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Abstract

A new recon�gurable architecture for biomedical applications is presented in this paper. The architecture targets fre-
quently encountered functions in biomedical signal processing algorithms thereby replacing multiple dedicated accel-
erators and reports low gate count. An optimized implementation is achieved by mapping methodologies to functions 
and limiting the required memory leading directly to an overall minimization of gate count. The proposed architecture 
has a simple con�guration scheme with special provision for handling feedback. The e�ectiveness of the architecture is 
demonstrated on an FPGA to show implementation schemes for multiple DSP functions. The architecture has gate count 
of ≈25k and an operating frequency of 46.9 MHz.

Keywords Biomedical signal processing · Recon�gurable architectures · Low gate count architecture · Digital signal 
processing

1 Introduction

Advances in Integrated Circuit (IC) technology have 
resulted in miniaturized devices useful for wearable bio-
medical applications. Custom and con�gurable solutions 
for Electrocardiogram (ECG) processing have been dis-
cussed extensively in the literature [1–4]. As an example, 
[5] discusses a low-energy microprocessor ( �P ) for R-wave 
detection, heart rate calculation and arrhythmia based on 
the R-R interval with a 78% detection accuracy. The use of 
microprocessors provides �exibility in con�guration that 
translates to cost-e�ective and time-e�cient solutions but 
adversely a�ects the power budget for compute-intensive 
operations. Researchers in [6] discuss low power system 
that combines o�-the-shelf � P with dedicated ECG pro-
cessing for data compression and arrhythmia detection. 
In [7, 8], custom accelerators for DSP functions used in 
biomedical signal processing are discussed. These accel-
erators in conjunction with a customized low power � P are 

used for ExG (EEG (Electroencephalogram), ECG) process-
ing, targeting a large subset of biomedical applications. A 
miniaturized system in [9] demonstrates a limit on radio 
transmissions indicating alerts and alarms instead of con-
tinuous streaming of raw data while monitoring critical 
physiological signals in patients. It provided a signi�cant 
increase in the power e�ciency of the overall system due 
to a decrease in radio utilization, emphasizing the need 
to maximize local processing. Generic hardware accelera-
tors discussed in [8, 10, 11], target common signal process-
ing techniques predominantly used in biomedical appli-
cations. This ensures the use of accelerators in multiple 
varied algorithms and provides an energy-e�cient solu-
tion with the �exibility to map a large set of biomedical 
applications. However, multiple accelerators can increase 
the overall gate count of the system. The potential perfor-
mance bene�ts of a low gate count architecture are dis-
cussed in [12] and an analysis of the e�ect of gate count 
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and critical path of architecture in the sub-threshold 
region on power consumption is highlighted in [13].

It is possible to combine the performance and e�ciency 
bene�ts of hardware with the �exibility of software by 
using recon�gurable systems where the hardware (re)
con�gures itself to perform multiple functions of an appli-
cation in a time-multiplexed manner. The regularity of cer-
tain functions used in biomedical signal processing algo-
rithms is exploited in this work which results in reduced 
overhead and consequently, a lightweight architecture is 
obtained. A novel recon�gurable architecture based on 
shift-accumulate operation is con�gurable for frequently 
processed algorithms. The architecture has a con�gurable 
datapath and supports a range of biomedical signal pro-
cessing algorithms and is veri�ed on a �eld programmable 
gate array (FPGA) platform.

The developed architecture is implemented on an FPGA 
as a proof-of-concept and can be realized as an ASIC act-
ing as an accelerator for compute-intensive operations 
alongside an embedded processor. The compute-inten-
sive operations, such as CORDIC, DCT, etc., are often seen 
in biomedical signal processing algorithms and take 
prolonged time to process such operations on embed-
ded processors. A hardware design with data�ow-based 
execution o�ers processing in reduced number of clock 
cycles as compared to an embedded processor. Addition-
ally, the developed architecture is con�gurable and thus 
can span a large set of biomedical algorithms imitating (to 
some extent) the complete programmability advantage of 
embedded processors.

The types of biomedical functions addressed are pre-
sented in Sect. 2. The overview of the proposed architec-
ture is discussed in Sect. 3 followed by di�erent architec-
tural topologies in Sect. 4. The mapping methodologies 
for target functions are discussed in Sect. 5. The results for 
di�erent mapping cases on the hardware are presented 

in Sect. 6. Conclusion and future work are discussed in 
Sect. 7.

2  Functionality pro�le of biomedical 
applications

Table 1 presents the overview of common DSP functions 
used in biomedical applications. The majority of the tabu-
lated applications report the frequent use of following 
functions FIR and IIR Filters, Di�erentiation, Moving aver-
age, maxima and minima, FFT, DWT, DCT and complex trig-
onometric functions. Finite Impulse Response or In�nite 
Impulse Response (FIR or IIR) �ltering is used primarily for 
noise removal and feature extraction. The di�erentiation 
function is used to track the variation pattern of a signal 
by means of slope information. Moving average, median 
and maxima functions are used to extract the peak infor-
mation of a signal. The Fast Fourier Transform (FFT) and 
Discrete Wavelet Transform (DWT) are used for analysis of 
signals in the frequency domain. The classical approach of 
estimating blood saturation involves the Discrete Cosine 
Transform (DCT) computations [14]. Additionally, the DWT 
and DCT algorithms are reported to be used for the signal 
compression purpose to reduce the transmission share 
of the radio [6]. Finally, complex trigonometric function 
computations are reported alongside the fundamental 
operations of multiplication, addition, scaling, division, 
etc. [15, 16].

Clearly, it can be observed from Table 1 that FIR or IIR, 
CORDIC, DWT, DCT, di�erentiation and moving average 
form the dominant operations encountered in biomedical 
signal processing applications. As a consequence, these 
operations constitute the target domain functions for 
any signal processing hardware platform. In the next sec-
tion of this paper we show that by manipulating a simple 

Table 1  Digital Signal Processing Functions in Ambulatory Biomedical Applications

Signal Application DSP functions

ECG Onset and Duration of QRS [17] In�nite Impulse Response (IIR), Magnitude of vector ( 
√

⋅ , ( ⋅)2 , 
addition), division, median

QRS Detection [16] IIR, Finite Impulse Response (FIR), d
dx

 , ( ⋅)2 , moving average

QRS Detection [18] FIR, d
dx

 , ( ⋅)2 , weighted moving average

QRS Detection [19] Running slope, multiplication, scaling, average, maxima

ECG �ducial points [20] Discrete Wavelet Transform (DWT), local maxima modulus

EEG Epileptic Seizure onset[21] FIR

Seizure Detection[22] DWT

Automatic recognition of alertness [23] DWT

PPG Pulse Oximetry[24] FIR, log

Blood Saturation [14] Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT)

Heart Sound Auscultation Aid[15] FFT, tan , sin
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mathematical function that forms the basis of these signal 
processing operations, it is possible to exploit the serial 
nature of the computation to derive an e�cient and recon-
�gurable circuit.

