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.4Mract —A GaAs monolithic Ku-band analogphaseshifter integrating
a 90° branch line coupler with planar varactor dkdes has been fabricated

for the first time. A phase shift of 109” A 3° with an insertion loss of

1.8 +0.3 dB was measured from 16 to 18 GHz. A 360° phase shifter with

4.2 +-0.9 dB insertion loss was realized in the same frequency range by

connecting three phase-shifter chips in series. To our knowledge, this is

the lowest insertion loss obtained by a 360° Ku-band phase shifter using

monolithic circuits. In addition, hyperabropt varactors using nonuniform

doping profiles increased the phase shift by more than 30” and produced a

more linear dependence of phase shift on control voltage.

I. INTRODUCTION

PHASED-ARRAY radar systems need a phase shifter

in each module for the beam scanning required to

search and track multiple targets. It is therefore important

that a phase shifter designed for a monolithic GaAs trans-

mit–receive (TR) module occupy a small area and use a

minimum number of passive and active components. An

analog phase shifter is advantageous in this respect be-

cause it can provide a given phase shift with less area and

fewer devices than a digital phase shifter.

A number of hybrid analog phase shifters have been

developed [1]–[3]. However, there has been only one

monolithic analog phase shifter reported [4]. In this phase

shifter, the Schottky-barrier gate capacitance of a GaAs

MESFET was used as the varactor, and a phase shift of

105° with 2.5 +0.5 dB insertion loss was measured at

X-band. In order to minimize the series resistance between

the gate (anode) and the source (cathode), critical photo-

lithography or additional ion implantation was needed.

Furthermore, it is difficult to extend this approach to

higher frequencies due to high gate resistance and the

effects of distributed elements along the gate fingers.

In this work, we report a low-loss l@-band monolithic

analog phase shifter using planar varactor diodes and a

90° branch-line coupler. The fabrication of this circuit is
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very simple and a high yield is expected. In addition, since

GaAs monolithic circuits consisting of planar Schottky

diodes and a 90° coupler have been demonstrated to be

suitable for ~a-band applications [5], we believe that this

approach should be easily extendable to higher frequen-

cies.

11. ANALOG PHASE SHIFTER DESIGN

Our goal was to build a low-loss GaAs monolithic

analog phase shifter with minimum variations in phase

shift between 16 GHz and 18 GHz. Fig. l(a) shows the

circuit diagram of the analog phase shifter and Fig. l(b) is

a scanning electron microscope (SEM) micrograph of the

finished chip. The chip size is 3.1 mm X 2.4 mm and it is

0.127 mm thick. The phase-shifter circuit consists of a 90°

branch line coupler, 50-!2 microstrip lines connecting the

coupler and the varactors, tuning inductors, and a dc bias

line. The lengths of the 50-fl microstrip line and the tuning

inductor are 1 and L, respectively. A 900 branch-line

coupler was chosen because of its low loss and simplicity.

The varactor diodes are connected to the 0° and – 90°

ports of the branch-line coupler. Since the phase shift is

determined by the reactance presented at these ports, it is

controlled by varying the capacitance of the varactor di-

odes [6].

The planar varactor diode occupies a smaller area than a

MESFET, and does not require ion implantation or critical

photolithography to lower its series resistance, which is a

dominant factor in determining the insertion loss of the

phase shifter. The phase shift which can be produced is

proportional to the capacitance change of the varactor

diodes. However, the thicker n-type epitaxial layer re-

quired to support the larger excursions in depletion regions

will contribute to a higher series resistance. The choice of

the doping concentration consequently involves a tradeoff

among breakdown voltage, series resistance, and the rate

of the capacitance change with re~pect to the bias voltage.

In our design, we used 5000 A of n-type layer with

uniform doping concentration of 8 X 1016 cm – 3. This layer

should have a 4.2:1 capacitance ratio between O V and

reverse breakdown if there is no parasitic capacitance.

