

 University of Groningen

A Low-Effort Analytics Platform for Visualizing Evolving Flask-Based Python Web Services
Vogel, Patrick; Klooster, Thijs; Andrikopoulos, Vasilios; Lungu, Micea-Filip

DOI:
10.1109/VISSOFT.2017.13

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Vogel, P., Klooster, T., Andrikopoulos, V., & Lungu, M-F. (2017). A Low-Effort Analytics Platform for
Visualizing Evolving Flask-Based Python Web Services. 109-113. Paper presented at 2017 IEEE Working
Conference on Software Visualization, Shanghai, China. https://doi.org/10.1109/VISSOFT.2017.13

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-08-2022

https://doi.org/10.1109/VISSOFT.2017.13
https://research.rug.nl/en/publications/9fd2aa1d-be4d-4169-9e29-c7134c3d765f
https://doi.org/10.1109/VISSOFT.2017.13

A Low-Effort Analytics Platform for Visualizing
Evolving Flask-Based Python Web Services

Patrick Vogel, Thijs Klooster, Vasilios Andrikopoulos, Mircea Lungu

Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, Netherland

Email: {t.klooster.1,p.p.vogel}@student.rug.nl, {v.andrikopoulos,m.f.lungu}@rug.nl

Abstract—Tens of thousands of web applications are written in
Flask, a Python-based web framework. Despite a rich ecosystem
of extensions, there is none that supports the developer in gaining
insight into the evolving performance of their service. In this
paper, we introduce Flask Dashboard, a library that addresses
this problem. We present the ease with which the library can be
integrated in an already existing web application, discuss some
of the visualization perspectives that the library provides and
point to some future challenges for similar libraries.

I. INTRODUCTION

There is no getting around it: you are building a distributed
system argues a recent article [1]. Indeed, even the simplest
second-year student project is a web application implemented
as two-tier architecture with a Javascript/HTML5 front-end a
service backend, usually a REST API.

Python is one of the most popular programming language
choices for implementing the back-end of web applications.
GitHub contains more than 500K open source Python projects
and the Tiobe Index1 ranks Python as the 4th most popular
programming language as of June 2016.

Within the Python community, Flask2 is a very popular
web framework3. It provides simplicity and flexibility by
implementing a bare-minimum web server, and thus advertises
as a micro-framework. The Flask tutorial shows how setting up
a simple Flask “Hello World” web-service requires no more
than 5 lines of Python code [2].

Despite their popularity, to the best of our knowledge, there
is no simple solution for monitoring the evolving performance
of Flask web applications. Thus, every one of the developers
of these projects faces one of the following options when
confronted with the need of gathering insight into the runtime
behavior of their implemented services:

1) Use a commercial monitoring tool which treats the
subject API as a black-box (e.g. Pingdom, Runscope).

2) Implement their own ad-hoc analytics solution, having
to reinvent basic visualization and interaction strategies.

3) Live without analytics insight into their services.

1TIOBE programming community index is a measure of popularity of
programming languages, created and maintained by the TIOBE Company
based in Eindhoven, the Netherlands

2http://flask.pocoo.org/
3More than 25K projects on GitHub (5% of all Python projects) are

implemented with Flask (cf. a GitHub search for “language:Python Flask”)

For projects on a budget (e.g. research, startups) the first
and the second options are often not available due to time
and financial constraints. Even when using 3rd-party analytics
solutions, a critical insight into the evolution of the exposed
services of the web application, is missing because such
solutions have no notion of versioning and no integration with
the development life cycle. [3]

To avoid projects ending up in the third situation, that
of living without analytics, in this paper we present Flask
Dashboard — a low-effort service monitoring library for
Flask-based Python web services that is easy to integrate and
enables the agile assessment of service evolution. [4]

As a case study, on which we will illustrate our solution,
we are going to use an open source API which was in the
third situation presented above for more than one year.

II. CASE STUDY

Zeeguu4 is a platform and an ecosystem of applications
for accelerating vocabulary acquisition in a foreign language
[5]. The architecture of the ecosystem has at its core an API
implemented with Flask and Python and a series of satellite
applications that together offer three main intertwined features
for the learner:

1) Reader applications that provide effortless translations
for those texts which are too difficult for the readers.