3  Shift-accumulate (SAC) architecture

3.1  Introduction

As discussed previously in this paper, the shift-accumulate 
(SAC) architecture is central to potential improvements in 
the hardware. This section describes the details of the SAC 
architecture, starting with the mathematical underpinning 
of the approach.

3.2  Mathematical foundation

In order to establish the mathematical foundation of the 
SAC approach, an example of a FIR �lter can be examined. 
In an N-tap FIR �lter, the output y[n] with inputs x[n] and 
coe�cients bi is given by:

When the inputs and coe�cients are represented as 8-bit 
binary numbers Eq. 1 can be rewritten as:

(where coe�cients ( bi ) are expressed in terms of bit value 
( bik ) and bit weights ( 2k))

Rearranging Eq. 2 results in Eq. 3.

The foundational mathematical equations of the SAC 
architecture is presented in the paper. The pseudocode of 
the proposed scheme is shown in Algorithm 1.

The resulting mathematical equation is obtained 
wherein the partial products can be generated, 

(1)
y[n] = b

0
⋅ x[n] + b

1
⋅ x[n − 1] +⋯ + bN ⋅ x[n − (N − 1)]

(2)y[n] =

N−1
∑

i=0

bi ⋅ x[n − i] =

N−1
∑

i=0

[( 7
∑

k=0

bik ⋅ 2
k

)

x[n − i]

]

(3)y[n] =

7
∑

k=0

[( N−1
∑

i=0

bik ⋅ x[n − i]

)

2
k

]

Table 2  The Comparison of 
Hardware Implementations of 
Eqs. 1, 2 and 3 Realizing N-term 
Multiply-Accumulate

AND, OR and XOR gates are accounted as 2, 3 and 4 NAND gates

Eq. 1 Eq. 2 Eq. 3

Nature of Execution Parallel Mixed Serial

ParProd. Generation 64 AND 8 AND 8 AND

ParProd. Accumulation 7 16-b adders SA N 9-b adders

Product Accumulation (N-1) 16-b adders (N-1) 16-b adders SA

Equivalent NAND gates 2048N-240 496N-240 143N+240

Gates Savings 13.43× 3.47× 1

Algorithm 1 Pseudo Code for SAC Architecture

Load Control Word

Load Coefficients

Load Data

Initialize i

Process:

For i = 0 to 7

Multiply coefficient and data serially using bit-wise and operation

Add partial products

If Data Valid: Go to Process

End

Log Output Result
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accumulated sequentially and the common weight par-
tial products then accumulated, showing clearly how 
the SAC approach can be implemented in this case. The 
resulting reduction in hardware elements can be clearly 
seen when the implementation is examined more closely. 
This function can be realized using a 9-b adder tree con-
taining N adders. The �nal accumulation uses one 16-b 
SA as opposed to N shift-accumulators while implement-
ing hardware using Eq.  2. Eq.  3 implementation uses 
143N+240 gates with 16 �ip-�ops for its realization and 
provides 13.43× and 3.47× saving, respectively, over Eqs. 1 
and 2, as indicated in Table 2.

3.3  Architecture and operation

The proposed architecture, shown in Fig. 1, is a Shift-
Accumulate (SAC) architecture, consisting of Register 
Units (RU), a Computation Unit (CU) and a Control Unit. 
The architecture is arranged as a 6 × 6 array of functional 
units called Register Units (RUs) based on Eq. 3. The par-
tial products generated in RUs are fed to the Computation 
Unit (CU) and the output is obtained after partial products 
accumulation and shift adjustments. In addition to con-
trolling the function execution, the control unit generates 
necessary synchronizing signals for RUs and CU.

Fig. 1  The Proposed 6x6 Architecture

Fig. 2  The Register Unit
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3.3.1  Register unit (RU)

The Register Unit consists of registers con�gured as an 8 × 1 
AND matrix and 8 × 1 XOR matrix (Fig. 2) to generate partial 
products. The x[n] input and bi coe�cients are loaded into 
data register (D

7∶0
 ) and coe�cient (C

7∶0
 ) register, respec-

tively. These registers hold the multiplicand and multiplier 
for the multiplication. The coe�cient is further loaded to a 
shifter block where the multiplier is rotated left by a bit at 
every clock cycle. The MSB of the shifter is fed to the AND 
matrix and D 

7∶0
 follows as the second input. The unsigned 

partial product thus generated is further converted to a 
signed partial product by XORing it with the sign bit. A 
9-bit 2:1 multiplexer makes the selection between regis-
tered and unregistered incoming data. The unregistered 
data is used in case of functions with feedback where the 
additional cycles incurred during processing have to be 
considered for synchronization. Following this, the input 
data is forwarded to the next RU after eight clock cycles.

3.3.2  Computation unit

As shown in Fig. 1, the Computation Unit (CU) is divided 
into four identical subsections where each subsection 
acts on nine partial products. It consists of an adder tree, 
a shift-accumulator and an output register. The adder tree 
has ripple carry adders that adds nine partial products 
each of 9 bits. The 23-bit output register is loaded with 
the �nal sum once the serially computed multiplication 
concludes.

3.3.3  Operation

The coe�cient register is loaded with the multiplier in 
one cycle followed by multiplicand loading in the data 
register and multiplier forwarded to shifter block in the 

subsequent cycle (Cycle #1). The multiplicand is ANDed 
with 7 th bit or MSB of multiplier generating the unsigned 
partial product. In the next clock (Cycle #2), the shifter 
block would have rotated the multiplier left by one place 
and 6 th bit becomes MSB now as illustrated in Fig. 3. The 
signed partial products for 6 th bit are generated and are 
added in adder tree. In such a case, the shift-accumulator 
block has a 7 th bit partial product sum (PP

7
 ) that is shifted 

left by one place (multiplied by 2 1 ). The 6 th partial product 
sum (PP

6
 ) is added with the shifted PP

7
 in the 21-b adder. 

