
Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

Research Article

A Low gate count reconfigurable architecture for biomedical signal
processing applications

Nupur Jain1 · Biswajit Mishra1 · Peter Wilson2

Received: 25 September 2020 / Accepted: 22 February 2021 / Published online: 8 March 2021
© The Author(s) 2021 OPEN

Abstract

A new recon�gurable architecture for biomedical applications is presented in this paper. The architecture targets fre-
quently encountered functions in biomedical signal processing algorithms thereby replacing multiple dedicated accel-
erators and reports low gate count. An optimized implementation is achieved by mapping methodologies to functions
and limiting the required memory leading directly to an overall minimization of gate count. The proposed architecture
has a simple con�guration scheme with special provision for handling feedback. The e�ectiveness of the architecture is
demonstrated on an FPGA to show implementation schemes for multiple DSP functions. The architecture has gate count
of ≈25k and an operating frequency of 46.9 MHz.

Keywords Biomedical signal processing · Recon�gurable architectures · Low gate count architecture · Digital signal
processing

1 Introduction

Advances in Integrated Circuit (IC) technology have
resulted in miniaturized devices useful for wearable bio-
medical applications. Custom and con�gurable solutions
for Electrocardiogram (ECG) processing have been dis-
cussed extensively in the literature [1–4]. As an example,
[5] discusses a low-energy microprocessor (�P) for R-wave
detection, heart rate calculation and arrhythmia based on
the R-R interval with a 78% detection accuracy. The use of
microprocessors provides �exibility in con�guration that
translates to cost-e�ective and time-e�cient solutions but
adversely a�ects the power budget for compute-intensive
operations. Researchers in [6] discuss low power system
that combines o�-the-shelf � P with dedicated ECG pro-
cessing for data compression and arrhythmia detection.
In [7, 8], custom accelerators for DSP functions used in
biomedical signal processing are discussed. These accel-
erators in conjunction with a customized low power � P are

used for ExG (EEG (Electroencephalogram), ECG) process-
ing, targeting a large subset of biomedical applications. A
miniaturized system in [9] demonstrates a limit on radio
transmissions indicating alerts and alarms instead of con-
tinuous streaming of raw data while monitoring critical
physiological signals in patients. It provided a signi�cant
increase in the power e�ciency of the overall system due
to a decrease in radio utilization, emphasizing the need
to maximize local processing. Generic hardware accelera-
tors discussed in [8, 10, 11], target common signal process-
ing techniques predominantly used in biomedical appli-
cations. This ensures the use of accelerators in multiple
varied algorithms and provides an energy-e�cient solu-
tion with the �exibility to map a large set of biomedical
applications. However, multiple accelerators can increase
the overall gate count of the system. The potential perfor-
mance bene�ts of a low gate count architecture are dis-
cussed in [12] and an analysis of the e�ect of gate count

 * Biswajit Mishra, biswajit_mishra@daiict.ac.in; Peter Wilson, P.R.Wilson@bath.ac.uk | 1VLSI and Embedded Systems Group, DA-IICT,
Gandhinagar 382007, India. 2Dept of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-021-04412-y&domain=pdf

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

and critical path of architecture in the sub-threshold
region on power consumption is highlighted in [13].

It is possible to combine the performance and e�ciency
bene�ts of hardware with the �exibility of software by
using recon�gurable systems where the hardware (re)
con�gures itself to perform multiple functions of an appli-
cation in a time-multiplexed manner. The regularity of cer-
tain functions used in biomedical signal processing algo-
rithms is exploited in this work which results in reduced
overhead and consequently, a lightweight architecture is
obtained. A novel recon�gurable architecture based on
shift-accumulate operation is con�gurable for frequently
processed algorithms. The architecture has a con�gurable
datapath and supports a range of biomedical signal pro-
cessing algorithms and is veri�ed on a �eld programmable
gate array (FPGA) platform.

The developed architecture is implemented on an FPGA
as a proof-of-concept and can be realized as an ASIC act-
ing as an accelerator for compute-intensive operations
alongside an embedded processor. The compute-inten-
sive operations, such as CORDIC, DCT, etc., are often seen
in biomedical signal processing algorithms and take
prolonged time to process such operations on embed-
ded processors. A hardware design with data�ow-based
execution o�ers processing in reduced number of clock
cycles as compared to an embedded processor. Addition-
ally, the developed architecture is con�gurable and thus
can span a large set of biomedical algorithms imitating (to
some extent) the complete programmability advantage of
embedded processors.

The types of biomedical functions addressed are pre-
sented in Sect. 2. The overview of the proposed architec-
ture is discussed in Sect. 3 followed by di�erent architec-
tural topologies in Sect. 4. The mapping methodologies
for target functions are discussed in Sect. 5. The results for
di�erent mapping cases on the hardware are presented

in Sect. 6. Conclusion and future work are discussed in
Sect. 7.

2 Functionality pro�le of biomedical
applications

Table 1 presents the overview of common DSP functions
used in biomedical applications. The majority of the tabu-
lated applications report the frequent use of following
functions FIR and IIR Filters, Di�erentiation, Moving aver-
age, maxima and minima, FFT, DWT, DCT and complex trig-
onometric functions. Finite Impulse Response or In�nite
Impulse Response (FIR or IIR) �ltering is used primarily for
noise removal and feature extraction. The di�erentiation
function is used to track the variation pattern of a signal
by means of slope information. Moving average, median
and maxima functions are used to extract the peak infor-
mation of a signal. The Fast Fourier Transform (FFT) and
Discrete Wavelet Transform (DWT) are used for analysis of
signals in the frequency domain. The classical approach of
estimating blood saturation involves the Discrete Cosine
Transform (DCT) computations [14]. Additionally, the DWT
and DCT algorithms are reported to be used for the signal
compression purpose to reduce the transmission share
of the radio [6]. Finally, complex trigonometric function
computations are reported alongside the fundamental
operations of multiplication, addition, scaling, division,
etc. [15, 16].

Clearly, it can be observed from Table 1 that FIR or IIR,
CORDIC, DWT, DCT, di�erentiation and moving average
form the dominant operations encountered in biomedical
signal processing applications. As a consequence, these
operations constitute the target domain functions for
any signal processing hardware platform. In the next sec-
tion of this paper we show that by manipulating a simple

Table 1 Digital Signal Processing Functions in Ambulatory Biomedical Applications

Signal Application DSP functions

ECG Onset and Duration of QRS [17] In�nite Impulse Response (IIR), Magnitude of vector (
√

⋅ , (⋅)2 ,
addition), division, median

QRS Detection [16] IIR, Finite Impulse Response (FIR), d
dx

 , (⋅)2 , moving average

QRS Detection [18] FIR, d
dx

 , (⋅)2 , weighted moving average

QRS Detection [19] Running slope, multiplication, scaling, average, maxima

ECG �ducial points [20] Discrete Wavelet Transform (DWT), local maxima modulus

EEG Epileptic Seizure onset[21] FIR

Seizure Detection[22] DWT

Automatic recognition of alertness [23] DWT

PPG Pulse Oximetry[24] FIR, log

Blood Saturation [14] Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT)

Heart Sound Auscultation Aid[15] FFT, tan , sin

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

mathematical function that forms the basis of these signal
processing operations, it is possible to exploit the serial
nature of the computation to derive an e�cient and recon-
�gurable circuit.

3 Shift-accumulate (SAC) architecture

3.1 Introduction

As discussed previously in this paper, the shift-accumulate
(SAC) architecture is central to potential improvements in
the hardware. This section describes the details of the SAC
architecture, starting with the mathematical underpinning
of the approach.