However, in reality the smallest capacitance, and the largest

phase shift attainable, are limited by the parasitic capaci-

tance. In this work we chose the diode area such that the

capacitance at zero bias is 0.35 pF. Including the parasitic
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Fig. 1. (a) Circuit diagram of theanalog phase shifter.(b) SEM micro-
graph of the finished chip,

capacitance, a 3.5:1 capacitance ratio is expected for the

varactor diode.

Compared to the uniformly doped material, a hyper-

abrupt varactor with a modified doping profile has a faster

capacitance change rate with the bias voltage. As a result,

a phase shifter using hyperabrupt varactors will have a

larger total phase shift and a higher phase-shift resolution.

In addition, a proper choice of doping profile can provide

a more linear phase shift with the bias [7], [8]. However,

the main reason for using a hyperabrupt varactor here is to

increase the total phase shift. Instead of a continuously

graded doping profile, three epitaxial layers with different

doping concentrations were grown by molecular beam

epitaxy (MBE) for simplicity.
A section of 50-L? line is used between the coupler and

the varactor to minimize the phase-shift variations over the

bandwidth. The calculated phase shift for different lengths

of the 50-!il line is shown in Fig. 2. In this calculation, we

assumed values of 0.35 pF and 0.1 pF for the O-V and

breakdown-voltage varactor capacitances, respectively, 0.2

100
t

90 ~
15 16 17 18

FREQUENCY (GHz)

Fig. 2. Calculated phase shift for various lengths of the 50-Q line in the
circuit. The length is expressed as the electrical length at 17 GHz. An

ideaf 17-GHz 90° hybrid is assumed and the phase shift is defined as

the difference of the insertion phase for varactor capacitance values of

0.35 pF and 0.1 pF. A 175-pm length of 66-Q microstrip line and 0.2
nH of bond wire inductance are also included.

nH for bond wire inductance, and a 17-pm length of 66-!J

microstrip line for the tuning inductance. In the absence of

the 50-!d line, indicated as 1= 00 in Fig. 2, the phase shift

decreases monotonically from 16 GHz to 18 GHz. As the

length of this line increases, the phase-shift variation at

lower frequencies is reduced and a phase-shift minimum

occurs close to the design center frequency. If the length

increases further, the phase shift increases monotonically

with frequency in the range measured. In this work, a

length of 30” at 17 GHz was chosen in order to keep the

phase-shift variation with frequency small. As shown in

Fig. 2, the phase-shift variation between 16 GHz and 18

GHz was + 8°.

The tuning inductance affects the total phase shift as

well as its variation over the bandwidth. A section of 66-Q

microstrip line was used as tuning inductance. The phase

shift is plotted in Fig. 3 for various lengths of inductive

lines. The amount of phase shift increases with the length

of this tuning inductor. However, for lengths exceeding

approximately 85 pm, the variation also increases with the

line length. For instance, between 16 GHz and 18 GHz the

variations are + 13° for the 350-pm line and + 8° for the

175-pm line. Therefore, a 175-pm line was chosen as a

compromise, providing moderate total phase shift and an

acceptable phase-shift variation. N’ote that the variation of

phase shift with frequency is dependent on the lengths of

both the 66-0. tuning inductor and the 50-fl microstrip

connecting line. However, the absolute value of the phase

shift at the design center frequency is independent of the

length of the 50-0 connecting line.
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Fig. 3. Calculated phase shift fordifferent lengths of thetuninginduc-

tor. Theimpedance of theinductive line is66 Q andtheelectncal length

of the 50-Q line is 30° at 17 GHz. The rest of the parameters are the
same as those usedin Fig. 2.

