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Abstract

The quadratic assignment problem (QAP ) is arguably one of the hardest of the
NP-hard discrete optimization problems. Problems of dimension greater than 25 are
still considered to be large scale. Current successful solution techniques use branch
and bound methods, which rely on obtaining strong and inexpensive bounds.

In this paper we introduce a new semidefinite programming (SDP ) relaxation
for generating bounds for the QAP in the trace formulation minX∈Π trace AXBXT +
CXT . We apply majorization to obtain a relaxation of the orthogonal similarity set of
the matrix B. This exploits the matrix structure of QAP and results in a relaxation
with O(n2) variables, a much smaller dimension than other current SDP relaxations.
We compare the resulting bounds with several other computationally inexpensive
bounds, such as the convex quadratic programming relaxation (QP B ). We find that
our method provides stronger bounds on average and is adaptable for branch and bound
methods.
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1 Introduction

In this paper we introduce a new efficient bound for the Quadratic Assignment Problem
(QAP ). We use the Koopmans-Beckmann trace formulation

(QAP ) µ∗
QAP := min

X∈Π
trace AXBXT + CXT ,

where A, B and C are n by n real matrices, and Π denotes the set of n by n permutation
matrices. Throughout this paper we assume the symmetric case, i.e., that both A and B are
symmetric matrices. The QAP is considered to be one of the hardest NP-hard problems to
solve in practice. Many important combinatorial optimization problems can be formulated
as a QAP . Examples include: the traveling salesman problem, VLSI design, keyboard
design, and the graph partitioning problem. The QAP is well described by the problem of
allocating a set of n facilities to a set of n locations while minimizing the quadratic objective
arising from the distance between the locations in combination with the flow between the
facilities. Recent surveys include [30, 34, 36, 29, 21, 14, 15, 13, 33].

2



Solving QAP to optimality usually requires a branch and bound (B&B ) method. Es-
sential for these methods are strong, inexpensive bounds at each node of the branching tree.
In this paper, we study a new bound obtained from a semidefinite programming (SDP )
relaxation. This relaxation uses only O(n2) variables and O(n2) constraints. But, it yields
a bound provably better than the so-called projected eigenvalue bound (PB ) [14], and it is
competitive with the recently introduced quadratic programming bound (QPB ), [2].

1.1 Outline

In Section 1.2 we continue with preliminary results and notation. In Section 1.3 we review
some of the known bounds in the literature. Our main results appear in Section 2. Here we
compare relaxations that use a vector lifting of the matrix X into the space of n2×n2 matrices
with a matrix lifting that remains in Sn, the space of n × n symmetric matrices. We then
parameterize and characterize the orthogonal similarity set of B, O(B), using majorization
results on the eigenvalues of B, see Theorem 2.1. This results in three SDP relaxations,
MSDR1 to MSDR3 . We conclude with numerical tests in Section 3.

1.2 Notation and Preliminaries

For two real m × n matrices A, B ∈ Mmn, 〈A, B〉 = trace AT B is the trace inner product;
Mnn = Mn, denotes the set of n by n square real matrices; Sn denotes the space of n × n
symmetric matrices, while Sn

+ (resp. Sn
++) denotes the cone of positive semidefinite (resp.

positive definite) matrices in Sn. We let A � B (resp. A ≻ B) denote the Löwner partial
order, A − B ∈ Sn

+ (resp. A − B ∈ Sn
++).

The linear transformation diag M denotes the vector formed from the diagonal of the
matrix M ; the adjoint linear transformation is diag ∗v = Diag v, i.e., the diagonal matrix
formed from the vector v. We use A⊗B to denote the Kronecker product of A and B, and
use x = vec (X) to denote the vector in R

n2

obtained from the columns of X. Then, see
e.g., [19],

trace AXBXT = 〈AXB, X〉 = 〈vec (AXB), x〉 = xT (B ⊗ A)x. (1.1)

We let N denote the cone of nonnegative (elementwise) matrices, N := {X ∈ Mn : X ≥
0}; E denotes the set of matrices with row and column sums 1, E := {X ∈ Mn : Xe =
XT e = e}, where e is the vector of ones; E = eeT is the matrix of ones; D denotes the set of
doubly stochastic matrices, D = E ∩ N . The minimal product of two vectors is

〈x, y〉− := min
σ,π

n∑

i=1

xσ(i)yπ(i),

where the minimum is over all permutations, σ, π, of the indices {1, 2, . . . , n}. Similarly, we
define the maximal product of x, y, 〈x, y〉+ := maxσ,π

∑n

i=1 xσ(i)yπ(i). We denote the vector
of eigenvalues of a matrix A by λ(A).
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Definition 1.1 Let x, y ∈ R
n. By abuse of notation, we denote x majorizes y or y is

majorized by x with x � y or y � x. Let the components of both vectors be sorted in
nonincreasing order, i.e., xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(n), yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(n). Following
e.g., [23], x � y if and only if

∑p

i=1 xσ(i) ≥
∑p

i=1 yπ(i), p = 1, 2, . . . , n − 1,
∑n

i=1 xσ(i) =
∑n

i=1 yπ(i).

In [23], it is shown that x � y if and only if there exists S ∈ D with Sx = y. Note that for
fixed y, the constraint x � y is not a convex constraint; but x � y is a convex constraint
and it has an equivalent LP formulation, e.g., [18].