The shift-accumulator register is now loaded with PP
7
 ⋅21

+PP
6
 . In the following clock (Cycle #3) *(due to another left 

shift) PP
7
 is multiplied by 2 2 and PP

6
 is multiplied by 2 1 . 

This is added with 5 th bit partial product sum that results 
in PP

7
 ⋅22+PP

6
 ⋅21+PP

5
 . This continues till the shift-accu-

mulator register holds the �nal output of PP
7
 ⋅27+PP

6
 ⋅26

+PP
5
 ⋅25+PP

4
 ⋅24+PP

3
 ⋅23+PP

2
 ⋅22+PP

1
 ⋅21+PP

0
 after 8 clock 

cycles.

3.4  Configurable datapath and control word

The proposed Shift-Accumulate (SAC) architecture sup-
ports functions that can be expressed as multiply-accu-
mulate operation using a control word. It should be noted 
that certain functions may not require all the Register 
Units (RU) and unused RUs can be isolated by means of 
con�gurable datapath.

The control word is 54 bit wide and has Code, Con�g, 
Feedback and Resolution �elds as shown in Fig. 4. The 5-bit 
Code �eld is used to identify the target function. The 31-bit 
Con�g �eld denotes the select lines (marked CMx and BPx 
in Fig. 4) of the multiplexers placed in the datapath. Two 
sets of multiplexers, identi�ed as the Con�guration and 
Bypass, respectively, are used in the datapath and allow 
di�erent connection topologies between RUs. Additional 
con�guration multiplexers are placed between the tiles to 

Fig. 3  MSB rotation in Coef-
�cient Register
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provide feedback (discussed further in Sect. 4). The bypass 
multiplexers are used to isolate unused RUs from the data-
path and can bypass a set of three RUs at a time.

The least signi�cant thirteen bits in the control word, 
labelled FBx and fbx, represent the select lines of feedback 
multiplexers (marked FBx_mux in Fig. 4) and constitute 
the feedback �eld of control word. Bits 0-4 of the control 
word are the select lines (marked fb in Fig. 1b) of the mul-
tiplexer inside RU that forwards registered or unregistered 
multiplicand. These bits are dedicated for RUs that receives 
feedback data, i.e. RU #1,4,19,22 and 34.

The leading four bits of the control word (Resolution 
�eld) provide the resolution of output. This is important 
in functions having feedback loop where the 23-b output 
data is limited to 9-b (width of RU data register). The reso-
lution �eld indicates the relevant output bits required to 
be saved for further processing. The remaining bits of the 
control word are reserved for future modi�cations.

Fig. 4  The Con�guration and Bypass Multiplexers in SAC Architecture

Fig. 5  The Coe�cient Mul-
tiplexers in the Architecture 
(Analogous Representation)
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3.4.1  Coefficient multiplexers

While mapping, different set of fixed coefficients are 
applied on RUs. For example, DCT and DWT forces their 
respective coefficients on RU# 19-30 as discussed in 
Sect. 5. The RUs where multiple coefficients are forced 
including the fixed coefficients are indicated in Fig. 5. For 
example, the DCT line is selected while mapping the DCT 
and is connected to DCT multiplexer that provides DCT 
transform matrix coefficients. The transform matrix has 
seven distinct coefficients that appear in either positive 
or negative form. Wavelet transform coefficients can be 
applied as external coefficients as the hardware supports 
multiple wavelets. A detailed discussion on coefficient 
multiplexers is provided in [25] and [26].

4  Architecture topologies

The con�gurable datapath of the SAC architecture exhibits 
various topologies as following:

4.1  Systolic array structure

The RUs can be arranged in a continuous chain of nine, 
eighteen, twenty-seven or thirty-six RUs as shown in Fig. 4. 
The most straight forward structure of thirty-six RUs form-
ing a chain is formed with RUs connected one after the 
other. In such a case, the bypass multiplexer selects are 
set and con�guration multiplexers pass the previous RU 
output. For eighteen RU, BP19 forced to ‘0’. A chain of 
nine RU is obtained by selecting tile# 1 as it consists of 
RU #1,2,3,10,11,12,13,14,15 by forcing ‘0’ and ‘1’ on CM10B 
and CM13, respectively. Additionally, the select line of all 
bypass multiplexers is set to ‘0’ except for BP10 and BP13. 
Similarly, a twenty-seven RU chain is formed by combining 
the eighteen RU chain and tile #3 and bypassing tile #4.

4.2  Four tile structure

The four tile structure is obtained by dividing the RUs into 
four groups of nine RU blocks. This con�guration enables 
parallel execution of functions as each tile forwards its par-
tial products to their respective CU subsection that com-
putes the results irrespective of the ongoing computation 
in other tile or CU subsection. The con�guration multiplex-
ers CMxB select line are forced to ‘0’ thereby passing for-
ward the data from the RU above it. For instance, Dataout 
#3, 9, 21 and 27 are fed to RU #10, 16, 28 and 34, respec-
tively. The bypass multiplexers are set when all the four 
tiles are in use and a tile is isolated from the datapath by 
clearing the bypass multiplexer of RU leading the tile. Tiles 
can be connected in a chain structure that is bene�cial 

for function chain realization where each function can be 
mapped on a separate tile. This can be achieved using the 
feedback multiplexers. Feedback multiplexers are used to 
direct the output (or combined output) of tile (or tiles) to 
input of other tiles. For instance, the four tile chain can 
be realized by connecting Tile #1 –> Tile #2 –> Tile # 3 –> 
Tile #4 by setting multiplexers FB4_mux, FB19_mux and 
FB22_mux to “00”, “01” and “10”, respectively. Following 
this topology, multiple functions are executed simultane-
ously while reducing the recon�guration overhead.

Additionally, the architecture also supports mixed 
topologies. For instance, one of the possible combinations 
of systolic tile and array structures can result in datapath 
from Tile1 –> Tile2 –> RU #19-36. These topologies can be 
obtained by setting the necessary CMx and BPx bits in the 
control word.