2) Interactive exercises personally generated based on the
preferences and past likes of the learner.

3) Article recommendations which are at the appropriate
level of difficulty for the reader. The difficulty is esti-
mated based on past exercise and reading activity.

The core API provides correspondingly three types of
functionality: contextual translations, article recommendations,
and personalized exercise suggestions. The core API of system
is a research project, which sustains at the moment of writing
this article the reading and practice of about two hundred
active beta-tester accounts.

In the remainder of this paper, we will use the Zeeguu API
as a case study. All the figures in this paper are captured from
the actual deployment of Flask Dashboard in the context of
the Zeeguu API5.

4https://www.zeeguu.unibe.ch/
5Within the Flask Dashboard the figures are interactive offering basic data

exploration capabilities: filter, zoom, and details on demand[6]

http://flask.pocoo.org/
https://www.zeeguu.unibe.ch/

III. THE FLASK DASHBOARD

In this paper we are introducing Flask Dashboard, a drop-in
Python library that allows developers to monitor their Flask-
based Python web applications with minimal effort.

The Flask Dashboard as well as the web application that
is being monitored in the case study is written in Python
using Flask. This makes binding to the web services of the
application relatively easy, as well as adding additional routes
to the service for interacting with the Flask Dashboard.

To start using our Python library for service visualization,
and assuming Flask is already installed, one needs to install
the Python package6 and simply add two lines of code to their
Flask web service:

import dashboard
...
flask_app is the Flask app object
dashboard.bind(flask_app)
...

After binding to the service, the Flask Dashboard becomes
available at the /dashboard route of the Flask application.
A custom route can also be defined by the programmer in a
configuration file.

During binding, the Flask Dashboard will search for all
endpoints defined in the target application. These will be
presented to the user in the tool web interface, where the user
can select the ones that should be monitored, see Fig. 1.

Fig. 1. All of the endpoints of the Zeeguu app are shown such that a selection
can be made for monitoring them

In order to monitor an endpoint, the Flask Dashboard creates
a function wrapper for the API function that corresponds to
the endpoint. This way, the wrapper will be executed whenever
that API call is made. The wrapper contains the code that takes
care of monitoring an endpoint. Data collected by the wrappers
are persisted in a local database.

There are three main categories of visual perspectives that
are available using Flask Dashboard:

1) Service Utilization presents information about the usage
of all the endpoints of interest,

2) Endpoint Performance presents response times of the
various service endpoints,

6Section X shows how to install the package

3) User Experience presents information about the user-
perceived performance of the service endpoints.

In the remainder of the paper we present several of these
perspectives.7

IV. SERVICE UTILIZATION

The most fundamental insight that a service maintainer
needs regards service utilization.

Figure 2 shows a first perspective on endpoint utilization
that Flask Dashboard provides: a stacked bar chart of the
number of hits to various endpoints grouped by day8. Figure 2
in particular shows that at its peak the API has about 12.000
hits per day. The way users interact with the platform can
also be inferred since the endpoints are indicators of different
activity types, e.g.:

1) api.get_possible_translations is an indica-
tor of the amount of foreign language reading the users
are doing, and

2) api.report_exercise_outcome is an indicator
of the amount of foreign vocabulary practice the users
are doing.

Fig. 2. The number of requests per endpoint per day view shows the overall
utilization of the monitored application

Besides showing the overall utilization, this endpoint pro-
vides the maintainer with information relevant for decisions
regarding endpoint deprecation — one of the most elementary
ways of understanding the needs of the downstream[7]. In our
case study, the maintainer realized that one endpoint which
they thought was not being used (i.e. words_to_study),
contrary to their expectations, was actually being used9.

7We recommend obtaining a color version of this paper for better readability
8Endpoint colors are the same in different views
9A complementary type of usage information can also be discovered in the

view presented in Figure 1 where seeing that an endpoint is never accessed
can increase the confidence of the maintainer that a given endpoint is not
used, although it can never be used a proof.

g

A second type of utilization question that the Flask Dash-
board can answer automatically regards cyclic patterns of
usage per hour of day by means of a heatmap, as in Fig. 3.

