this 2-D flow may also be 
described with an accuracy of the order of Id%. The Rey- 
nolds number range for which the present method can be 
applied is restricted to 300400. With increasing Reynolds 
numbers the expansion modes shrink towards the cylinder 
and will eventually fail to resolve the wake region. This 
shortcoming may be circumvented by requiring a mini- 
mum value for the scaling parameters &I) and a(*). Yet, no 
attempts have been made to improve the GM for higher 
Reynolds numbers. 

The convergence properties for 2-D flows can be in- 
ferred from Table I. With increasing number of modes the 
numerical data become more realistic. In particular, the 
Strouhal frequencies for moderate Reynolds numbers im- 
prove. Yet for GMs with I (‘) =fi ‘) the convergence seems 
to be slow. Table I suggests that the convergence may be 
accelerated by choosing 1(i) > J”’ for the reasons men- 
tioned in Sets. III A and III C. 
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TABLE II. Efficiency of the Galerkin method for various GAS. From left 

to right, the GA, the number of modes N, the CPU time rcpu for 100 time 
steps on a SUNstation 2 in seconds, and the storage requirement S for 
Galerkin projection, respectively, is specified. This number of iterations 
corresponds approximately to one period of the von Kdrman vortex 
street. Srepresents the amount of REAL*4 numbers for the storage of the 
quadratic term (in thousands). 

GA N G,“(S) s/1000 

.p2,2 

vv4,2 

.34,4 

36,4 

y6,6 

‘.F& 
..P*** 

gp 

.r& 

.~i,tj 

.~i.l.i 

15 0.1 0.4 
25 0.6 4.4 

45 1.3 7.9 

63 9.0 65.3 

91 6.3 49.1 

117 41.0 409.7 

153 19.5 185.9 

231 54.8 531.3 

45 1.3 6.1 
75 7.3 61.9 

135 12.8 118.1 

189 85.6 958.0 

Referring to 3-D flows the #‘,${ GM successfully de- 
scribes the critical parameters of the onset of three- 
dimensionality. Even the only 75(!) dimensional &Z?i,$,{ 
GM yields Re,,it,2= 152.2 and kz,cet = 1.72. These data are 
in fairly good agreement with experiments. Hence, there is 
sufficient reason to believe that the spanwise waviness on 
the von Karman vortices is reasonably described by the 
GM with less than 200 modes. The line-scaled spanwise 
structures in the irregular Reynolds number range (Re 
> 300) can, of course, not be resolved with several hun- 
dred modes. The validity of the low-dimensional 3-D GMs 
ends with the transitional Reynolds number range. 

6. Efficiency 

The efficiency of a computational technique for flow 
simulations is determined by two factors, the storage re- 
quirement and the amount of operations per time step. For 
the GM the storage requirement is essentially determined 
by the coefficients 4ijk for the quadratic term. A naive im- 
plementation of the quadratic term would require N3 
REAL*4 numbers. Since most coefficients vanish this pro- 
cedure would be very inefficient. By applying a simple stor- 
age technique for sparse matrices (see Noack”), the 
amount of coefficients to be stored is given by 

S= max card{$jk: j= l,..., N, Ic- l,..., N, zY&O), 
i= 1,-J 

where the “card” term denotes the number of the nonzero 
elements in the matrix {4ijk)jk. In Table II this storage 
requirement and the CPU time for the numerical integra- 
tion is listed for various 2-D and 3-D GMs. The compu- 
tational load for the 2-D and 3-D simulations of one shed- 
ding period is 9 s and 1.5 min on a SUNstation2, 
respectively, with the standard X6,4 and Zh,$,] GM. This 
is roughly two or three orders of magnitudes faster than 
traditional finite-difference or finite-element methods. 
Spectral-element methods (see, for instance, 
Karniadakis3’) tend to be somewhat faster. For reasons of 

fairness it must be mentioned that grid and spectral- 
element method also compute the far wake, which is not 
resolved by the employed GMs. 

The storage requirement can also be considered as 
small. Even the 3-D Z6,4,1 GM needs only around one 
million of REAL*4 numbers, i.e., only 4 Mbyte RAM, and 
can conveniently be implemented on a modern personal 
computer. 

It should be noticed that the storage requirement S is, 
in our sparse-matrix implementation, the operational count 
for the evaluation of the quadratic term and therefore pro- 
portional to the CPU time per time step. The number S 
depends in complicated manner on the chosen GA. It does 
not necessarily increase with the amount of modes N as 
Table II reveals. As a rule of thumb we get S=0.25N3 for 
ZpiL GMs with K= L, S=0.50N3 for ZYKL GMs with 
K#L, S=0.05N3 for X$&i GMs with K= L, and 
S=0.15N3 for XL-1 GMs with K#L. The coefficients 
tend to decrease with increasing N. 

C. Comparison with other numerical methods 

In this section, the advantages and disadvantages of 
the presented GM is compared with high-dimensional 
grid-based computation techniques, like finite-difference, 
finite-element, and spectral-element methods. 