3.2 Mathematical foundation

In order to establish the mathematical foundation of the
SAC approach, an example of a FIR �lter can be examined.
In an N-tap FIR �lter, the output y[n] with inputs x[n] and
coe�cients bi is given by:

When the inputs and coe�cients are represented as 8-bit
binary numbers Eq. 1 can be rewritten as:

(where coe�cients (bi) are expressed in terms of bit value
(bik) and bit weights (2k))

Rearranging Eq. 2 results in Eq. 3.

The foundational mathematical equations of the SAC
architecture is presented in the paper. The pseudocode of
the proposed scheme is shown in Algorithm 1.

The resulting mathematical equation is obtained
wherein the partial products can be generated,

(1)
y[n] = b

0
⋅ x[n] + b

1
⋅ x[n − 1] +⋯ + bN ⋅ x[n − (N − 1)]

(2)y[n] =

N−1
∑

i=0

bi ⋅ x[n − i] =

N−1
∑

i=0

[(7
∑

k=0

bik ⋅ 2
k

)

x[n − i]

]

(3)y[n] =

7
∑

k=0

[(N−1
∑

i=0

bik ⋅ x[n − i]

)

2
k

]

Table 2 The Comparison of
Hardware Implementations of
Eqs. 1, 2 and 3 Realizing N-term
Multiply-Accumulate

AND, OR and XOR gates are accounted as 2, 3 and 4 NAND gates

Eq. 1 Eq. 2 Eq. 3

Nature of Execution Parallel Mixed Serial

ParProd. Generation 64 AND 8 AND 8 AND

ParProd. Accumulation 7 16-b adders SA N 9-b adders

Product Accumulation (N-1) 16-b adders (N-1) 16-b adders SA

Equivalent NAND gates 2048N-240 496N-240 143N+240

Gates Savings 13.43× 3.47× 1

Algorithm 1 Pseudo Code for SAC Architecture

Load Control Word

Load Coefficients

Load Data

Initialize i

Process:

For i = 0 to 7

Multiply coefficient and data serially using bit-wise and operation

Add partial products

If Data Valid: Go to Process

End

Log Output Result

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

accumulated sequentially and the common weight par-
tial products then accumulated, showing clearly how
the SAC approach can be implemented in this case. The
resulting reduction in hardware elements can be clearly
seen when the implementation is examined more closely.
This function can be realized using a 9-b adder tree con-
taining N adders. The �nal accumulation uses one 16-b
SA as opposed to N shift-accumulators while implement-
ing hardware using Eq. 2. Eq. 3 implementation uses
143N+240 gates with 16 �ip-�ops for its realization and
provides 13.43× and 3.47× saving, respectively, over Eqs. 1
and 2, as indicated in Table 2.

3.3 Architecture and operation

The proposed architecture, shown in Fig. 1, is a Shift-
Accumulate (SAC) architecture, consisting of Register
Units (RU), a Computation Unit (CU) and a Control Unit.
The architecture is arranged as a 6 × 6 array of functional
units called Register Units (RUs) based on Eq. 3. The par-
tial products generated in RUs are fed to the Computation
Unit (CU) and the output is obtained after partial products
accumulation and shift adjustments. In addition to con-
trolling the function execution, the control unit generates
necessary synchronizing signals for RUs and CU.

Fig. 1 The Proposed 6x6 Architecture

Fig. 2 The Register Unit

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

3.3.1 Register unit (RU)

The Register Unit consists of registers con�gured as an 8 × 1
AND matrix and 8 × 1 XOR matrix (Fig. 2) to generate partial
products. The x[n] input and bi coe�cients are loaded into
data register (D

7∶0
) and coe�cient (C

7∶0
) register, respec-

tively. These registers hold the multiplicand and multiplier
for the multiplication. The coe�cient is further loaded to a
shifter block where the multiplier is rotated left by a bit at
every clock cycle. The MSB of the shifter is fed to the AND
matrix and D

7∶0
 follows as the second input. The unsigned

partial product thus generated is further converted to a
signed partial product by XORing it with the sign bit. A
9-bit 2:1 multiplexer makes the selection between regis-
tered and unregistered incoming data. The unregistered
data is used in case of functions with feedback where the
additional cycles incurred during processing have to be
considered for synchronization. Following this, the input
data is forwarded to the next RU after eight clock cycles.

3.3.2 Computation unit

As shown in Fig. 1, the Computation Unit (CU) is divided
into four identical subsections where each subsection
acts on nine partial products. It consists of an adder tree,
a shift-accumulator and an output register. The adder tree
has ripple carry adders that adds nine partial products
each of 9 bits. The 23-bit output register is loaded with
the �nal sum once the serially computed multiplication
concludes.

3.3.3 Operation

The coe�cient register is loaded with the multiplier in
one cycle followed by multiplicand loading in the data
register and multiplier forwarded to shifter block in the

subsequent cycle (Cycle #1). The multiplicand is ANDed
with 7 th bit or MSB of multiplier generating the unsigned
partial product. In the next clock (Cycle #2), the shifter
block would have rotated the multiplier left by one place
and 6 th bit becomes MSB now as illustrated in Fig. 3. The
signed partial products for 6 th bit are generated and are
added in adder tree. In such a case, the shift-accumulator
block has a 7 th bit partial product sum (PP

7
) that is shifted

left by one place (multiplied by 2 1). The 6 th partial product
sum (PP

6
) is added with the shifted PP

7
 in the 21-b adder.

The shift-accumulator register is now loaded with PP
7
 ⋅21

+PP
6
 . In the following clock (Cycle #3) *(due to another left

shift) PP
7
 is multiplied by 2 2 and PP

6
 is multiplied by 2 1 .

This is added with 5 th bit partial product sum that results
in PP

7
 ⋅22+PP

6
 ⋅21+PP

5
 . This continues till the shift-accu-

mulator register holds the �nal output of PP
7
 ⋅27+PP

6
 ⋅26

+PP
5
 ⋅25+PP

4
 ⋅24+PP

3
 ⋅23+PP

2
 ⋅22+PP

1
 ⋅21+PP

0
 after 8 clock

cycles.

3.4 Configurable datapath and control word

The proposed Shift-Accumulate (SAC) architecture sup-
ports functions that can be expressed as multiply-accu-
mulate operation using a control word. It should be noted
that certain functions may not require all the Register
Units (RU) and unused RUs can be isolated by means of
con�gurable datapath.

The control word is 54 bit wide and has Code, Con�g,
Feedback and Resolution �elds as shown in Fig. 4. The 5-bit
Code �eld is used to identify the target function. The 31-bit
Con�g �eld denotes the select lines (marked CMx and BPx
in Fig. 4) of the multiplexers placed in the datapath. Two
sets of multiplexers, identi�ed as the Con�guration and
Bypass, respectively, are used in the datapath and allow
di�erent connection topologies between RUs. Additional
con�guration multiplexers are placed between the tiles to

Fig. 3 MSB rotation in Coef-
�cient Register

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

provide feedback (discussed further in Sect. 4). The bypass
multiplexers are used to isolate unused RUs from the data-
path and can bypass a set of three RUs at a time.

The least signi�cant thirteen bits in the control word,
labelled FBx and fbx, represent the select lines of feedback
multiplexers (marked FBx_mux in Fig. 4) and constitute
the feedback �eld of control word. Bits 0-4 of the control
word are the select lines (marked fb in Fig. 1b) of the mul-
tiplexer inside RU that forwards registered or unregistered
multiplicand. These bits are dedicated for RUs that receives
feedback data, i.e. RU #1,4,19,22 and 34.

The leading four bits of the control word (Resolution
�eld) provide the resolution of output. This is important
in functions having feedback loop where the 23-b output
data is limited to 9-b (width of RU data register). The reso-
lution �eld indicates the relevant output bits required to
be saved for further processing. The remaining bits of the
control word are reserved for future modi�cations.