III. DEVICE AND CIRCUIT FABRICATION

GaAs epitaxial layers grown by MBE were used for the

varactor diodes. A 2-pm n+ layer doped to 1 x 1018 cm-3

was firstogrown on a semi-insulating substrate, followed by

a 5000-A n-type layer with 8 x 1016 cm-3 doping con-

centration. In addition to the uniformly doped n-type

layer, a quasi-hyperabrupt material w~s also used. In this

material, three epitaxial layers, 3000 A of 1 X 1016 cm– 3,

4000’ ~ of 3X 1016 cm-3, and 4000 ~ of 8 x 1016 cm-3,

were grown sequentially on top of the n + layer.

The fabrication steps are shown in Fig. 4. The n+ layer

in the ohmic contact region was first exposed by chem-

ically ~tching the n-~ype epitaxial l~yers on top. Then Pd

(300 A)/Ge (400 A)/Au (3400 A) metallizations were

defined by lift-off. The contact metallizations were sintered

at 450”C for 30 s to form the ohmic contact. This recently

developed nonalloyed contact [9] has low contact resis-

tance and very smooth surface morphology, which is par-

ticularly important for devices with small area. A mixture

of hydrochloric acid, hydrogen peroxide, and water was

used to etch deep mesas for diode isolation. This mixture

produced a sloped side wall to avoid any possible discon-

tinuity in the metallizations or photoresist at the edge of

the inesa. An air bridge was used to connect the anode of

the diode and the microstrip circuits on the semi-insulating
substrate. The bridge was first defined using photoresist.

Then the 2.5-pm-thick Ti/Pt/Au metallization for the

anode of the’ diode, rnicrostrip circuit, and the air bridge

was’ electron-beam evaporated and defined by PMMA and

AZ-1470 double-layer resist lift-off. We have fabricated

comparable air bridges using an electroplating technique,

(a)

(b)
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Fig. 4. The process steps of the monolithic anafog phase shifter. (a)

Ohmic contact. (b) Mesa etch and air bridge definition. (c) Electron-

beam evaporated Ti/Pt/Au for anode, air bridge, and microstrip
circuit.

*’”’”--I
Fig. 5. An SEM micrograph of the plahar varactor diode in the phase

shifter. The nonalloyed Pd/Ge/Au ohmic contact has very smooth

surface.

but have found that the evaporated air bridge has better

dimensional control and the processing is simpler. Because

the same metallization is used for anode, air bridge, and

circuit, only four masks are needed. This simple fabrica-

tion process is the key for high yield and reproducibility.

Fig. 5 is an SEM rnicrograph of the varactor diode Show-

ing a featureless Pd\Ge\Au ohmic contact.

IV. MEASURED RESULTS

The varactor diodes fabricated on the uniformly doped

epitaxial layer had a reverse breakdown voltage of 16 V

and a series resistance of less than 4 L?. The average

capacitance was 0.34 pF at zero bias and 0.11 pF at reverse

breakdown. The capacitance ratio was approximately 3:1,
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Fig. 6. Measured phase shift and insertion loss of the phase shifter
fabricated on the uniformly doped material. The open circles are the

calculated phase shift and the insertion loss includes 0.5 dB of test-fix-
ture loss.

which was very close to the predicted value. From an

analysis of the capacitance of different sizes of diodes, a

parasitic capacitance of approximately 0.03 pF was calcu-

lated. The intrinsic capacitance ratio inferred using this

parasitic capacitance is 3.9:1.
Measured phase shift and insertion loss are shown in

Fig. 6. The phase measured at 16 V reverse bias was used

as the reference. From O to 16 V reverse bias, a phase shift

of 109°+30 was obtained between 16 GHz and 18 GHz. If

a forward bias of 0.62 V is applied, the total phase shift

increases to 1380 +30, but the insertion loss also increases

rapidly. In Fig. 6, the open circles in the phase-shift plot

are phase shifts calculated using 0.34 pF and 0.11 pF as

the zero-bias and 16-V varactor capacitances, respectively.