The GM is an ideal tool for investigations where the 
asymptotical solutions and a sufficiently large class of tran- 
sients need to be described in a comparatively low- 
dimensional state space. These investigation include global 
stability and chaos-theoretical analyses. As to the authors’ 
knowledge our GM for the cylinder wake is presently the 
only available tool for carrying out global 3-D stability 
analyses of the steady flow (see K&rig, Noack, and 
Eckelmann36), global 2-D and 3-D Floquet analysis of the 
periodic cylinder wake (see Noack, K&rig, and 
Eckelmann”), and chaos-theoretical analyses of the non- 
periodic flow, like the determination of Lyapunov spectra, 
Karhunen-Loewe spectra, and estimates for the attractor 
dimension) (see Noack and Eckelmann37). 

In addition the GM is a numerically very efficient 
solver for the 2-D flow and the 3-D near wake in the tran- 
sitional Reynolds number range ( 170 < Re < 300). This ef- 
ficiency makes it an attractive method for parameters stud- 
ies, for instance when a gross overview of some flow 
features for a large number of Reynolds numbers and span- 
wise wave numbers is desired. 

The GM cannot compete with grid-based computa- 
tional techniques for very accurate simulations of the ve- 
locity fields, for the resolution of far-wake properties, and 
for large-Reynolds-number simulations (2D and 3D). On 
the other hand grid-based methods are not well suited for 
global stability or chaos-theoretical analyses. As to the au- 
thors’ knowledge only 2-D stability analysis of the steady 
flow, ‘“*23 yielding only the most critical eigenvalue and its 
eigenmode, have been carried out with grid-based methods. 

Naturally, one can construct a variety of “hybrid” 
methods, where the knowledge of solutions from grid- 
based methods is exploited for the construction of low- 
dimensional models, e.g., POD techniques. This is the pre- 
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TABLE III. Phenomenogram data of Galerkin methods with different TABLE IV. Phenomenogram data of Galerkin methods with different 

basic modes. Hilbert spaces. 

abm Re,d, %it st( 100) st(200) a Rectit Stcrit st( 100) St(200) 

2 53.1 0.145 0.211 0.247 0 44.4 0.173 0.246 0.261 

4 53.3 0.148 0.211 0.249 1.5 53.3 0.148 0.211 0.249 

8 53.5 0.147 0.209 0.248 3 -e- -e- 0.192 0.236 

ferred approach when a given transient or a given post- 
transient flow is to be modeled as accurately and as low 
dimensional as possible. Thus the periodic 2-D cylinder 
wake can be described with only 8 POD modes.38 This 
technique can provide valuable insights in the main phys- 
ical processes of a given flow. Yet, this method is less suit- 
able for stability analyses since the model can, by construc- 
tion, describe only a small class of transients which may 
not contain the most important eigenmodes. 

Summarizing the GM may not be the preferred numer- 
ical method for accurate flow simulations but has a variety 
of applications in which is far superior to other techniques, 
like stability and chaos-theoretical studies. 

V. OTHER GALERKIN VARIANTS 

The GS for the cylinder flow show that a reasonable 
wake simulation can be obtained with a comparatively low- 
dimensional Galerkin method (GM). This GM contains a 
variety of “ingredients”, namely the basic mode, the 
Hilbert space, the azimuthal and radial modes besides the 
set of considered expansion modes. These ingredients may 
be chosen differently than suggested in Sec. II. In Sets. 
V A-V E, their influence on the GS is systematically inves- 
tigated. These investigations elucidate which aspects are 
crucial for the success of the GM and which not. These 
results are expected to be valid for related GMs of other 
flows. Finally (Sec. V F) the possibility of constructing 
GMs on finite domains, which are typically used for the 
grids of finite-difference or finite-element methods, is out- 
lined. 

The discussion is restricted to 2-D flows with the rb,4 
GM as a “reference point.” The quality of the solution is 
judged from some phenomenogram data: the critical Rey- 
nolds number Recrit for the onset of periodicity, the corre- 
sponding critical Strouhal number Stcrit, as determined 
from a global stability analysis, besides the Strouhal fre- 
quencies St( 100) and St( 200) for the Reynolds numbers 
100 and 200, respectively. For reasons of comparison, 
Jackson’s23 critical Reynolds and Strouhal number, 
ReCti,=45.4 and St,,,=O.136, and Roshko’sz5 frequencies 
St( 100) =O. 167 and St(200) =O. 190 are included in some 
comparisons. 

A. Choice of the basic mode 

Table III lists the phenomenogram data for half, the 
original, and twice the scaling parameter ab, [See Eq. (2)] 
for the basic mode. The other parameters are held con- 
stant. The GS is hardly effected by the variation of cbm. 
The expansion modes seem to compensate the variation of 
the basic mode. Yet, a variation of the basic mode may 

significantly affect the GS if the gradients of us are too 
large-say of the order of 10. These sharp gradients cannot 
be compensated by the expansion modes any more. Sum- 
marizing, the success ofthe GM is insensitive to a reasonable 
choice of the basic mode. 