1.3 Known Relaxations for QAP

One of the earliest and least expensive relaxations for QAP is the Gilmore-Lawler bound
(GLB), which is based on a Linear Programming (LP ) formulation, see e.g. [12, 9]; re-
lated dual-based LP bounds such as KCCEB are discussed in e.g., [20, 31, 9, 17]. These
formulations are currently able to handle problems with moderate size n (approximately
20) [12, 22]. Formulations based on nonlinear optimization include: eigenvalue and para-
metric eigenvalue bounds (EB ) [11, 33]; projected eigenvalue bounds PB [14, 10]; convex
quadratic programming bounds QPB [2]; and SDP bounds [32, 36]. For recent numerical
results that use these bounds, see e.g., [2, 32]. A summary and comparison of many of these
bounds is given in [1].

Note that Π = O ∩ E ∩ N , i.e. the addition of the orthogonal constraints changes the
doubly stochastic matrices to permutation matrices. This illustrates the power of non-
linear quadratic constraints for QAP . Using the quadratic constraints, we can see that
SDP arises naturally from Lagrangian relaxation, see e.g., [27]. Alternatively, one can lift

the problem using the positive semidefinite matrix

(
1

vec (X)

) (
1

vec (X)

)T

into the sym-

metric matrix space Sn2+1. One then obtains deep cuts for the convex hull of the lifted
permutation matrices. However, this vector-lifting SDP relaxation requires O(n4) variables
and hence is expensive to use. Problems with n > 25 become impractical for branch and
bound methods.

It has been proved in [4] that strong (Lagrangian) duality holds for the following quadratic
program with orthogonal constraints,

µ∗
EB = min

XXT =XT X=I
trace (AXBXT );

the optimal value µ∗
EB yields the so-called eigenvalue bound, denoted EB . The Lagrangian

dual is

µ∗
EB = max

S,T∈Sn

min
x∈Rn2

{trace (S) + trace (T ) + xT (B ⊗ A − I ⊗ S − T ⊗ I)x}. (1.2)
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The inner minimization problem results in the hidden semidefinite constraint

B ⊗ A − I ⊗ S − T ⊗ I � 0.

Under this constraint, the inner minimization program is attained at x = 0. As a result of
strong duality, the equivalent dual program

µ∗
EB = max

S,T∈Sn

{trace (S) + trace (T ) : B ⊗ A − I ⊗ S − T ⊗ I � 0} (1.3)

has the same value as the primal program, i.e. both yield the eigenvalue bound EB . One
can then add the constant row and column sum linear constraints Xe = XT e = e to obtain
the projected eigenvalue bound PB in [14]. In [2], the authors strengthen PB to get a
(parametric) convex quadratic programming bound (QPB ). This new bound QPB is
inexpensive to compute and, under some mild assumptions, is strictly stronger than PB .
QPB is a highly competitive bound, if we take into account the trade-off between the quality
of the bound and the expense in the computation. The use of QPB , along with the Condor
high-throughput computing system, has resulted in the solution for the first time of several
large QAP problems from the QAPLIB library, [7], [2], [3].

In this paper, we propose a new relaxation for QAP , which has comparable complexity
to QPB . Moreover, our numerical tests show that this new bound usually obtains better
bounds than QPB when applied to problem instances from the QAPLIB library.

2 SDP Relaxation and Quadratic Matrix Programming

2.1 Vector Lifting SDP Relaxations, VSDR

Consider the following quadratic constrained quadratic program

(QCQP )
µ∗

QCQP := min (xT Q0x + cT
0 x) + β0

s.t. (xT Qjx + cT
j x) + βj ≤ 0, j = 1, . . . , m

x ∈ R
n,

where for all j, we have Qj ∈ Sn, cj ∈ R
n, βj ∈ R. To find approximate solutions to QCQP ,

one can homogenize the quadratic functions to get the equivalent quadratic forms qj(x, x0) =
xT Qjx + cT

j xx0 + βjx
2
0, along with the additional constraint x2

0 = 1. The homogenized forms

can be linearized using the vector

(
x0

x

)

∈ R
n+1, i.e.,

qj(x, x0) =

(
x0

x

)T (
βj

1
2
cT
j

1
2
cj Qj

) (
x0

x

)

= trace

(
βj

1
2
cT
j

1
2
cj Qj

) (
1 xT

x Y

)

,

(2.4)
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where Y represents xxT and the constraint Y = xxT is relaxed to xxT � Y . Equivalently,
we can use the Schur complement and get the lifted linear constraint

Z =

(
1 xT

x Y

)

� 0, (2.5)

i.e. we can identify y = x. The objective function is now linear, trace

(
β0

1
2
cT
0

1
2
c0 Q0

)

Z; and

the constraints in QCQP are relaxed to linear inequality constraints, trace

(
βj

1
2
cT
j

1
2
cj Qj

)

Z ≤

0, j = 1, . . . , m. In this paper, we call this a vector-lifting semidefinite relaxation, (V SDR ),
and we note that the unknown variable Z ∈ Sn+1.

2.2 Matrix Lifting SDP Relaxation, MSDR

Consider QCQP with matrix variables

(MQCQP )
µ∗

MQCQP := min trace (XT Q0X + C0X
T ) + β0

s.t. trace (XT QjX + CjX
T ) + βj ≤ 0, j = 1, . . . , m

X ∈ Mnr.

Let: x := vec (X), c := vec (C), δij denote the Kronecker delta, and Eij = eie
T
j ∈ Mn be the

zero matrix except with 1 at the (i, j) position. Note that if r = n, then the orthogonality
constraint XXT = I is equivalent to xT (I ⊗Eij)x = δij, ∀i, j; and XT X = I is equivalent to
xT (Eij ⊗ I)x = δij , ∀i, j. Using both of the redundant constraints XXT = I and XT X = I
strengthens the SDP relaxation, see [4]. We can now rewrite QAP using the Kronecker
product and see that it is a special case of MQCQP with linear and quadratic equality
constraints, and with nonnegativity constraints. Recall that Π = O ∩ E ∩ N .