Fig. 3. Usage patterns become easy to spot in the requests per hour heatmap

Figure 3 shows the API not being used during the early
morning hours, with most of the activity focused around
working hours and some light activity during the evening. This
is consistent with the fact that the current users are all in the
central European timezone. Also, the figure shows that the
spike in utilization that was visible also in the previous graph
happended in on afternoon/evening.

V. ENDPOINT PERFORMANCE

The Flask Dashboard also collects information regarding
endpoint performance. The view in Fig. 4 summarizes the
response times for various endpoints by using a box-and-
whiskers plot.

Fig. 4. The response time (in ms) per monitored endpoint view allows for
identifying performance variability and balancing issues

From this view it became clear to the maintainer that four
of the endpoints had very large variation in performance. The
most critical for the application and consequently the one opti-
mized first was the api.get_possible_translations

endpoint which was part of an interactive loop in the reader
applications that relied on the Zeeguu API. Moreover, cf.
Fig. 2 this endpoint is one of the most used in the system.

g

However, with the current configuration of the tool, it would
be impossible for the maintainer to see the improvements
resulting from the optimization. One way to do this is to add
an extra line of configuration to allow Flask Dashboard to find
the git10 folder of the deployed service:

dashboard.config.git = ’path/to/.git’

With this extra configuration, the Flask Dashboard
can now automatically detect the current version of
the project, and group measurements by version11.
Fig. 5 is a zoomed-in version of such a view for
api.get_possible_translations with versions
increasing from top to bottom

Fig. 5. Visualizing The Performance Evolution of the
api.get_possible_translations endpoint

This view confirms that the performance of the translation
endpoint improved in the recent versions: the median of the
last three versions is constantly moving towards the left, and
progresses from 1.4 seconds (in the top-most box plot in
Fig. 5) to 0.8 in the latest version (bottom-most box plot).

g

The Flask Dashboard collects extra information about
such outliers: Python stack trace, CPU load, request param-
eters, etc. in order to allow the maintainer to investigate the
causes of these exceptionally slow response times.

In order to address this, but without degrading overall
performance, the Flask Dashboard tracks for every endpoint a
running average value. When it detects that a given request is
an outlier with respect to this past average running value, it
triggers the outlier data collection routine which stores all the
previously listed extra information about the current execution
environment.

10https://git-scm.com/
11Alternatively, the maintainer can add version identifiers manually for the

web application through a configuration file if the system does not use git.

https://git-scm.com/

VI. USER EXPERIENCE

For service endpoints which run computations in real time,
the maintainer of a system might want to understand the
endpoint performance on a per-user basis, especially for situ-
ations where the system response time is a function of some
individual user load12.

To enable this, the Flask Dashboard must be configured to
associate an API call with a given user. The simplest way is
to take advantage of the architecture of Flask applications in
which a global flask.request object can be used to re-
trieve the session which can in turn lead to user identification:

app specific way of extracting the user
from a flask request object
def get_user_id():

sid = int(flask.request.args[’session’])
session = User.find_for_session(sid)
return user_id

attaching the get_user_id function
dashboard.config.get_group_by = get_user_id

In Zeeguu, api.get_feed_items_with_metrics
retrieves a list of recommended articles for a given user. Cf.
Fig. 4 it is the endpoint with the slowest response time and
highest variability. The reason for this is that a user can be
subscribed to anything from one to three dozen article sources
and for each of the sources the system must compute the
personalized difficulty of each article at every request.

Fig. 6. The api.get_feed_items_with_metrics shows a very high
variability across users

A Per-User Performance perspective should show the
different response times for different users. Figure 6 presents
a subset of the corresponding view in the Flask Dashboard.
The figure shows that the response times for this endpoint can
vary considerably for different users with some extreme cases
where a user has to wait a full minute until their recommended
articles are shown13.