B. Choice of the Hilbert space 

In Table IV, GS data for the Hilbert-space parameters 
o=O, 1.5, and 3 are compiled. For a=O, i.e., for the case 
that the Hilbert space does not contain the asymptotic so- 
lution, the frequencies are significantly too large. In addi- 
tion, the velocity fields have little in common with the 
experimentally observed ones. For Re < 10, the GS ex- 
plodes for almost all initial conditions. 

For 1y=3, i.e., for the case that the GM essentially 
resolves the boundary-layer physics, the GS explodes for 
all moderate Reynolds numbers (denoted by “-I+” in the 
St column of Table IV). Only for larger Re values, phys- 
ically acceptable periodic flows are generated. These solu- 
tions show that the success of a GM for an open flow cru- 
cially depends on a physicaly motivated choice of Hilbert 
space. 

C. Choice of the radial modes 

The resolution scale 6”’ for the radial modes has an 
important impact on the success of the GM. For a Re- 
independent scale b -(l)= 1 the GS explodes for all Re> 10. 
For an increased numbe; of azimuthal and radial modes, 
the explosion occurs even earlier.39 This behavior has two 
reasons. The first reason is of kinematic nature. For suffi- 
ciently large Reynolds numbers, the boundary layer cannot 
be adequately resolved by the expansion modes any more. 
The second reason is related to the dynamics. For Re- 
independent modes, the magnitude of the Galerkin- 
projected dissipation term decreases in proportion to l/Re 
at a given location in the mode space. Hence, the GP es- 
sentially describes a frictionless flow with no-slip condi- 
tions at the cylinder for sufficiently large Reynolds num- 

bers. The resulting inviscid instability mechanism and the 
lack of an efficient damping process is responsible for the 

exploding GS. Therefore, the asymptotic I/ ,/% scaling of 
the radial modes is necessary for a successful, low- 
dimensional GM. In fact, the boundary-layer scaled radial 
modes can be derived by requiring the same order of mag- 
nitude for the Galerkin representation of the convection 
and dissipation term in the mode space (see Noack and 
Eckelmann12). 

The elTect of the proportionality constant a(‘) on the 
GS is less crucial, as can be inferred from Table V. Only if 
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TABLE V. Phenomenogram data of Galerkin methods with different 

radial modes. 

n(l) 
Recnt St,“, st( 100) Q(200) 

1 . . . . . . -s- -.r- 
2 47.5 0.159 0.224 0.268 
2.45 53.3 0.148 0.211 0.249 
3 44.8 0.129 0.218 0.230 
4 . . . . . . . . . . . . 

a(l) is much too small (here, a”)= l), the GS is steady for 
all considered Reynolds numbers (denoted by “--s-” in 
Table V), since the near-wake instability for the onset of 
periodicity cannot be adequately resolved. Choosing a(‘) 

too large (here, a (‘) =4) leads to a nonperiodic or explod- 
ing GS, since the effect of dissipation is not adequately 
described by the AS. 

D. Choice of the azimuthal modes 

Table VI compares the phenomenogram data for the 
“conventional” azimuthal modes, defined by Eq. ( 13), and 
the actual ones, given by Eq. ( 14). For Re < 170, the dif- 
ference between the corresponding GSs is small. For larger 
Reynolds numbers, the flow of the GS with y0 becomes 
nonperiodic (denoted by “-np-” in Table VI). The non- 
periodicity may be characterized by small chaotic fluctua- 
tions superimposed on a periodic motion. This undesirable 
behavior seems to result from an insufficient azimuthal res- 
olution of the wake region, since increasing the azimuthal 
resolution J by 2 (i.e., using a Zb,6 GM) yields a stable 
periodicity. For the present GM the nonperiodic behavior 
starts at much larger Reynolds numbers around 500. 
Hence, the ‘distortion ” of the trigonometric functions in Eq. 
(14) is not necessary for successful GMs, but it reduces the 
number oj’necessary expansion modes. 

E. Choice of the selected subset of modes 

One expects the GSs to converge to the true solution 
with increasing number I and J of radial and azimuthal 
modes. For I,J< 8, the truncation errors due to the finite- 
ness of the expansion may become severe. Reasonable GSs 
may usually be obtained for the cases I = J or I = J+ 2. For 
odd radial or azimuthal resolutions I, J, the GSs often 
exhibit nonphysical velocity fields or, if their qualitative 
behavior is reasonable, the phenomenogram data deviate 
intolerably from the values in the literature. This trunca- 
tion eflFect diminishes rapidly for I,JR 8, when the coeffi- 
cients of the high-order contributions become small. 

TABLE VI. Phenomenogram data of Galerkin methods with different 

azimuthal modes. 

Y 

iq. (16) 

Re,ti, 

44.4 53.3 

St,,,, st( 100) St(200) 

0.155 0.148 0.205 0.211 0.249 -w 

TABLE VII. Phenomenogram data for low-dimensional Galerkin meth- 

ods with an increased wake resolution (a”‘=2.45 @6 FZ XT). The set of 
considered modes is specified in the GA column. The Strouhal values in 
brackets are the critical frequencies obtained with a global stability anal- 
ysis of the steady solution. 

