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ABSTRACT

In this work we present the possible variations that the meridional circulation of the Sun might have undergone
during the last 250 years. In order to do this, we reduce an� -� dynamo to a low-order system that focuses on the time
evolution of one of the solar magnetic field components. Afterward we used a method based on the analysis of phase
space of the superficial toroidal magnetic field to infer changes in the superficial meridional circulation. We used sun-
spot numbers to build a time series that approximately represents the magnetic field behavior. After reconstructing the
time series’ phase space we assume equilibrium solutions for each solar cycle and we fit them to our model. The re-
sulting fit parameters are shown to depend on background quantities of the theoreticalmodel, such asmagnetic diffusivity,
differential rotation, meridional circulation, etc. The methodology presented here allows one to extract information
about the meridional circulation average behavior, and possibly other parameters, frommore that 250 years of sunspot
number observations.

Subject headinggs: Sun: general — Sun: magnetic fields — sunspots

1. INTRODUCTION

Although the average behavior of the solar cycle can be ex-
plained by current dynamo theories, the variation in amplitude
and period of the 11 year sunspot cycle is still hard to understand
(Charbonneau 2005). This matter assumes an important role if
we have in mind that the solar cycle variability has a massive
influence on the interplanetary space that surrounds Earth and
possibly an impact on the Earth’s climate (Haigh 1996; Marsh
& Svensmark 2003). Presently, where climate change is a very
debated subject, telecommunication satellites are indispensable,
and the advent of an active human solar system exploration takes
shape, solar variability assumes a special role in this broad pic-
ture. Present solar variability studies indicate that the complicated
structure and interaction of magnetic fields in the convection zone
and lower solar atmosphere might be the roots of several solar
phenomena that occur around the solar cycle peak (Livingston
1982; Harvey &White1999). Dynamo theories try to explain the
overall behavior of the solar magnetic fields, but the complex
nature of the equations makes it difficult to account for all pos-
sible effects.

One of the most studied types of dynamo is the Babcock-
Leighton dynamo model that assumes that the � -effect (the re-
cycling mechanism of toroidal to poloidal magnetic field) is due
to the decay of bipolar sunspot pairs (Babcock1961). An evolu-
tion of these dynamo models are the so-called flux-transport dy-
namos (Ossendrijver 2003) which include a plasma flow that, at
the surface, transports small magnetic features from the equator
to the poles, the so-called meridional circulation. Theoretically,
this flow acts as a clock regulating some of the features observed
during the solar cycle (e.g., its period and possibly amplitude;
Dikpati & Charnonneau 1999; Nandy & Choudhuri 2002;
Chatterjee et al. 2004; Charbonneau 2005; Dikpati et al. 2006).
Experimental measurements of this plasma flow using helioseis-

mic techniques estimated values for its velocity around 20 m s�1

at the surface (poleward directed) and 3 m s�1 (equatorward
directed) at the base of the convective zone (Giles et al. 1997;
Hathaway et al. 2003).
Priest (1984) showed that some of the dynamics of the solar

dynamo can be explained in terms of dynamical systems analysis.
Features, likemagnetic field reversal, have also been recently ob-
served in laboratory dynamo experiments (Berhanu et al. 2007;
Dubrulle et al. 2007) which indicate that, within certain approx-
imations, some of these dynamics can be explained by low-order
dynamomodels (Mininni et al. 2001; Pontieri et al. 2003;Wilmot-
Smith 2005).
In this work we use a low-order dynamo model associated

with sunspot counts to infer properties of the meridional circula-
tion over time. First, we reduce the equation set of a generic axi-
symmetric� -� dynamo to a low-order dynamomodel.We focus
our attention on the temporal behavior of the toroidal component
of the magnetic field at the surface of the Sun.
Second, we reconstruct the phase space of a time series that

corresponds to this toroidal component, using observations of the
sunspot number for the last 250 years. We assume that the be-
havior over time of the sunspot number is the same as the to-
roidal field component which is considered to be its source.
Moreover, we fit our model to the phase space of the calculated
time series by assuming equilibrium solutions for each solar
cycle. This allows us to infer variation in the meridional cir-
culation at the surface for this 250 year period. Finally, we
present our results, discuss them in terms of present dynamo
research, and speculate a little about possible correlations be-
tween some sharp variation episodes and other relevant obser-
vational phenomena.

2. LOW-DIMENSIONAL DYNAMO MODEL

2.1. Oscillatory Behavior of the Toroidal Magnetic
Field Component

The mean solar magnetic field B̄ can be expressed in terms of
its toroidal and poloidal components, B̄ ¼ B 0

� þ B0
p, whereB

0
p ¼
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: < (A0
pê�). Using the induction equation and spherical symmetry,

we get the following equations set for an axisymmetric dynamo
model (Charbonneau 2005),
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where r̄ ¼ r sin �, :� represents the differential rotation of the
Sun, vp is the meridional circulation, and � is the magnetic dif-
fusion. For simplification we assume that � is a constant over all
the convection zone, so that @�/@r ¼ 0 and the plasma is incom-
pressible. We then get
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where we also introduced a generic � -effect to explain the con-
version of toroidal to poloidal field and a term that accounts for
the removal of magnetic flux from the bottom of the convection
zone bymagnetic buoyancy. Following the suggestions of Pontieri
et al. (2003), we assume that the removal rate is proportional to the
magnetic buoyancy, � � �B02�/8��, where � is a constant and �
is the plasma density.