µ∗
QAP = min xT (B ⊗ A)x + cT x

s.t. xT (I ⊗ Eij)x = δij , ∀i, j
xT (Eij ⊗ I)x = δij , ∀i, j
Xe = XT e = e
x ≥ 0.

(2.6)

Note that in the case of QAP we have r = n and x = vec (X) from (2.6) is in R
n2

.
Relaxing the quadratic objective function and the quadratic orthogonality constraints results

in a linearized/lifted constraint (2.5), and we end up with Z =

(
1 xT

x Y

)

∈ Sn2+1, a

prohibitively large matrix. However, we can use a different approach and exploit the structure
of the problem. We can replace the constraint Y = xxT with the constraint Y = XXT

and then relax it to Y � XXT . This is equivalent to the linear semidefinite constraint(
I XT

X Y

)

� 0. The size of this constraint is significantly smaller. We call this a matrix-

lifting semidefinite relaxation and denote it MSDR . The relaxation for MQCQP with

6



X ∈ Mnr is

(MSDR )

µ∗
MSDR := min trace (Q0Y + C0X

T ) + β0

s.t. trace (QjY + CjX
T ) + βj ≤ 0, j = 1, . . . , m

(
I XT

X Y

)

� 0

X ∈ Mnr, Y ∈ Sn.

If r ≤ n and the Slater constraint qualification holds, then MSDR solves MQCQP ,
µ∗

MQCQP = µ∗
MSDR, see [5, 6]. However, the bound from MSDR is not tight in general.

To apply this to the QAP formulation in (2.6), we first reformulate it as a MQCQP by
removing B from the objective using the constraint R = XB.

µ∗
QAP = min trace

(
X
R

)T (
0 1

2
A

1
2
A 0

)(
X
R

)

+ trace CXT

s.t. R = XB
XXT − I = XT X − I = 0
Xe = XT e = e
X ≥ 0, X ∈ Mn.

(2.7)

To linearize the objective function we use

trace

(
X
R

)T (
0 1

2
A

1
2
A 0

) (
X
R

)

= trace

(
0 1

2
A

1
2
A 0

) (
X
R

) (
X
R

)T

,

and the lifting
(

X
R

) (
X
R

)T

=

(
XXT XRT

RXT RRT

)

=

(
I Y
Y Z

)

. (2.8)

This defines the symmetric matrices Y, Z ∈ Sn, where we see Y = RXT = X(XT R)XT =
XBXT ∈ Sn. We can then relax this to get the convex quadratic constraint

G(X, R, Y, Z) :=

(
XXT XRT

RXT RRT

)

−

(
I Y
Y Z

)

� 0. (2.9)

A Schur complement argument shows that the convex quadratic constraint (2.9) is equivalent
to the linear conic constraint 1





I XT RT

X I Y
R Y Z



 � 0. (2.10)

1 Note that the linearized conic constraint is not onto, which suggests it is more ill-conditioned than the
convex quadratic constraint. Empirical tests in [8] confirm this.
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The above discussion yields the MSDR relaxation for QAP

(MSDR0 )

µ∗
QAP ≥ min trace AY + trace CXT

s.t. R = XB
Xe = XT e = e




I XT RT

X I Y
R Y Z



 � 0, X ≥ 0

X, R ∈ Mn, Y, Z ∈ Sn,

(2.11)

where Y represents/approximates RXT = XBXT and Z represents/approximates RRT =
XB2XT . Since X is a permutation matrix, we conclude that the diagonal of Y is the X
permutation of the diagonal of B (and similarly for the diagonals of Z and B2)

diag (Y ) = Xdiag (B), diag (Z) = Xdiag (B2). (2.12)

Also, given that Xe = XT e = e and Y = XBXT , Z = XB2XT for all X, Y, Z feasible for
the original QAP , we conclude that

Y e = XBe, Ze = XB2e.

We may add these additional constraints to the above MSDR . These constraints essen-
tially replace the orthogonality constraints. We get the first version of our SDP relaxation:

(MSDR1 )

µ∗
MSDR1 := min trace AY + trace CXT

s.t. Xe = XT e = e






diag (Y ) = Xdiag (B)
diag (Z) = Xdiag (B2)
Y e = XBe
Ze = XB2e











I XT (XB)T

X I Y
XB Y Z



 � 0, X ≥ 0

X ∈ Mn, Y, Z ∈ Sn.

Proposition 2.1 Let B be nonsingular. In addition, suppose that (X, Y, Z) solves MSDR1 and
satisfies Z = XB2XT . Then X is optimal for QAP .

Proof: Via the Schur Complement, we know that the semidefinite constraint in MSDR1 is
equivalent to (

I − XXT Y − XBXT

Y − XBXT Z − XB2XT

)

� 0. (2.13)

Therefore, XXT � I, XT X � I. Moreover, X satisfies Xe = XT e = e, X ≥ 0. Now,
multiplying both sides of diag (Z) = Xdiag (B2) from the left by eT yields trace Z = trace B2.
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Since Z = XB2XT , we conclude that trace Z = trace XB2XT = trace B2, i.e., trace B2(I −
XT X) = 0. Since B is nonsingular, we conclude that B2 ≻ 0. Therefore, I − XT X � 0
implies that I = XT X. Thus the optimizer X is orthogonal and doubly stochastic (X ∈
E ∩N ). Hence X is a permutation matrix.