GA Wit %it st( 100) st(200) 

;Y;,2 . . . . . (0.275) (0.252) 
z-q 50.6 0.196 0.197 0.229 
p4.4 42.0 0.184 0.259 0.330 
(X6,4 53.3 0.148 0.211 0.249 

Table I displays the phenomenogram data for some 
I= J and I= J+2 cases. For the ZZ,, GM, the asymptotic 
solution remains steady for all Reynolds numbers. For 
Z%?74,4 GM, the asymptotic solutions for Re= 100 and 200 
display a dominant periodicity with small nonperiodic fluc- 
tuations. For the other GMs, the phenomenogram is at 
least qualitatively correct. Quantitatively, however, the 
data partly deviate considerably from the values in the 
literature and convergence is not reached. Yet, it must be 
recalled that the present GM needs only a small fraction of 
the numerical degrees of freedom typically required for 
wake simulations. Finite-difference methods are carried 
out with about 10 000 grid points, which is more than two 
orders of magnitudes larger. In view of the number of 
modes, the GMs yield very reasonable results. 

For a quick qualitative inquiry of the periodic solu- 
tions and its transients, the GM may be improved by an 

increased a(l) =2.45 @6 =: \li for 1~6. This scaling pa- 
rameter guarantees a minimal boundary-layer resolution 
for each maximal radial order I (see Noack and 
Eckelmann.” Table VII presents the corresponding phe- 
nomenogram data. Periodic vortex shedding can already be 
obtained with the ZJ,z GM with 25(!) expansion modes. 

F. Galerkin approximation on finite domains 

The GM fulfills, by construction, the exact boundary 
conditions at infinity. In contrast, grid-based computa- 
tional techniques resolve the cylinder wake in finite do- 
mains, for instance, a half-circle in the front joined with 
long rectangle in the wake region (see, for instance, Ref. 
13). Typically, the boundary conditions at infinity are en- 
forced at the outer grid boundaries except for the wake 
region. Inside the wake, no uniform flow can be assumed. 
Instead, various outflow conditions, like the mixed 
Neumann/viscous-sponge condition, 13,40 are in use. 

With the construction of a GM on afinite domain the 
problem with the infinite norms for a=0 could be circum- 
vented. Yet, this at the first sight attractive approach may 
give rise to severe methodological and physical problems. 
The mathematical simplicity of the present GM rests on 
the product Hilbert space character, i.e., the construction 
of expansion modes from three complete function systems 
for each coordinate, r, 4, and z. This separation of coordi- 
nates cannot easily be restored, in part due to the different 
kind of conditions at the outer boundary of the tlnite do- 
main. Even if a complete system of expansion modes on the 
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finite domain can be constructed, the infinite norm prob- 
lem will reoccur in a different manner. Then the GSs will 
probably strongly depend on the chosen dimensions of the 
domain. The GP can be expected to “neglect” the 
boundary-layer physics and the flow in the front of the 
cylinder if, for instance, the area of the rectangle in the 
wake region is much larger than the area of the half-circle 
in the front. For -flows in more complex geometries, like 
this one, Karniadakisp8 singular Stokes modes seem to be a 
more flexible and promising route. 

VI. GENERALIZATION TO OTHER FLOWS 

component a, and the circular frequency w. Like in Sec. 
VI A, only the original basic mode has to be changed. A 
proper choice is given by 

Yc=(l+acosol)(r-i)[ 1-exp(-$)]sin$. 

For large amplitudes a, the asymptotic wake laws used for 
the derivation of the Hilbert-space parameter a are not 
valid anymore. In this case, another value of a has to be 
computed from similar considerations. 

Naturally, the GM may be generalized for a large va- 
riety of nonuniform and unsteady oncoming flows. 

At first sight, the GM presented in the previous sec- C. Flow around a sphere 

tions seems to be restricted to the circular-cylinder in uni- 
form flow. Yet, with minor modifications this method can 
be applied to a large variety of other flow problems. In the 
following, the complete information for the construction of 
the GMs for a circular cylinder in shear and periodic flow 
(Sets. VI A and VI B), for the wake behind a sphere (Sec. 
VI C), for the boundary layer (Sec. VI D), channel (Sec. 
VIE), and pipe flow (Sec. VI F), and for the Taylor- 
Couette problem (Sec. VI G) is given. These GMs are to 
be understood as untested suggestions, which are expected 
to yield approximate solutions to the Navier-Stokes equa- 
tion for sufficiently large number of modes, but may need 
to be modified for a successful low-dimensional simulation. 
In addition (Sec. VI H), the applicability of the method 
for complex geometries is discussed. 

The flow around a sphere is described in a spherical 
coordinate system (r&3), where r>O represents the radial 
coordinate, 4~ [0,24 the circumferential coordinate and 
8~ [O,~T.] the azimuthal coordinate. The corresponding unit 
vectors are denoted by 8,, 8,, and 8@. In this system, the 
sphere is supposed to be described by r= 1 and the flow has 
a velocity 1 in the direction of the ray 8=0 (north pole). 