Fig. 4 The Con�guration and Bypass Multiplexers in SAC Architecture

Fig. 5 The Coe�cient Mul-
tiplexers in the Architecture
(Analogous Representation)

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

3.4.1 Coefficient multiplexers

While mapping, different set of fixed coefficients are
applied on RUs. For example, DCT and DWT forces their
respective coefficients on RU# 19-30 as discussed in
Sect. 5. The RUs where multiple coefficients are forced
including the fixed coefficients are indicated in Fig. 5. For
example, the DCT line is selected while mapping the DCT
and is connected to DCT multiplexer that provides DCT
transform matrix coefficients. The transform matrix has
seven distinct coefficients that appear in either positive
or negative form. Wavelet transform coefficients can be
applied as external coefficients as the hardware supports
multiple wavelets. A detailed discussion on coefficient
multiplexers is provided in [25] and [26].

4 Architecture topologies

The con�gurable datapath of the SAC architecture exhibits
various topologies as following:

4.1 Systolic array structure

The RUs can be arranged in a continuous chain of nine,
eighteen, twenty-seven or thirty-six RUs as shown in Fig. 4.
The most straight forward structure of thirty-six RUs form-
ing a chain is formed with RUs connected one after the
other. In such a case, the bypass multiplexer selects are
set and con�guration multiplexers pass the previous RU
output. For eighteen RU, BP19 forced to ‘0’. A chain of
nine RU is obtained by selecting tile# 1 as it consists of
RU #1,2,3,10,11,12,13,14,15 by forcing ‘0’ and ‘1’ on CM10B
and CM13, respectively. Additionally, the select line of all
bypass multiplexers is set to ‘0’ except for BP10 and BP13.
Similarly, a twenty-seven RU chain is formed by combining
the eighteen RU chain and tile #3 and bypassing tile #4.

4.2 Four tile structure

The four tile structure is obtained by dividing the RUs into
four groups of nine RU blocks. This con�guration enables
parallel execution of functions as each tile forwards its par-
tial products to their respective CU subsection that com-
putes the results irrespective of the ongoing computation
in other tile or CU subsection. The con�guration multiplex-
ers CMxB select line are forced to ‘0’ thereby passing for-
ward the data from the RU above it. For instance, Dataout
#3, 9, 21 and 27 are fed to RU #10, 16, 28 and 34, respec-
tively. The bypass multiplexers are set when all the four
tiles are in use and a tile is isolated from the datapath by
clearing the bypass multiplexer of RU leading the tile. Tiles
can be connected in a chain structure that is bene�cial

for function chain realization where each function can be
mapped on a separate tile. This can be achieved using the
feedback multiplexers. Feedback multiplexers are used to
direct the output (or combined output) of tile (or tiles) to
input of other tiles. For instance, the four tile chain can
be realized by connecting Tile #1 –> Tile #2 –> Tile # 3 –>
Tile #4 by setting multiplexers FB4_mux, FB19_mux and
FB22_mux to “00”, “01” and “10”, respectively. Following
this topology, multiple functions are executed simultane-
ously while reducing the recon�guration overhead.

Additionally, the architecture also supports mixed
topologies. For instance, one of the possible combinations
of systolic tile and array structures can result in datapath
from Tile1 –> Tile2 –> RU #19-36. These topologies can be
obtained by setting the necessary CMx and BPx bits in the
control word.

5 Mapping of di�erent functions

The con�gurability of the developed SAC architecture can
be leveraged to realize multiple biomedical signal process-
ing operations on it, because the majority of the functions
include multiplication and addition. Mapping methodolo-
gies for these commonly used functions are presented in
this section. The target functions, also optimized for the
proposed hardware, are classi�ed broadly into two cat-
egories: Variable and Fixed coe�cient functions. The coef-
�cients of variable functions depend on the characteris-
tic parameters of the function. For example, bandwidth,
gain and number of taps determine the coe�cients of
FIR �lter. In contrast, the �xed coe�cient functions have
constant coe�cients and they undergo �xed steps result-
ing in constant coefficients. Therefore, it is redundant
for the user to explicitly provide constant coe�cients to
the hardware and is eliminated by means of simple state
machines. The architecture contains state machines for all
the target functions. Based on the control word, one of the
state machines becomes active and controls the function
execution.

5.1 Variable coefficient functions

The multiplication, squaring, addition and multiply-
accumulate (MAC) functions are based on the common
equation:

∑11

i=0
ai ⋅ bi . A special case of MAC, where a

i
 =

1, represents the addition operation. For multiplication a
i

(and/or bi) is 0 for i>0 and for squaring, a
i
 = bi is done in

the multiplication. The 12 RUs, marked #1, 4, 7, 10, 13, 16,
19, 21, 24, 27, 30 and 33, receive external data and com-
putation takes eight clock cycles. It is possible to map this

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

operation by choosing a di�erent set of 12 RUS anywhere
in the architecture but with a higher latency.

The mathematical equation for FIR filtering, differ-
entiation and moving average can be readily expressed
as a MAC operation. However, the 2-D convolution
includes the product of data and coe�cient matrices as
Z(i, j) =

∑N1−1

m=0

∑N2−1

n=0
X (i −m, j − n).Y(m)(n) , where N

1
× N

2

is the matrix size. The convolution consist of multiply-accu-
mulate with spatially shifted input samples. The spatial
shifts in the input matrix can be handled by careful inter-
pretation of input rows in the memory [12]. By doing so,
the 2-D convolution yields to 1-D convolution operation
of length N

1
× N

2
 . The generalized equation of FIR �ltering,

Di�erentiation, Moving Average and 2-D convolution thus
becomes

∑N−1

i=0
x[n − i] ⋅ bi , where N ≥ N

1
× N

2
 . This output

is based on the previous inputs and require memory ele-
ments. The architecture supports thirty-six taps for these
set of functions. The external data (x[n]) is supplied on RU
#1 and RUs can be connected in chain structure using the
con�guration and bypass multiplexers. The 2-D convolu-
tion requires input ports equal to the number of rows in
the transform mask. The mask size of up to (6× 6) can be
mapped on the proposed hardware.

5.2 Fixed coefficient functions

Functions grouped in this category perform computations
using a state machine. The state machine transforms the
algorithm into a series of sequential steps. The �xed coef-
�cients are stored in register �les.

5.2.1 COrdinate Rotation DIgital Computer (CORDIC) [27]

It is derived from the general rotation transform and pro-
vides an iterative method of performing vector rotations
by arbitrary angles using only shift and add operations.
Generalized version of the algorithm is given by Eq. 4 [28]
and includes hyperbolic and nonlinear functions, loga-
rithm, square root computations in addition to the stand-
ard trigonometric functions.

The top level hardware architecture for the CORDIC is
shown in Fig. 6a. The ‘X and Y Computing Block’ com-
putes the x and y variables, whereas the ‘Angle Accu-
mulator Computing Block’ computes the z variable. The

(4)

xi+1 =xi −m ⋅ yi ⋅ 2
−i
⋅ di

yi+1 =yi + xi ⋅ 2
−i
⋅ di

zi+1 =zi − �i ⋅ di

Fig. 6 CORDIC Mapping, a Representative CORDIC Hardware, b Active RUs and Datapath for CORDIC Mapping, c Circular Memory Structure
for CORDIC

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

computation uses an adder or a subtractor and result from
the previous iteration. The right-shift operation (>>) can
be viewed as multiplication with 2−i . The SAC architecture
performs multiplication where the 9-b coe�cient register
is loaded with the content 2−i in the ith iteration. The data
register is loaded with the x, y or z variable (or � value)
and the subsequent additions are carried out in the CU.
[25] provides the seed value for various functions along
with m and �.