Moreover, (2.13) and Z − XB2XT = 0 implies the off-diagonal block Y − XBXT = 0.
Thus, we conclude that the bound µ∗

MSDR1 from (MSDR1 ) is tight.

Remark 2.1 The assumption that B is nonsingular is made without loss of generality, since
we could shift B by a small positive multiple of the identity matrix, say ǫI, while simultane-
ously subtracting ǫ(trace A). i.e.,

trace (AXBXT + CXT ) = trace (AX(B + ǫI)XT − ǫAXXT + CXT )
= trace (AX(B + ǫI)XT + CXT ) − ǫtrace A.

2.2.1 The Orthogonal Similarity Set of B

In this section we include additional constraints in order to strengthen MSDR1 . Using
majorization given in Definition 1.1, we now characterize the convex hull of the orthogonal
similarity set of B, denoted convO(B).

Theorem 2.1 Let

S1 := convO(B) = conv {Y ∈ Sn : Y = XBXT , X ∈ O},
S2 := {Y ∈ Sn : trace ĀY ≥ 〈λ(Ā), λ(B)〉−, ∀Ā ∈ Sn},
S3 := {Y ∈ Sn : diag (XT Y X) � λ(B), ∀X ∈ O},
S4 := {Y ∈ Sn : λ(Y ) � λ(B)}.

(2.14)

Then S1 is the convex hull of the orthogonal similarity set of B, and S1 = S2 = S3 = S4.

Proof.

1. S1 ⊆ S2: Let Y ∈ S1, Ā ∈ Sn. Then

trace ĀY ≥ min
Y ∈convO(B)

trace ĀY = min
X∈O

trace ĀXBXT = 〈λ(Ā), λ(B)〉−,

by the well-known minimal inner-product result, e.g., [33][11].

2. S2 ⊆ S3: Let U ∈ O, p ∈ {1, 2, . . . , n−1}, and let Γp denote the index set corresponding
to the p smallest entries of diag (UT Y U). Define the support vector ∆p ∈ R

n of ΓP by

(∆p)i =

{
1 if i ∈ Γp

0 otherwise.
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Then, for Ap := UDiag (∆p)UT , we get

〈∆p, diag (UT Y U)〉 = 〈Diag (∆p), UT Y U〉
= 〈UDiag (∆p)UT , Y 〉
= 〈Ap, Y 〉
≥ 〈∆p, λ(B)〉−,

by definition of S2. Since choosing Ā = ±I implies trace Y = trace B, the inclusion
follows.

3. S3 ⊆ S4: Let Y ∈ S3, and Y = V Diag (λ(Y ))V T , V ∈ O, be its spectral decomposition.
Since U ∈ O implies that diag (UT Y U) � λ(B), we may take U = V and deduce

λ(Y ) = diag (V T Y V ) � λ(B).

4. S4 ⊆ S1: To obtain a contradiction, suppose λ(Ŷ ) � λ(B), but Ŷ /∈ convO(B).
Since O is a compact set, we conclude that the continuous image O(B) = {Y :
Y = XBXT , X ∈ O} is compact. Hence, its convex hull convO(B) is compact as
well. Therefore, a standard hyperplane separation argument implies that there exists
Ā ∈ Sn, such that

〈Ā, Ŷ 〉 < min
Y ∈conv (O(B))

〈Ā, Y 〉 = min
Y ∈O(B)

〈Ā, Y 〉 = 〈λ(Ā), λ(B)〉−.

As a result,
〈λ(Ā), λ(Ŷ )〉− ≤ 〈Ā, Ŷ 〉 < 〈λ(Ā), λ(B)〉−.

Without loss of generality, suppose that the eigenvalues λ(·) are in nondecreasing order.
Then the above minimum product inequality could be written as

n∑

i=1

λi(Ā)λn−i+1(Ŷ ) <
n∑

i=1

λi(Ā)λn−i+1(B),

which implies

0 >

n∑

i=1

λi(Ā)(λn−i+1(Ŷ ) − λn−i+1(B)).

Since λi(Ā) =
∑i−1

j=1 (λj+1(Ā) − λj(Ā))+λ1(Ā), we can rewrite the above inequality as

0 >
∑n

i=1 (
∑i−1

j=1 (λj+1(Ā) − λj(Ā)) + λi(Ā))(λn−i+1(Ŷ ) − λn−i+1(B))

=
∑n−1

j=1 (λj+1(Ā) − λj(Ā))
∑n

i=j+1 (λn−i+1(Ŷ ) − λn−i+1(B))

+λ1(Ā)
∑n

i=1 (λi(Ŷ ) − λi(B)).

Notice λ(Ŷ ) � λ(B) implies eT λ(Ŷ ) = eT λ(B), so λ1(Ā)
∑n

i=1 (λi(Ŷ ) − λi(B)) = 0.
Thus, we have the following inequality:

0 >

n−1∑

j=1

(λj+1(Ā) − λj(Ā))

n∑

i=j+1

(λn−i+1(Ŷ ) − λn−i+1(B)). (2.14)
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However, by assumption λj+1(Ā) ≥ λj(Ā), and by the definition of λ(Ŷ ) majorized by
λ(B),

n∑

i=j+1

λn−i+1(Ŷ ) =

n−j
∑

t=1

λt(Ŷ ) ≥

n−j
∑

t=1

λt(B) =

n∑

i=j+1

λn−i+1(B)

which contradicts (2.14).

Remark 2.2 Based on our Theorem 2.1 2, Xia [35] recognized that the sets S1-S4 in (2.14)
admit a semidefinite formulation, i.e.,

S1 = S5 :=

{

Y ∈ Sn : Y =
n∑

i=1

λi(B)Yi,
n∑

i=1

Yi = In, trace Yi = 1, Yi � 0, i = 1, . . . , n

}

.