As a basic mode we take, in analogy to the cylinder 
flow, the product of the potential solution and a factor 
accounting for viscosity 

Y0=~ain2B(r’f)[ 1-exp( -e)] 

A. Circular cylinder in shear flow 

with a properly chosen scale shm. This mode fulfills the 
no-slip condition at the sphere and converges to the ideal 
flow at infinity. 

The GM may easily be applied to the circular cylinder 
in shear flow by modifying the basic mode. The Hilbert 
spaces for the generalized streamfunctions Y’(l), Yt2) and 
the expansion modes ‘Yj$ need not to be changed. 

A suitable basic mode is given by 

For the perturbation u’ =u-ue the carrier field Z& in 
Zebib’s” ansatz for the incompressible velocity field has to 
be replaced by &#. Then the flow can be expressed in terms 
of the generalized streamfunctions YcK) (K= 13): 

u’=vx(Y(‘)~,)+vxvx(Y’2’~~) 

yo=(+[ l-exp(-~)]sin,+~a(P-;) . =[: ($+.,+p)+& i&+i$)tp+ 
X [ l-exp( -e)]sir?+, 

where a is the shearing parameter. For a=O, i.e., no shear 
in the oncoming flow, the original GM is restored. For 
arbitrary a, the basic mode ue=VX{Y&} converges rap- 
idly to ( 1 +a~) 6, with increasing distance from the cylin- 
der. Naturally, a continuum of other basic modes fulfills 
the same purpose. The above choice has the advantage of 
its analytical simplicity. 

The generalization of the GM to oncoming flows with 
more general 2-D or 3-D nonuniformities is obvious. Also 
in these cases, only the basic mode needs to be modified. 

It may be worthwhile to note that the 4 component of u’ 
differs from the 3-D Laplacian of Y(‘) only by term 
(l/2 sin2 8)Y’2’ instead of ( I/? sin2 6) (a2Y ‘2)/&$2). 
The no-slip condition at the sphere is enforced by requiring 
(aVaJp(K)=o for i=o , ,..., K. 1 

The inner product for the generalized streamfunctions 

B. Circular cylinder in time-periodic flow in the domain s1= { (r&,0) : r> 1) may be defined in anal- 

+[ -(-g+;)“(l)+& 

’ aea4 ( 
a' -+cot e$)'Y"']Es- [ ($+g 

i a2 cot e a 
-&+7@+7rz 1 1 y(2) n 

e+* (25) 

The GM can also be employed to a circular cylinder in 
ogy to Eq. (7) 

uniform, time-periodic flow, u= ( 1 +a cos ot)gX, with the 
mean component of unity, the amplitude of the periodic 

(f,g)n= J,* drSr:d~~o~dBr-ar~sinBfg, 
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where the Hilbert-space parameter a has to be determined 
as in the cylinder case. In this integral, 2 sin 19 dr d$ de 
represents the volume element. The expansion modes are 
obtained by a product ansatz 

ug = (VX ,“{W&r$,$] 
with 

Y~~~=R~K)(r)~..(~)0~‘(,). I J 

In this ansatz, the radial modes are the CCONS of the 
weighted Hilbert space 9tq where the weight 0.g = 3 --u is 

the radial factor of the product in (f,g) o. In analogy to 
the derivation of Eq. (IO), we obtain 

XexP[ - ($)I, 

where the ScK) is to be computed from estimates for the 
boundary-layer thickness and Pi’“) represents a polynomial 
of degree i, whose coefficients are calculated from a suc- 
cessive Gram-Schmidt orthonormalization of RF’, RI”‘, 

etc. 
The circumferential modes Cp j( $) are expressed by Eq. 

(13). 
The azimuthal modes are defined by 

SF)(e) = (sin ey 
I 

sin(2ke) for k>O, 

cos(2ke) for k<O. 

The factor (sin f3) w guarantees that the velocity field ~$2 
has no singularities on the north-south axis. The other 
factor is the complete orthogonal system for the a--periodic 
functions. It should be noted that the orthonormalization 
of the azimuthal modes must be carried out with respect to 
the sin 0 weight of the inner product (f ,g>o . 

For all indices (wJ,k) with K= 1, 2, i>O, andj, k=O, 
f 1, =l=2,..., the expansion modes I$$ are smooth functions 
in the domain 0 < 8 < W. In addition, an inspection of Eq. 
(25) reveals that they have no discontinuities of the second 
kind (singularities) on the north-south axis (0=0 or n). 
Yet, a careful analysis yields that there exists a group of 
modes (k<O and j=O, h2, *4,...) which has discontinu- 
ities of the first kind (finite jumps) on this axis. This group 
has to be excluded from the index set. 

The present GA is expected to describe the flow arbi- 
trarily exactly with sufficiently many modes. Yet, the com- 
pleteness cannot be simply proven with elementary func- 
tional analysis because of the sin 8 factor in the inner 

product (f,s> a. Orthonormality can, in principle, be 
achieved with the Gram-Schmidt procedure. This specifies 
the GA for the velocity field. 