Tile #1 and tile #3 are used for CORDIC mapping
(Fig. 6b). The RUs are not connected with each other in
both the tiles except for RU #19-21–⟩28-30 forming a 6
RU chain. The seed values x

0
 , y

0
 , z

0
 are fed into RU #1,

10 and 13 from the three read ports of circular mem-
ory (Fig. 6c). The y variable is computed first followed
by z and x throughout the iterations. As y or z needs
to undergo direction decision logic for next iteration,
this process is overlapped with x computation so that
no clock cycles are wasted. y

1
 is computed using y

0
 and

x
0
 from RU #1 and RU #13, respectively, and the result

stored in RU #19. At the same time, all the RUs pushes
forward its data register content to the next RU in the
chain. The arctan data is forced on RU #10 through inter-
nal multiplexer (CM10_int). Variable z

1
 is computed using

RU #11 (z
0
) and RU #10 (arctan) and z

1
 is stored in RU

#19, whereas y
1
 shifts to RU #20. Using RU #15 (x

0
) and 3

(y
0
), variable x

1
 is computed and stored in RU #19. At this

stage, y
1
 , z

1
 and x

1
 are in RU #21, RU #20 and RU #19. y

2

is computed using RU #21 and RU #19, z
2
 using RU #21

and RU #10 and x
2
 using RU #21 and RU #29. It should be

noted that, previous value is present in RU #21 for x , y
and z. The second variable of the equation (x or y) lies in
RU #19, RU #10 and RU #29. Same sequence is followed
with a state machine that follows a defined pattern.
The algorithmic state machine shown in Fig. 7 consists
of six states and depicts the RU coefficients loaded in
each state during CORDIC computation. The coefficients
for RUs used in CORDIC algorithm mapping are applied
through the CORDIC input of coefficient multiplexers.
A CORDIC multiplexer shown in Fig. 5 is connected to
the coefficient multiplexer CORDIC input of RU #19 and
RU #29. The multiplexer has 2 i terms in binary as inputs
and its select line is controlled by the state machine and
takes 24 cycles for each iteration. It stores results inter-
nally in RUs and does not use additional memory.

5.2.2 The 2-D Discrete Wavelet Transform

2-D DWT translates to two consecutive matrix multiplica-
tion between the input and DWT mask coe�cients. The
results of matrix multiplication can be directly realized as
multiply-accumulate operation and thus can be supported
by the SAC architecture. The DWT decomposes a signal
into four frequency sub-bands, namely LL (approximation
(cA) matrix), LH (horizontal (cH) matrix), HL (vertical (cV)
matrix) and HH (diagonal (cD) matrix). A generic mapping
methodology is discussed that supports twenty-eight
wavelets with �lter size <8 [26]. The DWT algorithm �rst
computes low pass �ltering followed by down sampling
by a factor of 2. The resultant vector is convolved with high

Fig. 7 Flow Chart of CORDIC
State Machine

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

pass �lter and the LL DWT matrix is retained (with 75%
compression) after another down sampling by a factor of
2. Additionally, periodic padding [29] is done on either side
of the input samples and intermediate results to ensure
spatial continuity on boundaries. The DWT computation
steps are shown in Fig. 8a wherein the row wise convolu-
tion is carried out on a 14× 8 padded image and an inter-
mediate matrix, Y is generated. Columns 0-3 of padded
image are same as columns 5-8 of the actual image. Thus,
the convolution �lter mask is modi�ed by swapping the
�rst four terms with the last four terms. This eliminates

the use of excess memory elements required to store the
padding. Furthermore, the mask advances by two steps
as opposed to one step in the conventional convolution
performing down sampling along with the intermediate
matrix generation. The second set of convolution is per-
formed on transposed padded Y matrix.

The proposed architecture supports 8 × 8 block 2-D
DWT operation with the mapping scheme are indicated
in Fig. 8b. The five states of the DWT state machine are
shown in Fig. 9a. The intermediate matrix (Y) rows are
computed in the first state and the other four states

Fig. 8 DWT Mapping a Discrete Wavelet Transform Algorithm, b 2-D DWT Mapping on the SAC Architecture

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

compute the first row of DWT matrix. Convolution filter
coefficients provided by the state machine are input to
RU #1, RU #4, RU #7, RU #10, RU #13, RU #16, RU #31 and
RU #34 and are multiplied with the first row of image
matrix to generate the first element of Y matrix. Similarly,
the rest of the seven elements of first row of Y matrix
are generated in 64 cycles. RU #19-RU #26 holds the
first row which requires padding on either sides. This is
done by means of convolution mask rearrangement. The
convolution filter is rearranged by moving the first four
coefficients towards the end. By doing this, the padded
elements which are at the bottom of unpadded image
gets multiplied with the respective coefficients yielding
the same result as padded image with the unmodified
filter mask (Fig. 9b). The mask manipulation enables
computing cA elements without external padding on the
intermediate matrix which further permits storing the
intermediate matrix. The circular memory write pointer
is used to write 8 × 8 (= 64) input data which is stored
column-wise in different sections of the memory in an
interleaved manner (Fig. 9c) for simplifying the read-
ing operation. It also ensures moving the convolution
mask by 2 steps, a scheme adopted in the mapping to
eliminate down sampling later. Consequently, multiple
read ports ensure reading all columns simultaneously

resulting in computation of Y matrix to be computed in
eight clock cycles.

Fig. 9 DWT Mapping a Flow Chart of 2-D DWT State Machine, b DWT Mask Manipulation, c Data Stored in Interleaved Manner in the Circu-
lar Memory with the Write and Read Pointers. The updated columns are indicated by grey �lled text

Fig. 10 Flow Chart of 2-D DCT State Machine

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

5.2.3 The 2-D discrete cosine transform (DCT)

Matrix computation (of an image) requires two matrix mul-
tiplication operations : DCT = DCT

mat
 * Image * (DCT

mat
)T ,

where transform matrix (DCT
mat

) becomes constant for a
�xed mask size. Matrix multiplication can be realized on
the proposed architecture by loading row and column ele-
ments of the two matrices in place of coe�cients and data
registers, respectively. The architecture supports 8 × 8 block
wise DCT and provides a compression of ≈ 84% (10 of 64
output samples are retained). The DCT mapping datapath
is similar to the DWT mapping methodology shown in
Fig. 8b. The �rst matrix multiplication or the intermediate
matrix Int

mat
 = DCT

mat
 * Image, row wise image data and

�rst row of DCTmat are forced on RU #1, RU #4, RU #7, RU
#10, RU #13, RU #16, RU #31 and RU #34 as data and coef-
�cient, respectively. The results form the �rst row of Int

mat

that is periodically stored from RU #19-RU #26 and has to
be further multiplied with DCT

mat
 T .

The row coe�cients of the transform matrix are forced
on coe�cient registers of RU #19-RU #26 and the resultant
DCT(0,0) is obtained. On forcing subsequent DCT

mat
 rows

in the coe�cient of RU #19-RU #30 chain, the remaining
elements of the �rst row of DCT are obtained. It should be
noted that, Int

mat
 stored in RU #19-RU #26 shifts down the

RU chain every 8 clock cycles. This is incorporated by the

state machine (Fig. 10) that consists of 5 states traversed
four times, fully or partially to obtain Int

mat
 and DCT in

successive computations. The state sequence di�ers with
the iteration#, because the number of elements computed
in the DCT matrix decreases by one with every row result-
ing in an upper triangular matrix. The Int

mat
 matrix is com-

puted in state #1 and DCT matrix is computed in states
#2-5. The image data is stored column wise in an inter-
leaved manner in circular memory similar to data storage
in DWT mapping discussed earlier.

6 Results and discussion

To demonstrate the feasibility of the proposed architec-
ture, the design was targeted onto a Virtex-II FPGA board
(XUPV2P). The FPGA development board speeds up the
veri�cation process by providing suitable interfaces in VGA
and RS-232 ports among many other peripheral interfaces.
The proposed architecture uses the sign-magnitude con-
vention to represent 9-b signed numbers. The code, con�g
�elds and topologies for targeted functions are presented
in Table 3, where the code acts as target function identi-
�er and controls the data read write operations of circular
memory. The feedback gives rise to erroneous outputs as
�xed-point binary numbers are used. This is addressed by
making the resolution con�gurable that detects the cor-
rect output slice fed back to the RUs.