12E.g. in GMail some users have two emails while other have twenty
thousand and this induces different response times for different users

13After seeing this perspective, the maintainer refactored the architecture
of the system to move part the difficulty computation out of the interactive
loop

The limitation of the previous view is that it does not
present the information also on a per version basis. To address
this, a different visual perspective entitled Multi-Version

per-User Performance can be defined. Figure 7 presents
such a perspective by mapping the average execution time for
a given user (lines) and given version (columns) on the area
of the corresponding circle. The colors represent users. The
figure shows average performance varying across users and
versions with no clear trend: this is probably because varying
user workload (i.e. number of sources to which the user is
registered) is the reason for the variation in response times.

Fig. 7. This perspective shows that the evolution of response times for
individual users (horizontal lines) across versions (the x-axis)

VII. DISCUSSION

A. Automatically Monitoring System Evolution

The main goal of the Flask Dashboard design was to allow
analytics to be collected and insight to be gained by making
the smallest possible changes to a running API. This technique
assumes that the web application code which is the target of
the monitoring is deployed using git in the following way:

1) The deployment engineer pulls the latest version of the
code from the integration server; this will result in a new
commit being pointed at by the HEAD pointer.

2) The deployment engineer restarts the new version of
the service. At this point, the Flask Dashboard detects
that a new HEAD is present in the local code base and
consequently starts associating all the new data points
with this new commit14.

The advantage of this approach is the need for minimal
configuration effort, as discussed in the presentation of the
tool. The disadvantage is that it will consider on equal ground
the smallest of commits, even one that modifies a comment,
and the shortest lived of commits, e.g. a commit which was
active only for a half an hour before a new version with
a bug fix was deployed, with major and minor releases of

14The Flask Dashboard detects the current version of the analyzed system
the first time it is attached to the application object, and thus, assumes that the
Flask application is restarted when a new version is deployed. This is in tune
with the current version of Flask, but if the web server will support dynamic
updates in the future, this might have to be taken into account

the software. A mechanism to control which versions are
important for monitoring purposes is therefore required to be
added. A further possible extension point here is supporting
other version control systems (e.g. Mercurial). However, this
is a straightforward extension.

B. User-Awareness

For the situations in which the user information is not avail-
able, the Flask Dashboard tracks by default information about
different IPs and in some cases this might be a sufficiently
good approximation of the user diversity and identity.

The visualizations for the user experiene perspectives as
presented in Section VI have been tested with several hundred
users (of which about two hundred were active during the
course of the study), but the scalability of the visualizations
must be further investigated for web services with tens of
thousands of users.

C. Other Possible Groupings

There are other groupings of service utilization and per-
formance that could be important to the maintainer, that we
did not explore in this paper. For example, if the service is
using OAuth, then together with every request, in the header
of the request there is information about the application which
is sending a request. Grouping the information by application
that sends the request could be important in such a context.

In general, providing a mechanism that would allow very
easy specification of groupings (either as code annotations, as
normal code, or as configuration options) is an open problem
that Flask Dashboard and any other similar library will have
to face.

VIII. RELATED WORK

There is a long tradition of using visualization for gaining
insight into software performance. Tools like Jinsight [8] and
Web Services Navigator [9] pioneered such an approach for
Java and for Web Services that communicate with SOAP
messages. Both have an “omniscient” view of the services /
objects and their interactions. As opposed to them, in our work
we present an analytics platform which focuses on monitoring
a single Python web service from its own point of view.

From the perspective of service monitoring, our work falls
within the server-side run-time monitoring of services [10].
While we don’t implement the more advanced features of
related monitoring solutions like QoS policies driving the
monitoring, it presents nevertheless an easy to use approach
support improving the performance of web applications.

IX. CONCLUSION AND FUTURE WORK

In this paper we have shown that it is possible to create
a monitoring solution which provides basic insight into web
service utilization and performance with very little effort from
the developer. The user group that we are aiming for with this
work is application developers using Flask and Python to build
web applications with limited or no budget for implementing
their own monitoring solutions. The emphasis is in allowing

such users to gain insight into how the performance of the
service evolves together with the application itself. We believe
that the same architecture, and lessons can be applied to other
frameworks and other languages.