The evolution equations for the generalized stream- 
functions can be derived in analogy to the cylinder case, 
replacing 6= by Q, in Zebib’s derivation. This results in 
similar equations. The GP to an AS of the form (24) is 
then a straightforward task. 

D. Boundary-layer flow 

The boundary layer over a flat plate is most naturally 
described in a Cartesian coordinate system (x,y,z>, where 
the x axis is aligned with the direction of the mean flow, 
and y is the distance from the plate. If one is only interested 
in the simulation of local events (burst, sweeps, ejections, 
hairpin vortices), the growth of the displacement thickness 
St in mean-flow direction may be neglected. The basic 
mode is defined by 

uo=vx (Y& 

with 

The corresponding velocity field has the exponential profile 

uc=[l-exp(--y/&)1 8,. 
For the perturbation u’ =u- uc, we assume an L, pe- 

riodicity in mean-flow direction and an L, periodicity in 
spanwise direction as in the simulations of other authors. 
The perturbation can be expressed by 

u’=VX (Y,‘% z ) +vxvx (Y’2’6t z ) 

( 

ay(l) #y(2) 

) i 

ay(l) $yO) 

= -+ axaz h,+ - ax + ayaz ay 1 
% 

where A 2D=a2/ax2+a2/ay2 is the 2-D Laplace operator. 
The no-slip condition is equivalent to requiring 
(ai/a#)Y(K)=O at the wall y=O for j=O,l,...,~. The do- 
main of the generalized streamfunctions YcK) can be re- 
stricted to Sz = { (x,y,z> : 1 x I< LJ2,y > 0, 1 z 1 G L/2) be- 
cause of the periodic boundary conditions. The inner 
product for J;g is defined by 

(f,gjn= JT,” cfx Joa dv ,;;dzfg. 
x 

No weight has to be introduced to assure the finiteness of 

the norms IIYcK)llo = d(Y(K1,YY(K))n, since the perturba- 
tions rapidly decay with increasing distance from the wall. 
The inner product and the boundary conditions suggests to 
construct the expansion modes in terms of trigonometric 
modes Xi(X) and Z,(z) and Laguerre-type modes 
$“‘(y) = (y/~3~>~P~‘(y/S~) exp( -y/26,), where Py) is a 
polynomial of jth order: 

with 

‘uj,$ =x.(x) Y+) (y)&(z). r 3 

Possibly K-dependent scales ScK) for the Y modes may sig- 
nificantly accelerate the convergence of the GM with in- 
creasing number of modes. 

The evolution equations are given by Eqs. (21) and 
(22), noting that the 2-D and 3-D Laplacians, A2D and A, 
must be expressed in Cartesian coordinates and the factor 
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of 2 in the dissipation term is to be omitted. In addition, 
the Reynolds number is now to be defined by 
Re=Res= U,&/Y. 

With the above information, the GP is a straightfor- 
ward computation and the GM is uniquely defined. 

E. Channel flow 

The channel flow is described in a Cartesian coordinate 
system (x,y,z), where the channel walls are given by 
y= f 1 and the x-axis points in the direction of the mean 
flow. As a basic mode the steady solution 

u,=vx (W$J 

with 

with the parabolic velocity profile u,=u&,=~( 1 --y”)&, is 
most suitable. This basic mode is normalized to yield 
4s’; &ue=l. 

The Hilbert space and the expansion modes are chosen 
as in Sec. VI D except that the domain for y is now finite, 

K-1,+11, and the Y modes are replaced by 
G”’ = ( 1 -y*) p(p:?c) (y), Pp’ being a polynomial of degree& 
The evolution equation for the generalized streamfunction 
has also the same form, the Reynolds number being defined 
in terms of the mean velocity and half the channel width. 

F. Pipe flow 

The flow in a circular pipe is described in cylindrical 
coordinates (r&z), where the cylinder is specified by r= 1. 
The steady solution of the Navier-Stokes equation 

u0=vxvx{Y,i2,} 

with 

Yo=2[ (;)*-($I 
is taken as the basic mode. Note that the curl is now ap- 
plied two times. The corresponding velocity profile in z 
direction is w=2( l--4), i.e., the velocity averaged over 
the cross section, ( l/?r) J,$ dr J 2:: d# 2qn0, is unity. 

The perturbation can be expressed by Eq. (3) with the 
same no-slip condition. Assuming an L, periodicity in 
mean-flow direction, the domain for the dependent vari- 
ables can be restricted to n={(r,$,z): r<l,Izl<L42). 
The inner product for the generalized streamfunctions is 
defined by (f,g)n- Jn dV fg, where dV=2r dr d$ dz is 
an infinitesimal volume element. The canonical choice for 
the expansion modes is 

ug= (vx)yY~$J 

with 

Y~,~=R!K)(r)Q).(~)Zk(~). 1 3 

The circumferential and axial modes, Qj and Zk, are 2rr 
and LZ-periodic Fourier modes. The radial modes RiK’ are 
given by linear combinations of Bessel functions of the first 
kind: 

i+K- 1 

RiK) = C ck/Jo(koir), 
a=0 

where koi is the ith zero of Jo and the coefficients cg/ are 
computed with a Gram-Schmidt orthonormalization pro- 
cedure taking into account the no-slip condition at the pipe 
walls. 