6.1 Hardware configuration

The architecture is configured by loading the control
word, external coe�cients and data in their respective
memories. These values are provided to the architecture
through a 9-b input bus in a time multiplexed manner. The
54-b control word is applied �rst serially in 9-b slices. The
external coe�cients are loaded next and comprise of 36
9-b binary numbers. Following this, input bus carries the
data designated for the 9-b wide 64 position deep data
memory. The input bus is controlled by mutually exclu-
sive control signals that are used to demarcate the control
word, coe�cients and data.

The system level block diagram of the proposed archi-
tecture is shown in Fig. 11. The architecture has multiple
memory modules for con�guration, control word, coe�-
cient, data and output. The con�guration memory is ini-
tialized using a coe�cient �le (.coe) that can be generated
using MATLAB for large data sets. Data memory has an
adaptable structure to support varied requirements of the
target functions. A UART serial port (bit rate set at 115200
bps) is interfaced with the hardware to transfer the output
from FPGA to the PC for post processing.

Table 3 Control Word for Target Functions and Topologies

Function Code Con�g

Multiplication 01 00000000

Square 02 00000000

Addition/MAC 03/07(3-tap) 00D00000

04/08(6-tap) 0AD60000

05/09(9-tap) 0AD640D

06/0A(12-tap) 0AD66AB7

FIR, d
dx

 , MA 0B(9-tap) 00700000

0C(18-tap) 2FFE0000

0D(27-tap) 2FFF4070

0E(36-tap) 2FFF6FFF

DWT 0F 0AB66FD7, fb19=‘1’

2-D Convolution 10 00D00000

CORDIC 11 00D04040, fb19=‘1’

DCT 12 0AB66FD7, fb19=‘1’

Topology Con�g Feedback

Four Tile 0E724E73 –

Systolic Tiles

#1–>#2 1E720000 0008

#1–>#2–>#3 1E72C070 008C

#1–>#2–>#3–>#4 1E72DE73 00CE

RU chain–>#3–>#4 2FFEDE73 01C6

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

6.2 Pan–Tompkins algorithm signal chain

To verify the usefulness and functionality of the proposed
hardware, we have targeted a popular algorithm known
as the Pan–Tompkins algorithm (PTA). This is a widely used
algorithm for QRS detection in Electrocardiogram (ECG)
signals that detect QRS complexes with accuracy up to
99.3% [16]. The ECG signal from the MIT-BIH arrhythmia
database is given as input to SAC architecture after con-
verting it to .coe format. The algorithm is based on ana-
lysing the amplitude, slope and width of QRS complexes
and is modelled with steps shown in Fig. 12. The transfer
function of the steps is shown in Table 4.

Careful observation of the transfer functions of QRS
signal chain indicates that LPF and HPF (collectively BPF),
di�erentiation, squaring and MA functions can be real-
ized by a series of shift-accumulate operations resulting
in multiplier-less implementation of these functions. The
control word and datapath for PTA signal chain is tabu-
lated in Table 4. The proposed architecture is �rst con�g-
ured as a LPF and the result is computed in 8 clock cycles.
Following this, the architecture is con�gured to perform
HPF. It should be noted that the HPF operates upon the

LPF output. Therefore, the LPF output is loaded into the
circular memory which further acts as the input data to
the proposed architecture. The HPF output computation
takes 8 clock cycles. The architecture is further con�gured
to emulate di�erentiation, squaring and MA functions. The
control word and the coe�cients of these functions are

stored in the con�guration memory that is accessed using
a state machine after each operation.

The LPF block has a window of 13 inputs with feed-
back of 2 output samples. RU #1 accepts the input data
from Dataext1 port and a chain of 13 RUs (RU #1 – #13) is
formed. The con�guration multiplexers are con�gured to
forward the data from previous RU and bypass multiplex-
ers are set. The output samples are loaded into RU #34
and #35 through the feed1234 dataline. Control word bit
0 (fb34) is set as RU #34 carries feedback data. The remain-
ing RUs are disconnected from the datapath using bypass
multiplexers. The computed hardware result for each
block is shown in Fig. 13. The peaks obtained in the mov-
ing average output represent the QRS complex that can
be detected further using a peak detector circuit. It can
be seen that minor peaks are �attened in hardware results
due to limited resolution in feedback. The QRS peaks

Table 4 Transfer function
of PTA blocks [16] with their
Mapping on SAC Architecture

Block Name Transfer function Code Control word con�g Datapath (RUs)

LPF (1-2z−6+z−12)/(1-2z−1+z−2) 0C 2FF000010001 #1– #13, #34 – #35

HPF (-1+32z−16+z−32)/(1+z−1) 0E 2FFF6FF10001 #1– #33, #34

Di�erentiator (z−2-2z−1+2z1+z2)/8 0B 280000000000 #1– #5

Squaring x[n]2 02 000000000000 #1

Moving Average 1

32

∑31

i=0
x[n − i] 0E 2FFF6FF10000 #1 – #32

Fig. 11 a System Level Interac-
tion of SAC Architecture with
Peripherals, b Actual Hardware
Setup

Fig. 12 PTA Signal Chain

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

detected on the hardware processed data coincides with
the analytically detected peaks. The architecture takes 485
clock cycles/sample (= 10.34 � s or throughput 96.7e3 sam-
ples/second at 46.9 MHz operating frequency), including
con�guration, data loading and processing, while emu-
lating the PTA signal chain. Biomedical signal processing
applications pose moderate processing requirements on
the computing platform primarily due to low data rates
(up to 320 Kb/s) [30] of physiological signals. Addition-
ally, according to a study in [31], the operating frequency
of the processing platform are limited to 10’s of kHz and
(8-12)-bit processing for biomedical devices. This leaves
su�cient clock cycles to tolerate the latency of the serial
SAC architecture of the ECG application mentioned above

that has been demonstrated to take 10.34 � s to process
a single data sample. Also, SAC architecture supports
8-b signed arithmetic that has been adopted in various
matured applications in the domain [31]. However, there
is scope for incorporating the applications requiring
increased precision by increasing the number of bits in the
data/coe�cient registers and scaling up the adder units
accordingly. It should be noted that, we have not consid-
ered Electromagnetic Interference of ECG signals in our
setup. The work is primarily focused on developing a con-
�gurable lightweight processing platform for biomedical
signal processing algorithms. The EMI and other artefacts
are assumed to be taken care of by the acquisition sys-
tem which is beyond the scope of this work. We used the
ECG signal from the MIT-BIH arrhythmia database is given
as input to SAC architecture. The ECG signal is collected
from the patients in normal clinical setting and are not
�ltered. The type of noises in the database is not explicitly
mentioned.

6.3 CORDIC, DCT and DWT results

Table 5 notes the range and resolution supported by
the hardware for CORDIC. The results obtained from the
hardware agrees well with the ideal (MATLAB) results for
functions such as sin(cos); sinh(cosh); e x and ln(x) and are
shown over their respective range shown in Fig. 14a–d.
The architecture computes cosine with accuracy ranging
from 83 to 98% and the resolution is 2 −1 (= 1 bit) when the
decimal point is between 1 st and 0 th bit position. Thus, the
smallest measurable degree is 0.5◦ while the remaining 7
bits denotes range of the data.