He then proposed an orthogonal bound, denoted OB2 , from the optimal value of the SDP

µ∗
OB2 := min

X≥0,Xe=XT e=e,Y ∈S5

trace (AY + CXT ).

Note that this orthogonal bound OB2 can be applied to the projected version PQAP (given
in Section 2.2.3), and then it is provably stronger than the convex quadratic programming
bound QPB .

We failed to recognize this point in our initial work. Instead, motivated by Theorem 2.1,
we now propose an inexpensive bound that is stronger than QPB for most of the problem
instances we tested.

2.2.2 Strengthened MSDR Bound

Suppose that A = UADiag (λ(A))UT
A denotes the orthogonal diagonalization of A with the

vector of eigenvalues λ(A) in nonincreasing order; we assume that the vector of eigenvalues
λ(B) is in nondecreasing order. Let

δp := {

p
︷ ︸︸ ︷

1, 1, . . . , 1, 0, 0, . . . , 0}, p = 1, 2, . . . n − 1.

We add the following cuts to MSDR1 ,

〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉, p = 1, 2, . . . , n − 1. (2.15)

These are valid cuts since 〈δp, diag (UT
AY UA)〉 ≥ 〈δp, diag (UT

AY UA)〉− ≥ 〈δp, λ(B)〉−, for
Y ∈ S1, by part 2 of the proof of Theorem 2.1.

2Xia [35] references our Theorem 2.1 from an earlier version of our paper.
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Hence, we get the following relaxation,

(MSDR2 )

µ∗
MSDR2 := min 〈A, Y 〉 + 〈C, X〉

s.t. Xe = XT e = e
diag (Y ) = Xdiag (B)
diag (Z) = Xdiag (B2)
Y e = XBe
Ze = XB2e
〈δp, diag (UT

AY UA)〉 ≥ 〈δp, λ(B)〉, p = 1, 2, . . . , n − 1




I XT BT XT

X I Y
XB Y Z



 � 0, X ≥ 0

X ∈ Mn, Y, Z ∈ Sn

The cuts (2.15) approximate the majorization constraint

diag (UT
AY UA) � λ(B), (2.16)

and yield a comparison between the bounds MSDR2 and EB .

Lemma 2.1 The bound from MSDR2

µ∗
MSDR2 ≥ 〈λ(A), λ(B)〉− + min

Xe=XT e=e,X≥0
〈C, X〉,

the eigenvalue bound, EB .

Proof. It is enough to show that the first terms on both sides of the inequality satisfy

〈A, Y 〉 ≥ 〈λ(A), λ(B)〉−,

for any Y feasible in MSDR2 . Note that

〈A, Y 〉 = 〈UADiag (λ(A))UT
A , Y 〉 = 〈λ(A), diag (UT

AY UA)〉.

Since λ(A) is a nonincreasing vector, and λ(B) is nondecreasing, we have 〈λ(B), λ(A)〉 =
〈λ(B), λ(A)〉−. Also,

λ(A) =
n−1∑

p=1

(λp(A) − λp+1(A))δp + λn(A)e.

Therefore, since diag (Y ) = Xdiag (B) and eT X = eT , we have

〈A, Y 〉 =
n−1∑

p=1

(λp(A) − λp+1(A))〈δp, diag (UT
AY UA)〉 + λn(A)〈e, λ(B)〉.

12



Since 〈δp, diag (UT
AY UA)〉 ≥ 〈δp, λ(B)〉 holds for any feasible Y , we have

〈A, Y 〉 ≥
∑n−1

p=1 (λp(A) − λp+1(A))〈δp, λ(B)〉 + λn(A)〈e, λ(B)〉

=
∑n−1

p=1 ((λp(A) − λp+1(A))
∑p

i=1 λi(B)) + λn(A)
∑n

i=1 λi(B)

=
∑n

i=1 λi(B)(
∑n−1

p=i λp(A) − λp+1(A)) + λn(A))

=
∑n

i=1 λi(B)λi(A)
= 〈λ(B), λ(A)〉−.

2.2.3 Projected Bound

The row and column sum equality constraints of QAP , E = {X ∈ Mn : Xe = XTe = e},
can be eliminated using a nullspace method. (In the following proposition, O refers to the
orthogonal matrices of appropriate dimension.)

Proposition 2.2 ([14]) Let V ∈ Mn,n−1 be full column rank and satisfy V T e = 0. Then
X ∈ E ∩ O if and only if

X =
1

n
E + V X̂V T , for some X̂ ∈ O.

After substituting for X, and using Â = V T AV, B̂ = V T BV , the QAP can now be
reformulated as the projected version

(PQAP )

min trace
(

ÂX̂B̂X̂T + 1
n
ÂX̂B̂E + 1

n
ÂEB̂X̂T + 1

n2 ÂEB̂E
)

s.t. X̂X̂T = X̂T X̂ = I

X(X̂) = 1
n
E + V X̂V T ≥ 0.

We now define Ŷ = X̂B̂X̂T and Ẑ = Ŷ Ŷ = X̂B̂B̂X̂T ; and we replace X with 1
n
E + V X̂V T .