The equation of motion for the generalized stream- 
functions Y(Ic) (K= 1,2) is given by Eqs. (21) and (22) 
with another definition for the Reynolds number. The 
Galerkin projection (GP) may be carried out as in Sec. 
i1 B. The resulting AS has a vanishing constant term, since 
the basic mode is a steady solution of the Navier-Stokes 
equation. 

G. Taylor-Couette flow 

From the previous examples, it is clear that the 
Taylor-Couette flow can also be described with the GM 
presented in this paper. This flow is most naturally de- 
scribed in a cylindrical coordinate system (r&z), where 
the outer and inner cylinder are given by r= 1 and 
r=ro < 1, respectively. The basic mode is taken to be the 
1-D steady solution 

with 

Yo=iaai”+b log r. 

The constants a and b are functions of the angular veloc- 
ities and the radii of the inner and outer cylinder.“’ 

The perturbation u’ = u- u. is expressed by Eq. (3) 
and is assumed to have an L, periodicity in z direction. The 
expansion modes Y& are factorized in z modes given by 
Eq. (17), in azimuthal modes [Eq. (14)] and in radial 
modes which are suitable linear combinations of Bessel 
functions satisfying the no-slip conditions at r=ro and 
r= 1. Now, the Galerkin approximation and projection can 
be carried out in complete analogy to the cylinder flow. 

H. More complex boundary conditions 

All above examples possess translation- or rotation- 
invariant boundary conditions. This symmetry simplifies 
the analytic calculations for the GM, but this is not nec- 
essary for the applicability. The symmetry is replaced by 
much weaker requirements. Suppose that (&r],x) is a lo- 
cally orthogonal coordinate system. The flow is confined in 
a domain n which is bounded by one or two boundaries. 
These boundaries are described by r]=const. Infinity is 
also considered as the “boundary” q = CO. Then, the cor- 
responding velocity field can be expressed by Eq. (3) with 
the local unit vector 6, or 6x instead of i$. The no-slip 
condition at the surface is given by (di/d#) Y@) =O for 
j=O,l,..., K. The inner product for the generalized stream- 
functions is defined by (f,g) = Jo dVafg, where o is 
unity or a position-dependent weight. One problem that 
may arise is that the factor u dV does not separate as a 
product of the form F({)G(q)H(X)dcdq 4~. Then, ei- 
ther the orthonormality requirement for the product ex- 
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pansion modes Y {$ =XiK) ( 5) Y:;“’ (5) Zp’ (x) must be suited for the analysis of the turbulence attractor. Experi- 
dropped or the weight o must be chosen in a form which mentally obtained reconstructed attractors of the turbulent 
factorizes o dV as product of differentials in c, 7, and x. cylinder wake showed the importance of high-dimensional 
The evolution equations for the generalized streamfunc- processes for the small-scale tluctuations.30’3’ For the tur- 
tions is derived in analogy to Zebib’s calculations” replac- bulence modeling purposes, the decomposition of the tem- 
ing & by Q or su. With these guidelines, the GM for the 
flow around ellipsoids and elliptical cylinders can be car- 

poral behavior in a low-dimensional dynamics and these 
stochastic fluctuations would be of large interest. Corre- 

ried out with well-known coordinate systems. For more sponding investigations of the theoretical cylinder-wake at- 
complex boundary conditions, the construction of suitable tractor with POD techniques, localized Lyapunov expo- 
coordinate systems may be difficult. nents, etc., are in progress. (See, for instance, Ref. 37.) 

VII. CONCLUSION 

In the present paper, guidelines for the construction of 
successful Gale&in methods are given. The construction of 
the basic mode, which shall remove the inhomogeneity of 
the boundary conditions, turns out to be uncritical. Yet, 
the choice of the Hilbert space for the remaining pertur- 
bation may be crucial. The Hilbert space should contain 
the asymptotic solution, but it should, on the other hand, 
not be much larger. In particular, the space of square- 
integrable functions, on which most mathematical Galer- 
kin methods for confined flows are based on, may be too 
small for open, unconfined flows. Similarly, the freedom of 
constructing complete sets of expansion modes in the 
Hiibert space may strongly affect the Galerkin solutions. 
This freedom should be exploited to guarantee that the 
Galerkin representation of the dissipative and convective 
term is of similar order of magnitude. For the cylinder 
wake, this can be achieved with boundary-layer scaled ra- 
dial modes. Although the above guidelines have only been 
developed for one Galerkin method which is applied to one 
flow problem, they are, once discovered, almost self- 
evident and may be expected to be valid for most other 
low-dimensional flow descriptions. 