The test setup for the DCT is shown in Fig. 15a. It uses
a 128×128 image as input. The 8 × 8 sub-images undergo
the DCT operation on the proposed architecture and
results are processed in MATLAB which reconstructs the
image by performing o�ine block wise IDCT. The recon-
structed image obtained from the hardware and MATLAB
are shown in Fig. 15b and c, respectively. The L2 norm is
reported as 15.77 and 15.75 for hardware and MATLAB
reconstructed images, respectively, with respect to the
actual image.

To demonstrate the feasibility of the proposed
approach, the 2-D DWT with two standard test images is
taken. A 16× 16 checker board image with Haar wavelet
and a 128×128 Lena image with bior2.2 wavelet is com-
puted on the hardware. The mean square error between
the actual and hardware reconstructed image for the Lena
intensity image is 2.2m. The actual and reconstructed
Lena images both from MATLAB simulation and hardware
implementation are shown in Fig. 16. The image metrics
are reported in Table 6. The MSE for reconstructed images

Fig. 13 Hardware Computed PTA Results a BPF. b Di�erentiation. c
Squaring, d Moving average

Table 5 Range and Resolution of CORDIC on Developed Architec-
ture

Functions H/W Input Range HDL resolution

Output Input

sin, cos −90◦ to +90◦ 2
−7

2
−1

sinh , cosh , exp −1.118 to +1.118 2
−7

2−6

ln 0.1068 to 9.360 2−6 2
−4

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

Fig. 14 The Hardware and
MATLAB Results a Sine and
Cosine b Hyperbolic Sine and
Cosine c Exponential, d Ln
Functions

Table 6 Comparison of the
actual and reconstructed lena
images

Image Reconstructed image PSNR(dB) Mean square error L2-Norm

Actual MATLAB 74.8819 0.0020 0.9904

Actual Hardware 74.6535 0.0022 0.9514

Reconstructed Images

MATLAB Hardware 87.7629 1.0883e-04 0.9606

Fig. 15 DCT a Hardware setup
block diagram, b Hardware
and c MATLAB Results

Fig. 16 DWT Results: a Actual,
b MATLAB, c Hardware Com-
puted

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

is within 10m range with 87.7629 PSNR indicating faithful
reconstruction of the hardware image.

6.4 Clock profiling

The clock pro�le can be broadly divided into con�guration
and computation phases. The phase wise clock pro�le of
the architecture along with the throughput of target func-
tions is provided in Table 7. Con�guration phase includes
control word, coe�cient and data loading through the
9-bit input bus. The 54-bit control word is loaded serially
and takes 6 clock cycles.

Coe�cient Load Latency The coe�cient load latency
depends on the nature/amount of processing involved
in computing the function. The FIR computation, addi-
tion and MAC require coe�cients equal to the number
of �lter taps/terms involved in computation. Therefore,
the coe�cient load latency is indicated as 9-36 and 3-12
clock cycles, respectively. In case of DWT, eight �lter coef-
�cients are loaded in 8 clock cycles. The CORDIC and DCT
coe�cients (8× 8 mask size) are �xed and stored within
the architecture, thus are applied through their respec-
tive state machines in 1 clock cycle. The 2-D convolution
latency is indicated as 36 clock cycles for the 6 × 6 mask, i.e
36 coe�cients.

Data Load Latency The data load latency depends on
the input data requirement of the target functions. The
data is loaded into the architecture from the circular
memory and take 1 clock cycle for each load operation.
The addition and MAC require data equal to the number
of terms in the expression and thus takes 3-12 clock
cycles. The entire circular memory is loaded in case of
sliding window functions (FIR, MA, differentiation, 2-D
Convolution) resulting in a latency of 64 clock cycles.
For CORDIC computation, the three variables require
seed values to initiate the computation and thus the
data load latency is 3 clock cycles. DCT and DWT sup-
port operation on 8 × 8 sub-blocks and thus takes 64
clock cycles while loading 64 data.

Compute Latency Target functions include func-
tions readily expressed as multiply-accumulate (FIR,
Convolution, Multiply, Addition, Multiply-accumulate,
Moving Average) and functions that are interpreted as
multiply-accumulate after data/algorithm manipula-
tions by means of state machine (CORDIC, DCT, DWT).
The compute latency for the former set of functions
is 8 clock cycles. In the later set of functions, CORDIC
takes 24 cycles, DCT takes 336 cycles and DWT takes 476
cycles for computations following the state machines
shown in Figs. 6d, 10 and 9a. The CORDIC computation

Table 7 The phase wise cycle counts for target functions

cycles marked in bold are per sample (FIR), per iteration (CORDIC), per 8 × 8 data block (DWT, DCT)

Functions Con�guration Cycle Counts# Coef-
�cient load

Data Load Compute Throughput (sam-
ples processed/
second)

Multiplication, Square 6 1 1 8 2.9e6

Addition, MAC (3-12 taps) 6 3-12 3-12 8 2.3e6-1.2e6

FIR, MA, Di�erentiation (9-36 taps) 6 9-36 64 8 5.4e5-4.1e5

2-D DWT 6 8 64 496 81.7e3

2-D Convolution 6 36 64 8 4.1e5

CORDIC 6 1 3 24 1.3e6

2-D DCT 6 1 64 336 1.1e5

Table 8 Comparison with the State of the Art

[8] [1] [32] This work

Equivalent Gate Count 81.3k 36k 195k 24,280

VDD[V], f[MHz] 1,10 0.34,0.6 0.4,1 1.8,46.9

Target functions 32-tap FIR, 65-pt
median, 512-pt FFT,
CORDIC

LPF,HPF, Derivative-square,
moving average, peak detec-
tion

CWT-based
QRS detec-
tion

FIR, Moving Average, CORDIC, DCT,
DWT, Multiplication, Addition, MAC,
Square

Latency (in cycles) 32-88 N.A. N.A. 16-574

On-Chip Memory 64kb - 2Mb 954b

Platform Hardware accelerators Custom �P CoolFlux BSP Custom Re-con�gurable HW

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

is explained here as an example. The CORDIC algorithm
requires computation of three variables in every itera-
tion. The equation for each of the variables includes
multiple-accumulate operation, thus takes 8 clock
cycles, and are computed serially as the past variables
are used in the computation of present variables. This
amounts to the total latency of 24 clock cycles.

6.5 Gate profiling

The total number of gates in the architecture is found by
estimating gates in its individual blocks, i.e. RUs and CU.
Each RU contains 9 XOR, 8 AND, 27 �ip-�ops and 1 2:1
multiplexer totalling 242 gates. There are 208 equivalent
1-bit adders in CU along with 42 �ip-�ops amounting to
4376 gates. The con�gurable datapath multiplexers have
396 equivalent 2:1 multiplexer, whereas coe�cient multi-
plexers are the largest contributor with 9608 gates owing
to large DCT, DWT and CORDIC multiplexers. This brings
the proposed architecture gate count to 24280 gates. The
interfacing memory has 954 flip-flops adding another
6678 gates to the system.

6.6 Comparison with similar works

The architecture developed in this work acts as a multiple
hardware accelerator because of its con�gurable datapath
and adopts e�ective mapping methodologies translating
to gate and clock savings. The comparison of the proposed
architecture with the state of the art is provided in Table 8.
The work described in [8] advocates the use of accelerators
dedicated for commonly used signal processing opera-
tions like FIR, CORDIC, moving average integration, etc.
The biomedical signal processor in [8] makes use of the
aforementioned functions and the gate count reported
for them is 11k, 9.3k and 37k, respectively, with operat-
ing frequency of 1MHz for individual execution of these
functions. [1] implements ECG signal processing algorithm
on a custom microprocessor and reports 36k gates at an
operating frequency of 600kHz.

A similar system operating at 1MHz in [32] reports a
gate count of 195k gates The proposed work reports a gate
count of 24280 gates providing ≈1.5× to 8 × gate (and area)
savings with respect to [1] and [32], respectively.