5  Mapping of di�erent functions

The con�gurability of the developed SAC architecture can 
be leveraged to realize multiple biomedical signal process-
ing operations on it, because the majority of the functions 
include multiplication and addition. Mapping methodolo-
gies for these commonly used functions are presented in 
this section. The target functions, also optimized for the 
proposed hardware, are classi�ed broadly into two cat-
egories: Variable and Fixed coe�cient functions. The coef-
�cients of variable functions depend on the characteris-
tic parameters of the function. For example, bandwidth, 
gain and number of taps determine the coe�cients of 
FIR �lter. In contrast, the �xed coe�cient functions have 
constant coe�cients and they undergo �xed steps result-
ing in constant coefficients. Therefore, it is redundant 
for the user to explicitly provide constant coe�cients to 
the hardware and is eliminated by means of simple state 
machines. The architecture contains state machines for all 
the target functions. Based on the control word, one of the 
state machines becomes active and controls the function 
execution.

5.1  Variable coefficient functions

The multiplication, squaring, addition and multiply-
accumulate (MAC) functions are based on the common 
equation: 

∑11

i=0
ai ⋅ bi . A special case of MAC, where a

i
 = 

1, represents the addition operation. For multiplication a
i
 

(and/or bi ) is 0 for i>0 and for squaring, a
i
 = bi is done in 

the multiplication. The 12 RUs, marked #1, 4, 7, 10, 13, 16, 
19, 21, 24, 27, 30 and 33, receive external data and com-
putation takes eight clock cycles. It is possible to map this 
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operation by choosing a di�erent set of 12 RUS anywhere 
in the architecture but with a higher latency.

The mathematical equation for FIR filtering, differ-
entiation and moving average can be readily expressed 
as a MAC operation. However, the 2-D convolution 
includes the product of data and coe�cient matrices as 
Z(i, j) =

∑N1−1

m=0

∑N2−1

n=0
X (i −m, j − n).Y(m)(n) , where N

1
× N

2
 

is the matrix size. The convolution consist of multiply-accu-
mulate with spatially shifted input samples. The spatial 
shifts in the input matrix can be handled by careful inter-
pretation of input rows in the memory [12]. By doing so, 
the 2-D convolution yields to 1-D convolution operation 
of length N

1
× N

2
 . The generalized equation of FIR �ltering, 

Di�erentiation, Moving Average and 2-D convolution thus 
becomes 

∑N−1

i=0
x[n − i] ⋅ bi , where N ≥ N

1
× N

2
 . This output 

is based on the previous inputs and require memory ele-
ments. The architecture supports thirty-six taps for these 
set of functions. The external data (x[n]) is supplied on RU 
#1 and RUs can be connected in chain structure using the 
con�guration and bypass multiplexers. The 2-D convolu-
tion requires input ports equal to the number of rows in 
the transform mask. The mask size of up to (6× 6) can be 
mapped on the proposed hardware.

5.2  Fixed coefficient functions

Functions grouped in this category perform computations 
using a state machine. The state machine transforms the 
algorithm into a series of sequential steps. The �xed coef-
�cients are stored in register �les.

5.2.1  COrdinate Rotation DIgital Computer (CORDIC) [27]

It is derived from the general rotation transform and pro-
vides an iterative method of performing vector rotations 
by arbitrary angles using only shift and add operations. 
Generalized version of the algorithm is given by Eq. 4 [28] 
and includes hyperbolic and nonlinear functions, loga-
rithm, square root computations in addition to the stand-
ard trigonometric functions.

The top level hardware architecture for the CORDIC is 
shown in Fig. 6a. The ‘X and Y Computing Block’ com-
putes the x and y variables, whereas the ‘Angle Accu-
mulator Computing Block’ computes the z variable. The 

(4)

xi+1 =xi −m ⋅ yi ⋅ 2
−i
⋅ di

yi+1 =yi + xi ⋅ 2
−i
⋅ di

zi+1 =zi − �i ⋅ di

Fig. 6  CORDIC Mapping, a Representative CORDIC Hardware, b Active RUs and Datapath for CORDIC Mapping, c Circular Memory Structure 
for CORDIC
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computation uses an adder or a subtractor and result from 
the previous iteration. The right-shift operation ( >> ) can 
be viewed as multiplication with 2−i . The SAC architecture 
performs multiplication where the 9-b coe�cient register 
is loaded with the content 2−i in the ith iteration. The data 
register is loaded with the x, y or z variable (or � value) 
and the subsequent additions are carried out in the CU. 
[25] provides the seed value for various functions along 
with m and �.

Tile #1 and tile #3 are used for CORDIC mapping 
(Fig. 6b). The RUs are not connected with each other in 
both the tiles except for RU #19-21–⟩28-30 forming a 6 
RU chain. The seed values x

0
 , y

0
 , z

0
 are fed into RU #1, 

10 and 13 from the three read ports of circular mem-
ory (Fig. 6c). The y variable is computed first followed 
by z and x throughout the iterations. As y or z needs 
to undergo direction decision logic for next iteration, 
this process is overlapped with x computation so that 
no clock cycles are wasted. y

1
 is computed using y

0
 and 

x
0
 from RU #1 and RU #13, respectively, and the result 

stored in RU #19. At the same time, all the RUs pushes 
forward its data register content to the next RU in the 
chain. The arctan data is forced on RU #10 through inter-
nal multiplexer (CM10_int). Variable z

1
 is computed using 

RU #11 (z
0
 ) and RU #10 (arctan) and z

1
 is stored in RU 

#19, whereas y
1
 shifts to RU #20. Using RU #15 (x

0
 ) and 3 

(y
0
 ), variable x

1
 is computed and stored in RU #19. At this 

stage, y
1
 , z

1
 and x

1
 are in RU #21, RU #20 and RU #19. y

2
 

is computed using RU #21 and RU #19, z
2
 using RU #21 

and RU #10 and x
2
 using RU #21 and RU #29. It should be 

noted that, previous value is present in RU #21 for x , y 
and z. The second variable of the equation (x or y) lies in 
RU #19, RU #10 and RU #29. Same sequence is followed 
with a state machine that follows a defined pattern. 
The algorithmic state machine shown in Fig. 7 consists 
of six states and depicts the RU coefficients loaded in 
each state during CORDIC computation. The coefficients 
for RUs used in CORDIC algorithm mapping are applied 
through the CORDIC input of coefficient multiplexers. 
A CORDIC multiplexer shown in Fig. 5 is connected to 
the coefficient multiplexer CORDIC input of RU #19 and 
RU #29. The multiplexer has 2 i  terms in binary as inputs 
and its select line is controlled by the state machine and 
takes 24 cycles for each iteration. It stores results inter-
nally in RUs and does not use additional memory.