Satisfactory agreement, within 5°, was obtained from 16 to

18 GHz. For reverse biases, the measured insertion losses

were 1.8 ~ 0.3 dB. All the insertion losses reported here

include approximately 0.5 dB of test-fixture loss. Increas-
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Fig. 7. Measured phase shift and insertion loss of the 360° phase shifter
which was realized by cascading three phase shjfter chips.

ing the input power to 20 dBm resulted in no measurable

change in phase shift and insertion loss for any bias

voltage. The average VSWR was less than 1.3:1 for re-

verse-biased diodes and the worst case was 1.6:1.

Because both the input and output impedances are 50 L?,

the phase shifters can be cascaded directly. A 180° phase

shifter was realized by connecting two such phase-shifter

chips in series. From O to 16 V reverse bias, a phase shift

of 183° ~ 7° with an insertion loss of 3.2+ 0.6 dB was

measured from 16 GHz to 18 GHz. This is consistent with

the phase shift and insertion loss of the individual chip,

and only one dc cbntrol voltage is required. A full 360°
phase shifter was constructed in the same manner by

cascading three chips. As shown in Fig. 7, the measured

phase shift was 359° + 17° from 16 GHz to 18 GHz and

the insertion loss was 4.2 ~ 0.9 dB. To the best of our

knowledge, this is the lowest insertion loss reported for a
Ku-band monolithic 360° phase shifter using active solid-

state devices.
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Fig. 8. Measured phase shift as a function of the dc bias at 17 GHz.

The solid line is f~r the phase shifter fabricated on a uniformly doped

materiat and the broken line is for thehyperabrupt material.

The hyperabrupt diodes with a modified doping profile

have larger capacitance variation for the same amount of

bias change. As a result, larger phase shift for the same dc

control bias range are expected for phase shifters incorpo-

rating the hyperabrupt varactor diodes. Analog phase

shifters identical to those previously described were fabri-

cated on the material with the multiple epitaxial layers

described in the previous section. We also reduced the

mesa to one half of its original size to minimize the effects

of the parasitic capacitance. At zero bias, the diode capaci-

tance was 0.29 pF and a capacitance ratio of 6.3:1 was

obtained between zero and 12 V reverse bias. The series

resistance was 3.7 Q, which is similar to the uniform-profile

varactor diodes we fabricated. As expected, a significantly

larger phase shift was measured. From 16 GHz to 18 GHz,

a phase shift of 166° + 6° was measured between – 12 and

+0.5 V, which is the largest forward bias one can apply

without increasing the insertion loss. The measured inser-

tion loss was 1.9 +0.6 dB for the same bias range. From O

V to – 12 V, a phase shift of 146 +- 8° was measured, which

is an increase of more than 30° compared to the phase

shifter using regular varactor diodes. Using hyperabrupt

varactors does provide a more linear phase shift than that

with a regular varactor with uniform doping profile, as

illustrated in Fig. 8. Although linear phase shift is not

required in this work, a more linear phase shift response

means a more precise phase control.

V. SUMMARY AND CONCLUSIONS

We have fabricated an analog phase shifter at Ku-band

with greatly simplified processing. The performance is

accurately predicted by the theoretical calculations. The

use of the evaporated air bridge greatly simplified the
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process and improved the dimensional control. Tlie

Pd/Ge/Au metallizations enabled us to obtain a very

uniform ohmic contact whicli can be further scaled down

in area to reduce the parasitic capacitance. Using regular

varactor diodes with uniformly doped epitaxial layer, a full

360° phase shifter was realized by cascading three phase-

shifter chips. From 16 GHz to 18 GHz, the measured

phase shift and the insertion loss were 359° f 17° and

4.2 ~ 0.9 dB, respectively. The phase shifter with hyper-

abrupt varactors had a larger phase shift with better linear-

ity as a function of the bias voltage. It is feasible to

construct a 360° phase shifter using two such chips with

approximately 3 dB of insertion loss. Because of the high-

frequency capability of the varactor diodes and the sim-

plicity of the design and fabrication, we feel that the

analog phase shifter approach reported here can be readily

applied to higher frequencies, such as the millimeter-wave

frequency range.
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