The latency comparison indicates that accelerators in
[8] take 32–88 cycles for computing various target func-
tions, whereas the SAC architecture takes 16-574 cycles
(0.34-12 ns 46.9M Hz). In both cases, the latency includes
the cycles taken in supplying data, transferring output
and con�guring the architecture. The increased latency
in this work is primarily due to the serial nature of the

proposed architecture; however, cycle optimizing tech-
niques focused on restricting the data movements are
adopted while developing the mapping methodologies. In
general, biomedical signal processing applications expect
moderate processing rates from the processing platforms
due to the nature of biomedical signals (data rates up to
320Kb/s [30]) as well as the data manipulation techniques.
This ensures that the upper bound of operating frequency
of SAC architecture was su�cient to support a variety of
biomedical algorithm processing.

7 Conclusion

A shift-accumulate-based architecture is developed with
con�gurable datapath that supports dominant DSP func-
tions for biomedical signal processing. The architecture
exhibits di�erent topologies for e�cient realization of
functions. E�cient mapping methodologies are devel-
oped for FIR, CORDIC, DWT, DCT, etc., by exploiting algo-
rithm regularities that ensure cycle e�cient calculations by
eliminating redundant computations and limiting memory
requirements. Additionally, SAC architecture contains a
con�gurable datapath that can be leveraged to support
algorithm advancements. Additionally, the architecture
supports modularity, i.e. multiple SAC architecture units
can be connected to exercise various topologies and
functionalities.

The architecture is targeted on a state-of-the-art FPGA
and demonstrates multiple functions like PTA signal
chain, CORDIC, DWT, DCT, etc. The maximum operating
frequency supported by the architecture is 46.9MHz. The
architecture computes cosine with accuracy ranging from
83 to 98% and a mean square error of ≈0.3 is reported
for Lena image as compared to the uncompressed image.
The architecture takes 16-574 cycles for target functions.
In addition, the gate count of the architecture is estimated
as 24280 gates and o�ers 8 × area advantage making it
suitable to be deployed in biomedical applications. The
FFT mapping scheme on the architecture is planned as
future work. Additional bene�ts of further improvements
in power consumption utilizing dedicated power domains
have been proposed in [32, 33] yielding energy advan-
tages. The applicability of multiple power domain to the
proposed architecture is left as future work. Furthermore,
the proposed hardware can bene�t from energy e�ciency
ensured by approximate computing and is also left as
future work.

Acknowledgements The authors would like to thank Palas Par-
mar and Mansi Singh for their assistance in DCT and DWT analysis
algorithm.

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y

Declarations

Conflict of interest The authors declare that they have no con�ict of
interest

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Abdallah RA, Shanbhag NR (2013) An energy- e�cient ECG pro-
cessor in 45-nm CMOS using statistical error compensation. IEEE
J Solid-State Circuits 48(11):2882–2893. https ://doi.org/10.1109/
JSSC.2016.25421 16

 2. Jain SK, Bhaumik B (2017) An energy e�cient ECG Signal proces-
sor detecting cardiovascular diseases on smartphone. IEEE Trans
Biomed Circuits Syst 11(2):314–323. https ://doi.org/10.1109/
TBCAS .2016.25923 82

 3. Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chan-
drakasan AP (2010) A micro-power EEG acquisition SoC with
integrated feature extraction processor for a chronic seizure
detection system. IEEE J Solid-State Circuits 45(4):804–816. https
://doi.org/10.1109/JSSC.2010.20422 45

 4. Li P, Zhang X, Liu M, Hu X, Pang B, Yao Z, Jiang H, Chen H (2017)
A 410-nW e�cient QRS processor for mobile ECG Monitoring in
0.18� m CMOS. IEEE Trans Biomed Circuits Syst 11(6):1356-1365.
https ://doi.org/10.1109/TBCAS .2017.27317 97

 5. Zhang Y, Tian Y, Wang Z, Ma Y, Ma Y (2013) An ECG intelligent
monitoring system with MSP430 Microcontroller. In: 2013 8th
international workshop on systems, signal processing and their
applications (WoSSPA). PP. 214-219. https ://doi.org/10.1109/
WoSSP A.2013.66023 64

 6. Kim H, Yazicioglu RF, Torfs T, Merken P, Van Hoof C, Yoo HJ (2009)
An integrated circuit for wireless ambulatory arrhythmia moni-
toring systems. In: 2009 annual international conference of the
IEEE Engineering in Medicine and Biology Society. pp 5409–
5412. https ://doi.org/10.1109/IEMBS .2009.53328 15

 7. Sridhara SR, DiRenzo M, Lingam S, Lee SJ, Blazquez R, Maxey J,
Ghanem S, Lee YH, Abdallah R, Singh P, Goel M (2011) Micro-
watt embedded processor platform for medical system-on-chip
applications. IEEE J Solid-State Circuits 46(4):721–730. https ://
doi.org/10.1109/JSSC.2011.21089 10

 8. Kwong J, Chandrakasan AP (2011) An energy-efficient bio-
medical signal processing platform. IEEE J Solid-State Circuits
46(7):1742–1753. https ://doi.org/10.1109/JSSC.2011.21444 50

 9. Baquero JS, Cabrera FL, de Sousa FR (2016) A miniaturized low-
power radio frequency identi�cation tag integrated in CMOS for
biomedical applications. In: 2016 1st international symposium
on instrumentation systems, circuits and transducers (INSCIT),
pp 10–13. https ://doi.org/10.1109/INSCI T.2016.75982 09

 10. Wu J, Li F, Chen Z, Pu Y, Zhan M (2019) A neural network-based
ECG classi�cation processor with exploitation of heartbeat simi-
larity. IEEE Access 7:172774–172782. https ://doi.org/10.1109/
ACCES S.2019.29561 79

 11. Wei Y, Zhou J, Wang Y, Liu Y, Liu Q, Luo J, Wang C, Ren F, Huang
L (2020) A review of algorithm & hardware design for AI-based
biomedical applications. IEEE Trans Biomed Circuits Syst
14(2):145–163. https ://doi.org/10.1109/TBCAS .2020.29741 54

 12. Sunwoo MH, Oh SK (2004) A Multiplierless 2-DConvolver chip
for real-time image processing. J VLSI Signal Process Syst Sig-
nal Image Video Technol 38(1):63–71. https ://doi.org/10.1023/
B:VLSI.00000 28534 .35761 .a8

 13. Mishra B, Al-Hashimi BM (2008) Subthreshold FIR �lter architec-
ture for ultra low power applications. In: International workshop
on power and timing modeling, optimization and simulation,
pp 1–10. https ://doi.org/10.1007/978-3-540-95948 -9_1

 14. Rusch TL, Sankar R, Scharf JE (1996) Signal processing methods
for pulse oximetry. Comput Biol Med 26(2):143–159. https ://doi.
org/10.1016/0010-4825(95)00049 -6

 15. Emmanuel BS (2012) A review of signal processing techniques
for heart sound analysis in clinical diagnosis. J Med Eng Technol
36(6):303–307. https ://doi.org/10.3109/03091 902.2012.68483 1

 16. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm.
IEEE Trans Biomed Eng 3:230–236. https ://doi.org/10.1109/
TBME.1985.32553 2

 17. Zong W, Moody GB, Jiang D (2003) A robust open-source algo-
rithm to detect onset and duration of QRS complexes. Comput
Cardiol 2003:737–740. https ://doi.org/10.1109/CIC.2003.12912
61

 18. Kim J, Shin H (2016) Simple and robust realtime QRS detection
algorithm based on spatiotemporal characteristic of the QRS
complex. PLoS ONE 11(3):1–13. https ://doi.org/10.1371/journ
al.pone.01501 44

 19. Are�n MR, Tavakolian K, Fazel-Rezai R (2015) QRS complex detec-
tion in ECG signal for Wearable Devices. In 2015 37th annual
international conference of the ieee engineering in medi-
cine and biology society (EMBC), pp 5940–5943. https ://doi.
org/10.1109/EMBC.2015.73197 44