5.2.2  The 2-D Discrete Wavelet Transform

2-D DWT translates to two consecutive matrix multiplica-
tion between the input and DWT mask coe�cients. The 
results of matrix multiplication can be directly realized as 
multiply-accumulate operation and thus can be supported 
by the SAC architecture. The DWT decomposes a signal 
into four frequency sub-bands, namely LL (approximation 
(cA) matrix), LH (horizontal (cH) matrix), HL (vertical (cV) 
matrix) and HH (diagonal (cD) matrix). A generic mapping 
methodology is discussed that supports twenty-eight 
wavelets with �lter size <8 [26]. The DWT algorithm �rst 
computes low pass �ltering followed by down sampling 
by a factor of 2. The resultant vector is convolved with high 

Fig. 7  Flow Chart of CORDIC 
State Machine
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pass �lter and the LL DWT matrix is retained (with 75% 
compression) after another down sampling by a factor of 
2. Additionally, periodic padding [29] is done on either side 
of the input samples and intermediate results to ensure 
spatial continuity on boundaries. The DWT computation 
steps are shown in Fig. 8a wherein the row wise convolu-
tion is carried out on a 14× 8 padded image and an inter-
mediate matrix, Y is generated. Columns 0-3 of padded 
image are same as columns 5-8 of the actual image. Thus, 
the convolution �lter mask is modi�ed by swapping the 
�rst four terms with the last four terms. This eliminates 

the use of excess memory elements required to store the 
padding. Furthermore, the mask advances by two steps 
as opposed to one step in the conventional convolution 
performing down sampling along with the intermediate 
matrix generation. The second set of convolution is per-
formed on transposed padded Y matrix.

The proposed architecture supports 8 × 8 block 2-D 
DWT operation with the mapping scheme are indicated 
in Fig. 8b. The five states of the DWT state machine are 
shown in Fig. 9a. The intermediate matrix (Y) rows are 
computed in the first state and the other four states 

Fig. 8  DWT Mapping a Discrete Wavelet Transform Algorithm, b 2-D DWT Mapping on the SAC Architecture
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compute the first row of DWT matrix. Convolution filter 
coefficients provided by the state machine are input to 
RU #1, RU #4, RU #7, RU #10, RU #13, RU #16, RU #31 and 
RU #34 and are multiplied with the first row of image 
matrix to generate the first element of Y matrix. Similarly, 
the rest of the seven elements of first row of Y matrix 
are generated in 64 cycles. RU #19-RU #26 holds the 
first row which requires padding on either sides. This is 
done by means of convolution mask rearrangement. The 
convolution filter is rearranged by moving the first four 
coefficients towards the end. By doing this, the padded 
elements which are at the bottom of unpadded image 
gets multiplied with the respective coefficients yielding 
the same result as padded image with the unmodified 
filter mask (Fig.  9b). The mask manipulation enables 
computing cA elements without external padding on the 
intermediate matrix which further permits storing the 
intermediate matrix. The circular memory write pointer 
is used to write 8 × 8 (= 64) input data which is stored 
column-wise in different sections of the memory in an 
interleaved manner (Fig. 9c) for simplifying the read-
ing operation. It also ensures moving the convolution 
mask by 2 steps, a scheme adopted in the mapping to 
eliminate down sampling later. Consequently, multiple 
read ports ensure reading all columns simultaneously 

resulting in computation of Y matrix to be computed in 
eight clock cycles.

Fig. 9  DWT Mapping a Flow Chart of 2-D DWT State Machine, b DWT Mask Manipulation, c Data Stored in Interleaved Manner in the Circu-
lar Memory with the Write and Read Pointers. The updated columns are indicated by grey �lled text

Fig. 10  Flow Chart of 2-D DCT State Machine
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5.2.3  The 2-D discrete cosine transform (DCT)

Matrix computation (of an image) requires two matrix mul-
tiplication operations : DCT = DCT

mat
 * Image * (DCT

mat
)T , 

where transform matrix (DCT
mat

 ) becomes constant for a 
�xed mask size. Matrix multiplication can be realized on 
the proposed architecture by loading row and column ele-
ments of the two matrices in place of coe�cients and data 
registers, respectively. The architecture supports 8 × 8 block 
wise DCT and provides a compression of ≈ 84% (10 of 64 
output samples are retained). The DCT mapping datapath 
is similar to the DWT mapping methodology shown in 
Fig. 8b. The �rst matrix multiplication or the intermediate 
matrix Int

mat
 = DCT

mat
 * Image, row wise image data and 

�rst row of DCTmat are forced on RU #1, RU #4, RU #7, RU 
#10, RU #13, RU #16, RU #31 and RU #34 as data and coef-
�cient, respectively. The results form the �rst row of Int

mat
 

that is periodically stored from RU #19-RU #26 and has to 
be further multiplied with DCT

mat
 T .

The row coe�cients of the transform matrix are forced 
on coe�cient registers of RU #19-RU #26 and the resultant 
DCT(0,0) is obtained. On forcing subsequent DCT

mat
 rows 

in the coe�cient of RU #19-RU #30 chain, the remaining 
elements of the �rst row of DCT are obtained. It should be 
noted that, Int

mat
 stored in RU #19-RU #26 shifts down the 

RU chain every 8 clock cycles. This is incorporated by the 

state machine (Fig. 10) that consists of 5 states traversed 
four times, fully or partially to obtain Int

mat
 and DCT in 

successive computations. The state sequence di�ers with 
the iteration#, because the number of elements computed 
in the DCT matrix decreases by one with every row result-
ing in an upper triangular matrix. The Int

mat
 matrix is com-

puted in state #1 and DCT matrix is computed in states 
#2-5. The image data is stored column wise in an inter-
leaved manner in circular memory similar to data storage 
in DWT mapping discussed earlier.