Then the two terms XBX and XBV V T BXT admit the representations

XBXT = V X̂B̂X̂TV T +
1

n
EBV X̂T V T +

1

n
V X̂V T BE +

1

n2
EB̂E

and

XBV V T BXT = V ẐV T +
1

n
EBV V T BV XTV T +

1

n
V XV T BV V T BE +

1

n2
EBV V T BE,

respectively. In MSDR2 , we use Y to represent/approximate XBXT , and use Z to
represent/approximate XBBXT . However, XBBXT cannot be represented with X̂ and

13



Ŷ . Therefore, in the projected version, we have to let Z represent XBV V T BXT in-
stead of XBBXT , and we replace the corresponding diagonal constraint with diag (Z) =
Xdiag (BV V T B).

Based on these definitions, PQAP has the following quadratic matrix programming
formulation:

min trace (AY + CXT )
s.t. diag Y = Xdiag (B)

diag Z = Xdiag (BV V T B)

X(X̂) = V X̂V T + 1
n
E

Y (X̂, Ŷ ) = V Ŷ V T + 1
n
EBV X̂T V T + 1

n
V X̂V T BE + 1

n2 EB̂E

Z(X̂, Ẑ) = V ẐV T + 1
n
EBV V T BV XT V T + 1

n
V XV T BV V T BE + 1

n2 EBV V T BE

R̂ = X̂B̂
(

I Ŷ
Ŷ Ẑ

)

=

(
X̂X̂T X̂R̂T

R̂X̂T R̂R̂T

)

X(X̂) ≥ 0

X̂, R̂ ∈ Mn−1, Ŷ , Ẑ ∈ Sn−1.
(2.17)

We can now relax the quadratic constraint
(

I Ŷ
Ŷ Ẑ

)

=

(
X̂X̂T X̂R̂T

R̂X̂T R̂R̂T

)

with the convex constraint 



I X̂T R̂T

X̂ I Ŷ
R̂ Ŷ Ẑ



 � 0.

As in MSDR2 , we now add the following cuts for Ŷ ∈ convO(X̂)

〈δp, diag (UT

Â
Ŷ UÂ〉 ≥ 〈δp, λ(B̂)〉, p = 1, 2, . . . , n − 2,

where Â = UÂDiag (λ(Â))UT

Â
is the spectral decomposition of Â, and λ1(Â) ≤ λ2(Â) ≤ . . . ≤

λn−1(Â). δp follows the definition in Section 2.2.1, i.e., δp ∈ Rn−1, δp = {0, 0, . . . , 0, 1, . . . , 1}.
Our final projected relaxation MSDR3 is

(MSDR3 )

µ∗

MSDR3
:= min 〈A, Y (X̂, Ŷ )〉 + 〈C, X(X̂)〉

s.t. diag (Y (X̂, Ŷ )) = X(X̂)diag (B)

diag (Z(X̂, Ẑ)) = X(X̂)diag (BV V T B)

〈δp, diag (UT

Â
Ŷ UÂ〉 ≥ 〈δp, λ(B̂)〉, p = 1, 2, . . . , n − 2

X(X̂) ≥ 0




I X̂T B̂T X̂T

X̂ I Ŷ
X̂B̂ Ŷ Ẑ



 � 0

X̂ ∈ Mn−1, Ŷ , Ẑ ∈ Sn−1,
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where:

X(X̂) = 1
n
E + V X̂V T ;

Y (X̂, Ŷ ) = V Ŷ V T + 1
n
EBV X̂T V T + 1

n
V X̂V T BE + 1

n2 EB̂E;

Z(X̂, Ẑ) = V ẐV T + 1
n
EBV V T BV XT V T + 1

n
V XV T BV V T BE + 1

n2 EBV V T BE.

Note that the constraints Y e = XBe, Ze = XB2e are no longer needed in MSDR3 .
In MSDR3 , all the constraints act on the lower dimensional space obtained after the

projection. The strategy of adding cuts after the projection has been successfully used in
the projected eigenvalue bound PB and the quadratic programming bound QPB . For this
reason, we propose MSDR3 instead of MSDR2 .

Lemma 2.2 Let µ∗
PB denote the projected eigenvalue bound. Then

µ∗

MSDR3
≥ µ∗

PB.

Proof. Since MSDR3 has constraints

〈δp, diag (UT

Â
Ŷ UÂ〉 ≥ 〈δp, λ(B̂)〉, p = 1, 2, . . . , n − 2,

we need only prove that trace ÂŶ ≥ 〈λ(Â), λ(B̂)〉−. This proof is the same as the proof for
trace AY ≥ 〈λ(A), λ(B)〉− in Lemma 2.1.

Remark 2.3 Every feasible solution to the original QAP satisfies Y = XBXT , X ∈ Π.
This implies that Y could be obtained from a permutation of the entries of B. Moreover, the
diagonal entries of B remain on the diagonal after a permutation. Denote the off-diagonal
entries of B by 0ffDiag (B). We see that, for each i, j = 1, 2, . . . , n, i 6= j, the following cuts
are valid for any feasible Y :

min [0ffDiag (B)] ≤ Yij ≤ max [0ffDiag (B)] . (2.18)

It is easy to verify that if the elements of 0ffDiag (B) are all equal, then QAP can be solved
by MSDR1 , MSDR2 or MSDR3 , using the constraints in (2.18).

If B is diagonally dominant, than for any permutation X, we have Y = XBXT is
diagonal dominant. This property generates another series of cuts. These results could be to
used to add cuts for Z = XB2XT as well.

3 Numerical Results

3.1 QAPLIB Problems

In Table 1 we present a comparison of MSDR3 with several other bounds applied to in-
stances from QAPLIB , [7]. The first column OPT denotes the exact optimal value. The
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following columns contain the: GLB , Gilmore-Lawler bound [12]; KCCEB , dual lin-
ear programming bound [20, 17, 16]; PB , projected eigenvalue bound [14]; QPB , convex
quadratic programming bound [2]; and SDR1 , SDR2 , SDR3 , the vector-lifting semidef-
inite relaxation bounds [36] computed by the bundle method [32]. The last column is our
MSDR3 bound. All output values are rounded up to the nearest integer.