In the future, we plan to perform case studies with other
sytstems, with the goal of discover other needs and to wean
out the less useful visualizations in the Flask Dashboard.
We plan to also extend the tool towards supporting multiple
deployments of the same applications across multiple nodes
(e.g. for the situations where the application is deployed
together with a load balancer). Finally, we plan to integrate
Flask Dashboard with unit testing as a complementary source
of information about performance evolution.

X. TOOL AND SOURCE CODE AVAILABILITY

The images in this paper are screenshots of the interactive
visualizations from the deployment of Flask Dashboard in the
context of the Zeeguu API. The deployment of the system can
be consulted online by readers and reviewers of this paper15.

Flask Dashboard is implemented for Python 3.6 and is avail-
able on the Python Package Index repository16 from where
it can be installed on any system that has Python installed
by running pip install flask_monitoring_dashboard

from the command line.
The source code of the Flask Dashboard is published under

a permissive MIT license and is available on GitHub17.

REFERENCES

[1] M. Cavage, “There is no getting around it: you are building a distributed
system,” Communications of the ACM, vol. 56, no. 6, pp. 63–70, 2013.

[2] A. Ronacher, “Quickstart,” http://flask.pocoo.org/docs/0.12/quickstart/
#quickstart, 2010, [Online; accessed 25-June-2017].

[3] M. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing evolv-
ing services,” Software, vol. 28, no. 3, pp. 49–55, 2011.

[4] O. Nierstrasz and M. Lungu, “Agile software assessment,” in
Proceedings of International Conference on Program Comprehension
(ICPC 2012), 2012, pp. 3–10. [Online]. Available: http://scg.unibe.ch/
archive/papers/Nier12bASA.pdf

[5] M. F. Lungu, “Bootstrapping an ubiquitous monitoring ecosystem
for accelerating vocabulary acquisition,” in Proccedings of the 10th
European Conference on Software Architecture Workshops, ser. ECSAW
2016. New York, NY, USA: ACM, 2016, pp. 28:1–28:4. [Online].
Available: http://doi.acm.org/10.1145/2993412.3003389

[6] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in IEEE Visual Languages, College Park,
Maryland 20742, U.S.A., 1996, pp. 336–343.

[7] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz, “A quantitative
analysis of developer information needs in software ecosystems,”
in Proceedings of the 2nd Workshop on Ecosystem Architectures
(WEA’14), 2014, pp. 1–6. [Online]. Available: http://scg.unibe.ch/
archive/papers/Haen14a-QuantitativeEcosystemInformationNeeds.pdf

[8] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang, “Visualizing the execution of java programs,” in Revised
Lectures on Software Visualization, International Seminar. London,
UK: Springer-Verlag, 2002, pp. 151–162.

[9] W. D. Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J. F. Morar,
“Web services navigator: Visualizing the execution of web services,”
IBM Systems Journal, vol. 44, no. 4, pp. 821–845, 2005.

[10] C. Ghezzi and S. Guinea, “Run-time monitoring in service-oriented
architectures,” in Test and analysis of web services. Springer, 2007,
pp. 237–264.

15https://zeeguu.unibe.ch/api/dashboard; username: guest, password: vissoft
16https://pypi.python.org/pypi/flask-monitoring-dashboard/1.8
17https://github.com/mircealungu/automatic-monitoring-dasboard

http://flask.pocoo.org/docs/0.12/quickstart/#quickstart
http://flask.pocoo.org/docs/0.12/quickstart/#quickstart
http://scg.unibe.ch/archive/papers/Nier12bASA.pdf
http://scg.unibe.ch/archive/papers/Nier12bASA.pdf
http://doi.acm.org/10.1145/2993412.3003389
http://scg.unibe.ch/archive/papers/Haen14a-QuantitativeEcosystemInformationNeeds.pdf
http://scg.unibe.ch/archive/papers/Haen14a-QuantitativeEcosystemInformationNeeds.pdf
https://zeeguu.unibe.ch/api/dashboard
https://pypi.python.org/pypi/flask-monitoring-dashboard/1.8
https://github.com/mircealungu/automatic-monitoring-dasboard