6  Results and discussion

To demonstrate the feasibility of the proposed architec-
ture, the design was targeted onto a Virtex-II FPGA board 
(XUPV2P). The FPGA development board speeds up the 
veri�cation process by providing suitable interfaces in VGA 
and RS-232 ports among many other peripheral interfaces. 
The proposed architecture uses the sign-magnitude con-
vention to represent 9-b signed numbers. The code, con�g 
�elds and topologies for targeted functions are presented 
in Table 3, where the code acts as target function identi-
�er and controls the data read write operations of circular 
memory. The feedback gives rise to erroneous outputs as 
�xed-point binary numbers are used. This is addressed by 
making the resolution con�gurable that detects the cor-
rect output slice fed back to the RUs.

6.1  Hardware configuration

The architecture is configured by loading the control 
word, external coe�cients and data in their respective 
memories. These values are provided to the architecture 
through a 9-b input bus in a time multiplexed manner. The 
54-b control word is applied �rst serially in 9-b slices. The 
external coe�cients are loaded next and comprise of 36 
9-b binary numbers. Following this, input bus carries the 
data designated for the 9-b wide 64 position deep data 
memory. The input bus is controlled by mutually exclu-
sive control signals that are used to demarcate the control 
word, coe�cients and data.

The system level block diagram of the proposed archi-
tecture is shown in Fig. 11. The architecture has multiple 
memory modules for con�guration, control word, coe�-
cient, data and output. The con�guration memory is ini-
tialized using a coe�cient �le (.coe) that can be generated 
using MATLAB for large data sets. Data memory has an 
adaptable structure to support varied requirements of the 
target functions. A UART serial port (bit rate set at 115200 
bps) is interfaced with the hardware to transfer the output 
from FPGA to the PC for post processing.

Table 3  Control Word for Target Functions and Topologies

Function Code Con�g

Multiplication 01 00000000

Square 02 00000000

Addition/MAC 03/07(3-tap) 00D00000

04/08(6-tap) 0AD60000

05/09(9-tap) 0AD640D

06/0A(12-tap) 0AD66AB7

FIR, d
dx

 , MA 0B(9-tap) 00700000

0C(18-tap) 2FFE0000

0D(27-tap) 2FFF4070

0E(36-tap) 2FFF6FFF

DWT 0F 0AB66FD7, fb19=‘1’

2-D Convolution 10 00D00000

CORDIC 11 00D04040, fb19=‘1’

DCT 12 0AB66FD7, fb19=‘1’

Topology Con�g Feedback

Four Tile 0E724E73 –

Systolic Tiles

#1–>#2 1E720000 0008

#1–>#2–>#3 1E72C070 008C

#1–>#2–>#3–>#4 1E72DE73 00CE

RU chain–>#3–>#4 2FFEDE73 01C6
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6.2  Pan–Tompkins algorithm signal chain

To verify the usefulness and functionality of the proposed 
hardware, we have targeted a popular algorithm known 
as the Pan–Tompkins algorithm (PTA). This is a widely used 
algorithm for QRS detection in Electrocardiogram (ECG) 
signals that detect QRS complexes with accuracy up to 
99.3% [16]. The ECG signal from the MIT-BIH arrhythmia 
database is given as input to SAC architecture after con-
verting it to .coe format. The algorithm is based on ana-
lysing the amplitude, slope and width of QRS complexes 
and is modelled with steps shown in Fig. 12. The transfer 
function of the steps is shown in Table 4.

Careful observation of the transfer functions of QRS 
signal chain indicates that LPF and HPF (collectively BPF), 
di�erentiation, squaring and MA functions can be real-
ized by a series of shift-accumulate operations resulting 
in multiplier-less implementation of these functions. The 
control word and datapath for PTA signal chain is tabu-
lated in Table 4. The proposed architecture is �rst con�g-
ured as a LPF and the result is computed in 8 clock cycles. 
Following this, the architecture is con�gured to perform 
HPF. It should be noted that the HPF operates upon the 

LPF output. Therefore, the LPF output is loaded into the 
circular memory which further acts as the input data to 
the proposed architecture. The HPF output computation 
takes 8 clock cycles. The architecture is further con�gured 
to emulate di�erentiation, squaring and MA functions. The 
control word and the coe�cients of these functions are 

stored in the con�guration memory that is accessed using 
a state machine after each operation.

The LPF block has a window of 13 inputs with feed-
back of 2 output samples. RU #1 accepts the input data 
from Dataext1 port and a chain of 13 RUs (RU #1 – #13) is 
formed. The con�guration multiplexers are con�gured to 
forward the data from previous RU and bypass multiplex-
ers are set. The output samples are loaded into RU #34 
and #35 through the feed1234 dataline. Control word bit 
0 (fb34) is set as RU #34 carries feedback data. The remain-
ing RUs are disconnected from the datapath using bypass 
multiplexers. The computed hardware result for each 
block is shown in Fig. 13. The peaks obtained in the mov-
ing average output represent the QRS complex that can 
be detected further using a peak detector circuit. It can 
be seen that minor peaks are �attened in hardware results 
due to limited resolution in feedback. The QRS peaks 

Table 4  Transfer function 
of PTA blocks [16] with their 
Mapping on SAC Architecture

Block Name Transfer function Code Control word con�g Datapath (RUs)

LPF (1-2z−6+z−12)/(1-2z−1+z−2) 0C 2FF000010001 #1– #13, #34 – #35

HPF (-1+32z−16+z−32)/(1+z−1) 0E 2FFF6FF10001 #1– #33, #34

Di�erentiator (z−2-2z−1+2z1+z2)/8 0B 280000000000 #1– #5

Squaring x[n]2 02 000000000000 #1

Moving Average 1

32

∑31

i=0
x[n − i] 0E 2FFF6FF10000 #1 – #32

Fig. 11  a System Level Interac-
tion of SAC Architecture with 
Peripherals, b Actual Hardware 
Setup