 20. Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004)
A wavelet-based ECG delineator: evaluation on standard
databases. IEEE Trans Biomed Eng 51(4):570–581. https ://doi.
org/10.1109/TBME.2003.82103 1

 21. Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag
J (2004) patient-speci�c seizure onset detection. Epilepsy Behav
5(4):483–498. https ://doi.org/10.1016/j.yebeh .2004.05.005

 22. Chen D, Wan S, Xiang J, Bao FS (2017) A high-performance sei-
zure detection algorithm based on discrete wavelet transform
(DWT) and EEG. PLoS ONE 12(3):1–21. https ://doi.org/10.1371/
journ al.pone.01731 38

 23. Subasi A (2005) Automatic recognition of alertness level
from EEG by using neural network and wavelet coe�cients.
Expert Syst Appl 28(4):701–711. https ://doi.org/10.1016/j.
eswa.2004.12.027

 24. Chan V, Underwood S (2005) A single-chip pulse oximeter
design using the MSP430. https ://www.ti.com/lit/an/slaa2 74b/
slaa2 74b.pdf

 25. Jain N, Mishra B (2015) CORDIC on a con�gurable serial archi-
tecture for biomedical signal processing applications. In 2015
19th International symposium on vlsi design and test, pp 1–6.
https ://doi.org/10.1109/ISVDA T.2015.72080 50

 26. Jain N, Singh M, Mishra B (2018) Image Compression using 2
D-discrete wavelet transform on a light-weight recon�gurable
hardware. In 2018 31st international conference on VLSI design
and 2018 17th international conference on embedded systems
(VLSID), pp 61–66. https ://doi.org/10.1109/VLSID .2018.38

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/JSSC.2016.2542116
https://doi.org/10.1109/JSSC.2016.2542116
https://doi.org/10.1109/TBCAS.2016.2592382
https://doi.org/10.1109/TBCAS.2016.2592382
https://doi.org/10.1109/JSSC.2010.2042245
https://doi.org/10.1109/JSSC.2010.2042245
https://doi.org/10.1109/TBCAS.2017.2731797
https://doi.org/10.1109/WoSSPA.2013.6602364
https://doi.org/10.1109/WoSSPA.2013.6602364
https://doi.org/10.1109/IEMBS.2009.5332815
https://doi.org/10.1109/JSSC.2011.2108910
https://doi.org/10.1109/JSSC.2011.2108910
https://doi.org/10.1109/JSSC.2011.2144450
https://doi.org/10.1109/INSCIT.2016.7598209
https://doi.org/10.1109/ACCESS.2019.2956179
https://doi.org/10.1109/ACCESS.2019.2956179
https://doi.org/10.1109/TBCAS.2020.2974154
https://doi.org/10.1023/B:VLSI.0000028534.35761.a8
https://doi.org/10.1023/B:VLSI.0000028534.35761.a8
https://doi.org/10.1007/978-3-540-95948-9_1
https://doi.org/10.1016/0010-4825(95)00049-6
https://doi.org/10.1016/0010-4825(95)00049-6
https://doi.org/10.3109/03091902.2012.684831
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/CIC.2003.1291261
https://doi.org/10.1109/CIC.2003.1291261
https://doi.org/10.1371/journal.pone.0150144
https://doi.org/10.1371/journal.pone.0150144
https://doi.org/10.1109/EMBC.2015.7319744
https://doi.org/10.1109/EMBC.2015.7319744
https://doi.org/10.1109/TBME.2003.821031
https://doi.org/10.1109/TBME.2003.821031
https://doi.org/10.1016/j.yebeh.2004.05.005
https://doi.org/10.1371/journal.pone.0173138
https://doi.org/10.1371/journal.pone.0173138
https://doi.org/10.1016/j.eswa.2004.12.027
https://doi.org/10.1016/j.eswa.2004.12.027
https://www.ti.com/lit/an/slaa274b/slaa274b.pdf
https://www.ti.com/lit/an/slaa274b/slaa274b.pdf
https://doi.org/10.1109/ISVDAT.2015.7208050
https://doi.org/10.1109/VLSID.2018.38

Vol.:(0123456789)

SN Applied Sciences (2021) 3:439 | https://doi.org/10.1007/s42452-021-04412-y Research Article

 27. Volder JE (1959) The CORDIC trigonometric computing tech-
nique. IRE Trans Electron Comput 8:330–334. https ://doi.
org/10.1109/TEC.1959.52226 93

 28. Walther JS (1971) A uni�ed algorithm for elementary functions.
In: Proceedings of 1971 spring joint computer conference, pp
379–385. https ://doi.org/10.1145/14787 86.14788 40

 29. Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still
image compression standard. IEEE Signal Process Mag 18(5):36–
58. https ://doi.org/10.1109/79.95280 4

 30. Biopotential Nagel JH, Ampli�ers (2000) In: Bronzino JD (ed)
The biomedical engineering handbook: medical devices and
systems. CRC Press LLC, pp 1–14

 31. Chandrakasan AP, Verma N, Daly DC (2008) Ultra low-power
electronics for biomedical applications. Annu Rev Biomed Eng
10:247–274. https ://doi.org/10.1146/annur ev.bioen g.10.06180
7.16054 7

 32. Hulzink J, Konijnenburg M, Ashouei M, Breeschoten A, Berset T,
Huisken J, Stuyt J, de Groot H, Barat F, David J, Van Ginderdeuren

J (2011) An ultra low energy biomedical signal processing sys-
tem operating at near-threshold. IEEE Trans Biomed Circuits Syst
5(6):546–554. https ://doi.org/10.1109/TBCAS .2011.21767 26

 33. Konijnenburg M, Cho Y, Ashouei M, Gemmeke T, Kim C, Hulzink
J, Stuyt J, Jung M, Huisken J, Ryu S, Kim J (2013) Reliable and
Energy-E�cient 1MHz 0.4V Dynamically Recon�gurable SoC for
ExG applications in 40nm LP CMOS. In 2013 IEEE international
solid-state circuits conference digest of technical papers, pp
430–431. https ://doi.org/10.1109/ISSCC .2013.64878 01

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional a�liations.

https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1145/1478786.1478840
https://doi.org/10.1109/79.952804
https://doi.org/10.1146/annurev.bioeng.10.061807.160547
https://doi.org/10.1146/annurev.bioeng.10.061807.160547
https://doi.org/10.1109/TBCAS.2011.2176726
https://doi.org/10.1109/ISSCC.2013.6487801

	A Low gate count reconfigurable architecture for biomedical signal processing applications
	Abstract
	1 Introduction
	2 Functionality profile of biomedical applications
	3 Shift-accumulate (SAC) architecture
	3.1 Introduction
	3.2 Mathematical foundation
	3.3 Architecture and operation
	3.3.1 Register unit (RU)
	3.3.2 Computation unit
	3.3.3 Operation

	3.4 Configurable datapath and control word
	3.4.1 Coefficient multiplexers

	4 Architecture topologies
	4.1 Systolic array structure
	4.2 Four tile structure

	5 Mapping of different functions
	5.1 Variable coefficient functions
	5.2 Fixed coefficient functions
	5.2.1 COrdinate Rotation DIgital Computer (CORDIC) [27]
	5.2.2 The 2-D Discrete Wavelet Transform
	5.2.3 The 2-D discrete cosine transform (DCT)

	6 Results and discussion
	6.1 Hardware configuration
	6.2 Pan–Tompkins algorithm signal chain
	6.3 CORDIC, DCT and DWT results
	6.4 Clock profiling
	6.5 Gate profiling
	6.6 Comparison with similar works

	7 Conclusion
	Acknowledgements
	References