To solve QAP , the minimization of trace AXBXT and trace BXAXT are equivalent.
But for the relaxation MSDR3 , exchanging the roles of A and B results in two different
formulations and bounds. In our tests we use the maximum of the two formulations for
MSDR3 . When considering branching, we stay with the better formulation throughout, to
avoid doubling the computational work.

From Table 1, we see that the relative performance of the various bounds can vary on
different instances. The average performance of the bounds can be ranked as follows:

PB < QPB < MSDR3 ≈ SDR1 < SDR2 < SDR3 .

In Table 2 we present the number of variables and constraints used in each of the re-
laxations. Our bound MSDR3 uses only O(n2) variables and only O(n2) constraints. If we
solve MSDR3 with an interior point method, the complexity of computing the Newton di-
rection in each iteration is O(n6). And, the number of iterations of an interior point method
is bounded by O(n ln 1

ǫ
) [26]. Therefore, the complexity of computing MSDR3 with an in-

terior point methods is O(n7 ln 1
ǫ
). Note that the computational complexity for the most

expensive SDP formulation, SDR3 , is O(n14 ln 1
ǫ
), where ǫ is the desired accuracy. Thus

MSDR3 is significantly less expensive than SDR3 . Though QPB is less expensive than
MSDR3 in practice, the complexity as a function of n is the same.

Table 3 lists the CPU time (in seconds) for MSDR3 for several of the Nugent instances
[28]. (We used a SUN SPARC 10 and the SeDuMi3 SDP package. For a rough comparison,
note that the results in [3] were done on a C3000 computer, and took 3.2 CPU seconds for
the Nug20 instance and 9 CPU seconds for the Nug25 instance, for the QPB bound.)

3.2 MSDR3 in a Branch and Bound Framework

When solving general discrete optimization problems using B&B methods, one rarely has
advance knowledge that helps in branching decisions. But, we now see that MSDR3 helps
in choosing a row and/or column for branching in our B&B approach for solving QAP .

If X is a permutation matrix, then the diagonal entries diag (Z) = Xdiag (BV V T B) are
a permutation of the diagonal entries of BV V T B. In fact, the converse is true under a mild
assumption.

Proposition 3.1 Assume the n entries of diag (BV V T B) are all distinct. If (X∗, Y ∗, Z∗) is
an optimal solution to MSDR3 that satisfies diag (Z∗) = Pdiag (BV V T B), for some P ∈ Π,
then (X∗, Y ∗, Z∗) solves QAP exactly.

3sedumi.mcmaster.ca
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Problem OPT GLB KCCEB PB QPB SDR1 SDR2 SDR3 MSDR3

esc16a 68 38 41 47 55 47 49 59 50
esc16b 292 220 274 250 250 250 275 288 276
esc16c 160 83 91 95 95 95 111 142 123
esc16d 16 3 4 -19 -19 -19 -13 8 1
esc16e 28 12 12 6 6 6 11 23 14
esc16g 26 12 12 9 9 9 10 20 13
esc16h 996 625 704 708 708 708 905 970 906
esc16i 14 0 0 -25 -25 -25 -22 9 0
esc16j 8 1 2 -6 -6 -6 -5 7 0

had12 1652 1536 1619 1573 1592 1604 1639 1643 1595
had14 2724 2492 2661 2609 2630 2651 2707 2715 2634
had16 3720 3358 3553 3560 3594 3612 3675 3699 3587
had18 5358 4776 5078 5104 5141 5174 5282 5317 5153
had20 692 6166 6567 6625 6674 6713 6843 6885 6681

kra30a 88900 68360 75566 63717 68257 69736 68526 77647 72480
kra30b 91420 69065 76235 63818 68400 70324 71429 81156 73155

Nug12 578 493 521 472 482 486 528 557 502
Nug14 1014 852 n.a. 871 891 903 958 992 918
Nug15 1150 963 1033 973 994 1009 1069 1122 1016
Nug16a 1610 1314 1419 1403 1441 1461 1526 1570 1460
Nug16b 1240 1022 1082 1046 1070 1082 1136 1188 1082
Nug17 1732 1388 1498 1487 1523 1548 1619 1669 1549
Nug18 1930 1554 1656 1663 1700 1723 1798 1852 1726
Nug20 2570 2057 2173 2196 2252 2281 2380 2451 2291
Nug21 2438 1833 2008 1979 2046 2090 2244 2323 2099
Nug22 3596 2483 2834 2966 3049 3140 3372 3440 3137
Nug24 3488 2676 2857 2960 3025 3068 3217 3310 3061
Nug25 3744 2869 3064 3190 3268 3305 3438 3535 3300
Nug27 5234 3701 n.a. 4493 n.a. n.a. 4887 4965 4621
Nug30 6124 4539 4785 5266 5362 5413 5651 5803 5446

rou12 235528 202272 223543 200024 205461 208685 219018 223680 207445
rou15 354210 298548 323589 296705 303487 306833 320567 333287 303456
rou20 725522 599948 641425 597045 607362 615549 641577 663833 609102

scr12 31410 27858 29538 4727 8223 11117 23844 29321 18803
scr15 51140 44737 48547 10355 12401 17046 41881 48836 39399
scr20 110030 86766 94489 16113 23480 28535 82106 94998 50548

tai12a 224416 195918 220804 193124 199378 203595 215241 222784 202134
tai15a 388214 327501 351938 325019 330205 333437 349179 364761 331956
tai17a 491812 412722 441501 408910 415576 419619 440333 451317 418356
tai20a 703482 580674 616644 575831 584938 591994 617630 637300 587266
tai25a 1167256 962417 1005978 956657 981870 974004 908248 1041337 970788
tai30a 1818146 1504688 1565313 1500407 1517829 1529135 1573580 1652186 1521368

tho30 149936 90578 99855 119254 124286 125972 134368 136059 122778

Table 1: Comparison of bounds for QAPLIB instances
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7 Methods GLB KCCE PB QPB SDR1 SDR2 SDR3 MSDR3