Fig. 12  PTA Signal Chain
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detected on the hardware processed data coincides with 
the analytically detected peaks. The architecture takes 485 
clock cycles/sample (= 10.34 � s or throughput 96.7e3 sam-
ples/second at 46.9 MHz operating frequency), including 
con�guration, data loading and processing, while emu-
lating the PTA signal chain. Biomedical signal processing 
applications pose moderate processing requirements on 
the computing platform primarily due to low data rates 
(up to 320 Kb/s) [30] of physiological signals. Addition-
ally, according to a study in [31], the operating frequency 
of the processing platform are limited to 10’s of kHz and 
(8-12)-bit processing for biomedical devices. This leaves 
su�cient clock cycles to tolerate the latency of the serial 
SAC architecture of the ECG application mentioned above 

that has been demonstrated to take 10.34 � s to process 
a single data sample. Also, SAC architecture supports 
8-b signed arithmetic that has been adopted in various 
matured applications in the domain [31]. However, there 
is scope for incorporating the applications requiring 
increased precision by increasing the number of bits in the 
data/coe�cient registers and scaling up the adder units 
accordingly. It should be noted that, we have not consid-
ered Electromagnetic Interference of ECG signals in our 
setup. The work is primarily focused on developing a con-
�gurable lightweight processing platform for biomedical 
signal processing algorithms. The EMI and other artefacts 
are assumed to be taken care of by the acquisition sys-
tem which is beyond the scope of this work. We used the 
ECG signal from the MIT-BIH arrhythmia database is given 
as input to SAC architecture. The ECG signal is collected 
from the patients in normal clinical setting and are not 
�ltered. The type of noises in the database is not explicitly 
mentioned.

6.3  CORDIC, DCT and DWT results

Table  5 notes the range and resolution supported by 
the hardware for CORDIC. The results obtained from the 
hardware agrees well with the ideal (MATLAB) results for 
functions such as sin(cos); sinh(cosh); e x and ln(x) and are 
shown over their respective range shown in Fig. 14a–d. 
The architecture computes cosine with accuracy ranging 
from 83 to 98% and the resolution is 2 −1 (= 1 bit) when the 
decimal point is between 1 st and 0 th bit position. Thus, the 
smallest measurable degree is 0.5◦ while the remaining 7 
bits denotes range of the data.

The test setup for the DCT is shown in Fig. 15a. It uses 
a 128×128 image as input. The 8 × 8 sub-images undergo 
the DCT operation on the proposed architecture and 
results are processed in MATLAB which reconstructs the 
image by performing o�ine block wise IDCT. The recon-
structed image obtained from the hardware and MATLAB 
are shown in Fig. 15b and c, respectively. The L2 norm is 
reported as 15.77 and 15.75 for hardware and MATLAB 
reconstructed images, respectively, with respect to the 
actual image.

To demonstrate the feasibility of the proposed 
approach, the 2-D DWT with two standard test images is 
taken. A 16× 16 checker board image with Haar wavelet 
and a 128×128 Lena image with bior2.2 wavelet is com-
puted on the hardware. The mean square error between 
the actual and hardware reconstructed image for the Lena 
intensity image is 2.2m. The actual and reconstructed 
Lena images both from MATLAB simulation and hardware 
implementation are shown in Fig. 16. The image metrics 
are reported in Table 6. The MSE for reconstructed images 

Fig. 13  Hardware Computed PTA Results a BPF. b Di�erentiation. c 
Squaring, d Moving average

Table 5  Range and Resolution of CORDIC on Developed Architec-
ture

Functions H/W Input Range HDL resolution

Output Input

sin, cos −90◦ to +90◦ 2
−7

2
−1

sinh , cosh , exp −1.118 to +1.118 2
−7

2−6

ln 0.1068 to 9.360 2−6 2
−4
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Fig. 14  The Hardware and 
MATLAB Results a Sine and 
Cosine b Hyperbolic Sine and 
Cosine c Exponential, d Ln 
Functions

Table 6  Comparison of the 
actual and reconstructed lena 
images

Image Reconstructed image PSNR(dB) Mean square error L2-Norm

Actual MATLAB 74.8819 0.0020 0.9904

Actual Hardware 74.6535 0.0022 0.9514

Reconstructed Images

MATLAB Hardware 87.7629 1.0883e-04 0.9606

Fig. 15  DCT a Hardware setup 
block diagram, b Hardware 
and c MATLAB Results

Fig. 16  DWT Results: a Actual, 
b MATLAB, c Hardware Com-
puted
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is within 10m range with 87.7629 PSNR indicating faithful 
reconstruction of the hardware image.

6.4  Clock profiling

The clock pro�le can be broadly divided into con�guration 
and computation phases. The phase wise clock pro�le of 
the architecture along with the throughput of target func-
tions is provided in Table 7. Con�guration phase includes 
control word, coe�cient and data loading through the 
9-bit input bus. The 54-bit control word is loaded serially 
and takes 6 clock cycles.

Coe�cient Load Latency The coe�cient load latency 
depends on the nature/amount of processing involved 
in computing the function. The FIR computation, addi-
tion and MAC require coe�cients equal to the number 
of �lter taps/terms involved in computation. Therefore, 
the coe�cient load latency is indicated as 9-36 and 3-12 
clock cycles, respectively. In case of DWT, eight �lter coef-
�cients are loaded in 8 clock cycles. The CORDIC and DCT 
coe�cients (8× 8 mask size) are �xed and stored within 
the architecture, thus are applied through their respec-
tive state machines in 1 clock cycle. The 2-D convolution 
latency is indicated as 36 clock cycles for the 6 × 6 mask, i.e 
36 coe�cients.

Data Load Latency The data load latency depends on 
the input data requirement of the target functions. The 
data is loaded into the architecture from the circular 
memory and take 1 clock cycle for each load operation. 
The addition and MAC require data equal to the number 
of terms in the expression and thus takes 3-12 clock 
cycles. The entire circular memory is loaded in case of 
sliding window functions (FIR, MA, differentiation, 2-D 
Convolution) resulting in a latency of 64 clock cycles. 
For CORDIC computation, the three variables require 
seed values to initiate the computation and thus the 
data load latency is 3 clock cycles. DCT and DWT sup-
port operation on 8 × 8 sub-blocks and thus takes 64 
clock cycles while loading 64 data.