Considering these aspects, a Galerkin method for the 
3-D cylinder wake is constructed. This method yields rea- 
sonable solutions with less than 200 global modes. As to 
the authors’ knowledge, this is the first low-dimensional, a 
priori simulation of an unsteady wake flow which does not 
require detailed empirical knowledge about the flow prop- 
erties. For the present Gale&in method, only rough esti- 
mates for the boundary-layer thickness and the asymptotic 
wake laws are employed. With proper-orthogonal- 
decomposition (POD) techniques, which incorporate nu- 
merical transient solutions, the number of necessary modes 
for the 2-D, periodic wake can be even further reduced.38 
This POD investigation confirms also the necessity of in- 
troducing Reynolds-number-dependent modes. 

The generalization of the presented Gale&in method 
has been outlined for a variety of flow problems. This 
method is particularly suited for 3-D global stability anal- 
yses for steady and periodic flows, which cannot be carried 
out using finite-difference or finite-element methods with 
the presently available computer power. Thus the first 3-D 
global stability investigation of the steady and periodic flow 
around a circular cylinder could be performed with our 
method, yielding results which are in good agreement with 
experiments.6’27 Furthermore, the Galerkin method is well 

The presented Gale&in method is a numerically effi- 
cient technique for flows with simple geometries and can 
provide physical insights which can hardly be extracted 
from the more accurate and flexible finite-difference and 
finite-element solvers. 
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APPENDIX: CONSTRUCTION OF THE HILBERT 
SPACE 

In the following, the borderline Hilbert-space parame- 
ter LT,,it is determined. As reasoned in Sec. II A, there ex- 
ists a Hilbert-space parameter actit below which the norm 

ljfll = ,/a of at least one of the generalized stream- 
functions YcK) for the asymptotic (steady, periodic, and 
turbulent) solution diverges and above which these norms 
are well defined, i.e., converge. 

The determination of the critical parameter requires 
some knowledge about the asymptotic solution. It turns 
out that the well known far-wake asymptotics suffice. In 
particular, we use that the width of the laminar and tur- 
bulent wake behind an arbitrarily shaped cylinder b in- 

creases proportionally to 6, while the wake defect 
a:=u - U, on the $=O ray decreases proportionally to 

l/ 6. In addition, it is employed that the intensity of tur- 
bulent fluctuations decreases proportionally to l/x, since 
turbulence decays with the inverse distance of its origin. 
The characteristic variation of the generalized streamfunc- 
tions in the wake region is denoted by SY’“’ (K= 1,2). The 
contribution of the basic mode to the flow in the wake can 
be identified with the uniform flow u,= U, 6,, since 

UC0 -u. is of the order O(r-*). 
First, Y(” is considered. The wake defect 

a(x) = (S’/dy)Y(‘) can be estimated by SY”‘/b(x). Since 
a-0(x-“*) and b-0(x”*), we obtain SW(‘)-0(x0). 
Taking SY (‘) as a measure of Y(l), it can be concluded that 
Y(” is uniformly bounded but does not decay with increas- 
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ing x. Outside the wake, Y(t) is neglected, because there no 
infinite contribution to the norm integral for llYC1)l[o can 
be expected. Hence, the norm converges if and only if the 
integral s ~‘,&dz Jwake dArma ( Yr(‘))2 converges, where 
dA is the infinitesimal area element 2rr dr d4 in the wake 
region. Due to (Y (l) 2-0(xo) and the parabolic shape of ) 
the wake region, jIYy(t)llo < CO is equivalent to a> 3/2. 
Therefore, aCtii,)3/2. 

Finally, similar considerations for Y(‘) are carried out. 
The spanwise velocity component w is only a function of 
YC2) and does not depend on Y. or Y(l). According to Eq. 
(3), w= - (a2/&x2+d2/d2) YC2). Since the x variations 
in the wake are generally small with respect to the y vari- 
ation, the w component is, by dimensional arguments, of 
the order of 6YC2)/b2. Exploiting bW2 a I/x and w a l/x, 
we also get for the second generalized streamfunction 
Yi2) -0(x’). Therefore, both functions can be expected to 
have diverging norms for a < 3/2 and finite, well-defined 
norms for a > 3/2. The critical Hilbert-space parameter is 
hence given by 

3 
acrit=i. 

Two remarks are in order. First, the above reasoning can 
be made more precise by separately discussing the mean 
and fluctuating contribution of Y, and Y w (K = 1,2) to the 
velocity field inside and outside the wake and estimating 
the corresponding decay laws. These more precise argu- 
ments yield the same result. Since such a case by case 
discussion is very lengthy, it has been avoided for reasons 
of clarity. 

Second, the norms of the generalized streamfunctions 
converge only for a > 31’2 and not for a = 3/2. Mathemat- 
ically, this implies that a suitable Hilbert-space parameter 
must be of the form a=3/2 +e, where E is an arbitrarily 
small positive quantity. Numerically, however, the present 
GM is insensitive to this ~(1, since its expansion modes 
decay exponentially with the distance from the cylinder. 
Hence, we set e=O. 
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