Variables O(n4) O(n2) O(n2) O(n2) O(n4) O(n4) O(n4) O(n2)

Constraints O(n2) O(n2) O(n2) O(n2) O(n2) O(n3) O(n4) O(n2)

Table 2: Complexity of Relaxations

Instances Nug12 Nug15 Nug18 Nug20 Nug25 Nug27 Nug30

CPU time(s) 15.1 57.6 203.9 534.9 3236.4 5211.3 12206.0

Number of iterations 18 19 22 26 27 25 29

Table 3: CPU time and iterations for computing MSDR3 on the Nugent problems

Proof. Without loss of generality, assume the entries of b := diag (BV V T B) are strictly
increasing, i.e., b1 < b2 < . . . < bn. By the feasibility of X∗, Z∗, we have diag (Z∗) = X∗b.
Also, we know diag (Z∗) = Pb, for some P ∈ Π. Therefore, X∗b = Pb holds as well. Now
assume Pi1 = 1. Then

∑n

j=1 X∗
ijbj = b1. Since

∑n

j=1 X∗
ij = 1 and X∗

ij ≥ 0, j = 1, 2, . . . , n, we
conclude that b1 is a convex combination of b1, b2, . . . , bn. However, b1 is the strict minimum
in b1, b2, . . . , bn. This implies that X∗

i1 = 1. The conclusion follows for P = X∗ by finite
induction, after we delete column 1 and row i of X.

As a consequence of Proposition 3.1, we may consider the original QAP problem in
order to determine an optimal assignment of entries of diag (BV V T B) to diag (Z), where
each entry of diag (BV V T B) requires a branch and bound process to determine its assigned
position. For entries with large difference from the mean of diag (BV V T B), the assignments
are particularly important, because a change of their assigned positions usually leads to
significant differences in the corresponding objective value. Therefore, in order to fathom
more nodes early, our B&B strategy first processes those entries with large differences from
the mean of diag (BV V T B).

Branch and Bound Strategy 3.1 Let b := diag (BV V T B). Branch on the i-th column of
X where i corresponds to the element bi that has the largest deviation from the mean of the
elements of b. (If this strategy results in several elements close in value, then we randomly
pick one of them.)

For example, Nug12 yields

diag (BV V T B)T = ( 23 14 14 23 17.67 8.67 8.67 17.67 23 14 14 23 ) .

Therefore, the 6 (or 7)-th entry has value 8.67; this has the largest difference from the mean
value 16.72. Table 4 presents the MSDR3 bounds in the first level of the branching tree for
Nug12. The first and second column presents the results for branching on elements from
the 6-th column of X first. The other columns provide a comparison with branching from
other columns first. On average, branching with the 6-th column of X first generates tighter
bounds, and should lead to descendant nodes in the branch & bound tree being fathomed
earlier.
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nodes bounds nodes bounds nodes bounds

X1,6 = 1 523 X1,1 = 1 508 X1,2 = 1 512
X2,6 = 1 528 X2,1 = 1 509 X2,2 = 1 513
X3,6 = 1 520 X3,1 = 1 507 X3,2 = 1 508
X4,6 = 1 517 X4,1 = 1 515 X4,2 = 1 510
X5,6 = 1 537 X5,1 = 1 512 X5,2 = 1 519
X6,6 = 1 529 X6,1 = 1 517 X6,2 = 1 513
X7,6 = 1 507 X7,1 = 1 516 X7,2 = 1 507
X8,6 = 1 519 X8,1 = 1 524 X8,2 = 1 513
X9,6 = 1 522 X9,1 = 1 524 X9,2 = 1 514
X10,6 = 1 527 X10,1 = 1 514 X10,2 = 1 513
X11,6 = 1 506 X11,1 = 1 527 X11,2 = 1 510
X12,6 = 1 504 X12,1 = 1 510 X12,2 = 1 516

mean 519.9 mean 515.3 mean 512.3

Table 4: Results for the first level branching for Nug12

4 Conclusion

We have presented new bounds for QAP that are based on a matrix-lifting (rather than a
vector-lifting) semidefinite relaxation. By exploiting the special doubly stochastic and or-
thogonality structure of the constraints, we obtained a series of cuts to further strengthen
the relaxation. The resulting relaxation MSDR3 is provably stronger than the projected
eigenvalue bound PB , and is comparable with the SDR1 bound and the quadratic pro-
gramming bound QPB in our empirical tests. Moreover, due to the matrix-lifting property
of the bound, it only use O(n2) variables and O(n2) constraints. Hence the complexity is
comparable with that of QPB .

Subsequent work has shown that our MSDR3 relaxation and bound are particularly
efficient for matrices with special structure, e.g., if B is a Hamming distance matrix of a
hypercube or a Manhattan distance matrix from rectangular grids; see e.g., [24]. Additional
new relaxations based on our work have been proposed; see e.g., the bound OB2 in [35].
Another recent application is decoding in multiple antenna system, see [25].
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