Compute Latency Target functions include func-
tions readily expressed as multiply-accumulate (FIR, 
Convolution, Multiply, Addition, Multiply-accumulate, 
Moving Average) and functions that are interpreted as 
multiply-accumulate after data/algorithm manipula-
tions by means of state machine (CORDIC, DCT, DWT). 
The compute latency for the former set of functions 
is 8 clock cycles. In the later set of functions, CORDIC 
takes 24 cycles, DCT takes 336 cycles and DWT takes 476 
cycles for computations following the state machines 
shown in Figs. 6d, 10 and 9a. The CORDIC computation 

Table 7  The phase wise cycle counts for target functions

cycles marked in bold are per sample (FIR), per iteration (CORDIC), per 8 × 8 data block (DWT, DCT)

Functions Con�guration Cycle Counts# Coef-
�cient load

Data Load Compute Throughput (sam-
ples processed/
second)

Multiplication, Square 6 1 1 8 2.9e6

Addition, MAC (3-12 taps) 6 3-12 3-12 8 2.3e6-1.2e6

FIR, MA, Di�erentiation (9-36 taps) 6 9-36 64 8 5.4e5-4.1e5

2-D DWT 6 8 64 496 81.7e3

2-D Convolution 6 36 64 8 4.1e5

CORDIC 6 1 3 24 1.3e6

2-D DCT 6 1 64 336 1.1e5

Table 8  Comparison with the State of the Art

[8] [1] [32] This work

Equivalent Gate Count 81.3k 36k 195k 24,280

VDD[V], f[MHz] 1,10 0.34,0.6 0.4,1 1.8,46.9

Target functions 32-tap FIR, 65-pt 
median, 512-pt FFT, 
CORDIC

LPF,HPF, Derivative-square, 
moving average, peak detec-
tion

CWT-based 
QRS detec-
tion

FIR, Moving Average, CORDIC, DCT, 
DWT, Multiplication, Addition, MAC, 
Square

Latency (in cycles) 32-88 N.A. N.A. 16-574

On-Chip Memory 64kb - 2Mb 954b

Platform Hardware accelerators Custom �P CoolFlux BSP Custom Re-con�gurable HW



Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

is explained here as an example. The CORDIC algorithm 
requires computation of three variables in every itera-
tion. The equation for each of the variables includes 
multiple-accumulate operation, thus takes 8 clock 
cycles, and are computed serially as the past variables 
are used in the computation of present variables. This 
amounts to the total latency of 24 clock cycles.

6.5  Gate profiling

The total number of gates in the architecture is found by 
estimating gates in its individual blocks, i.e. RUs and CU. 
Each RU contains 9 XOR, 8 AND, 27 �ip-�ops and 1 2:1 
multiplexer totalling 242 gates. There are 208 equivalent 
1-bit adders in CU along with 42 �ip-�ops amounting to 
4376 gates. The con�gurable datapath multiplexers have 
396 equivalent 2:1 multiplexer, whereas coe�cient multi-
plexers are the largest contributor with 9608 gates owing 
to large DCT, DWT and CORDIC multiplexers. This brings 
the proposed architecture gate count to 24280 gates. The 
interfacing memory has 954 flip-flops adding another 
6678 gates to the system.

6.6  Comparison with similar works

The architecture developed in this work acts as a multiple 
hardware accelerator because of its con�gurable datapath 
and adopts e�ective mapping methodologies translating 
to gate and clock savings. The comparison of the proposed 
architecture with the state of the art is provided in Table 8. 
The work described in [8] advocates the use of accelerators 
dedicated for commonly used signal processing opera-
tions like FIR, CORDIC, moving average integration, etc. 
The biomedical signal processor in [8] makes use of the 
aforementioned functions and the gate count reported 
for them is 11k, 9.3k and 37k, respectively, with operat-
ing frequency of 1MHz for individual execution of these 
functions. [1] implements ECG signal processing algorithm 
on a custom microprocessor and reports 36k gates at an 
operating frequency of 600kHz.

A similar system operating at 1MHz in [32] reports a 
gate count of 195k gates The proposed work reports a gate 
count of 24280 gates providing ≈1.5× to 8 × gate (and area) 
savings with respect to [1] and [32], respectively.

The latency comparison indicates that accelerators in 
[8] take 32–88 cycles for computing various target func-
tions, whereas the SAC architecture takes 16-574 cycles 
(0.34-12 ns 46.9M Hz). In both cases, the latency includes 
the cycles taken in supplying data, transferring output 
and con�guring the architecture. The increased latency 
in this work is primarily due to the serial nature of the 

proposed architecture; however, cycle optimizing tech-
niques focused on restricting the data movements are 
adopted while developing the mapping methodologies. In 
general, biomedical signal processing applications expect 
moderate processing rates from the processing platforms 
due to the nature of biomedical signals (data rates up to 
320Kb/s [30]) as well as the data manipulation techniques. 
This ensures that the upper bound of operating frequency 
of SAC architecture was su�cient to support a variety of 
biomedical algorithm processing.

7  Conclusion

A shift-accumulate-based architecture is developed with 
con�gurable datapath that supports dominant DSP func-
tions for biomedical signal processing. The architecture 
exhibits di�erent topologies for e�cient realization of 
functions. E�cient mapping methodologies are devel-
oped for FIR, CORDIC, DWT, DCT, etc., by exploiting algo-
rithm regularities that ensure cycle e�cient calculations by 
eliminating redundant computations and limiting memory 
requirements. Additionally, SAC architecture contains a 
con�gurable datapath that can be leveraged to support 
algorithm advancements. Additionally, the architecture 
supports modularity, i.e. multiple SAC architecture units 
can be connected to exercise various topologies and 
functionalities.

The architecture is targeted on a state-of-the-art FPGA 
and demonstrates multiple functions like PTA signal 
chain, CORDIC, DWT, DCT, etc. The maximum operating 
frequency supported by the architecture is 46.9MHz. The 
architecture computes cosine with accuracy ranging from 
83 to 98% and a mean square error of ≈0.3 is reported 
for Lena image as compared to the uncompressed image. 
The architecture takes 16-574 cycles for target functions. 
In addition, the gate count of the architecture is estimated 
as 24280 gates and o�ers 8 × area advantage making it 
suitable to be deployed in biomedical applications. The 
FFT mapping scheme on the architecture is planned as 
future work. Additional bene�ts of further improvements 
in power consumption utilizing dedicated power domains 
have been proposed in [32, 33] yielding energy advan-
tages. The applicability of multiple power domain to the 
proposed architecture is left as future work. Furthermore, 
the proposed hardware can bene�t from energy e�ciency 
ensured by approximate computing and is also left as 
future work.
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