We can now separate the temporal from the spatial behavior of
the fields by performing a variable separation in the following
way,

B0
�(r; �; t) ¼ b�(r; � )B�(t) ¼ b�B�; ð3Þ
A0
p(r; �; t) ¼ ap(r; � )Ap(t) ¼ a�Bp: ð4Þ

Using equations (3) and (4) in equations (1) and (2) we get

dB�

dt
¼ c1bB� þ c2aAp � c3bB

3
�; ð5Þ

dAp
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¼ c1aAp þ �c2bB�; ð6Þ

where we have the spatial coefficients, cnm(r; � ), defined as
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where ap and b� indicate mean profiles of the spatial fields.

Fig. 1.—Top: Monthly sunspot number since 1750. Middle: Magnetic field
B(t) with the field sign inverted for each successive cycle. The black line rep-
resents the smoothed signal superposed on the original signal in gray. The indi-
vidual magnetic cycles considered are also numbered. Bottom: Phase-space diagram
for the smoothed B(t).
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Applying d/dt to equations (5) and (6) and solving the set of
equations in order to find B�, we obtain

d 2B�

dt2
¼ � (c1ac1b � �c2ac2b)B� � (c1a þ c1b)

; 3
c3b
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B2
� � 1

� �
dB�

dt
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3
�; ð12Þ

or in a more compact way,

d 2B�

dt2
þ !2B� þ � 3	B2

� � 1
� � dB�

dt
� kB3

� ¼ 0; ð13Þ

where !2 ¼ c1ac1b � �c2ac2b, � ¼ c1a þ c1b, 	 ¼ c3b/�, and
k ¼ c1ac3b. Using a different method, dimensional analysis,
other authors found an analogous result (Mininni et al. 2001;
Pontieri et al. 2003). Equation (13) corresponds to a nonlinear
oscillator that mixes both van der Pol and Duffing oscillators.
According to our model we now know that the toroidal com-
ponent of the solar magnetic field behaves like an oscillator.
This behavior was expected and is experimentally verified (see,
e.g., magnetic field data from the Wilcox Solar Observatory).
This oscillator shows a characteristic phase-space behavior that
depends mainly on its parameters: !, the frequency; �, the asym-
metry or dumping parameter; 	, the scaling parameter; and k, the
Duffing parameter.

2.2. Further Simplifications

By symmetry we can restrict our calculations to the north-
ern hemisphere. We consider that, at a photospheric level, vp is
restricted to the surface, i.e., vp ¼ �vpê� (poleward directed),
and r̄ ¼ R�. We can simplify this model even more by consid-
ering only the characteristic scale of the system. This is done
through dimensional analysis, i.e., by substituting : with 1/l0,
where l0 is the characteristic length of interaction, as some authors
have suggested (Mininni et al. 2001; Pontieri et al. 2003). These
simplifications yield
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� �� �
:� ¼ apR�

b�l
2
0

: ð16Þ

So, by applying these results to the condensed spatial factors
we get
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3. PHASE-SPACE RECONSTRUCTION
AND ANALYSIS METHODOLOGY

Since in x 2 we reduced the classical dynamo action to a low-
order system based on B�, we now try to find a way to study this
magnetic field component. According to dynamo theories, the sun-
spot number, SSN, is proportional to the magnetic energy that
erupts at the solar surface, i.e., the square of the magnetic field.
Thus, we can construct a time series that exhibits a behavior anal-
ogous to the magnetic field’s and is proportional to SSN by as-
sumingB(t) / �

ffiffiffiffiffiffiffiffiffi
SSN

p
, where the sign follows the approximate

11 year inversion of the field’s polarity (Bracewell 1953). More-
over, since sunspots are a direct consequence of the toroidal mag-
netic field that erupts at the surface, thisB(t) can bemore correctly
interpreted as proportional to the toroidal magnetic field compo-
nent (Tobias et al. 1995).
In this study, we used the monthly average international SSN

from1750 to the present. The identification of theminima andmax-
ima for each solar cyclewas the same one suggested in the database
where the data came from (NOAA3). Inorder to create a phase space,
we also need to compute dB/dt ¼ B(tþ½ �)� B(t ��)�/2�,
where in our case we chose� ¼ 6 months for the time step. We
smoothed the SSN signal (using a fast Fourier transform filter)
in order to clear small-timescale sharp perturbations (smaller
than 2 yr approximately), leaving only the average behavior of
the cycle. In Figure 1 we show the results from this procedure.
The resulting phase-space diagram seems to indicate that the

evolution of the solar cycle behaves like a low-order dynamical

TABLE 1

Fit Parameters

Cycle ! � 	

1...................................... 0:32558 � 0:00601 0:16986 � 0:01644 0:01211 � 0:00094

2...................................... 0:30148 � 0:00464 0:16411 � 0:0131 0:01458 � 0:00086

3...................................... 0:26167 � 0:00415 0:03511 � 0:02531 0:0361 � 0:02005

4...................................... 0:32241 � 0:00437 0:19239 � 0:0119 0:01061 � 0:0005
5...................................... 0:27592 � 0:00602 0:15474 � 0:01713 0:01366 � 0:0011

6...................................... 0:29906 � 0:00559 0:11749 � 0:01483 0:01879 � 0:00181

7...................................... 0:27818 � 0:00389 0:16837 � 0:01103 0:02059 � 0:00097
8...................................... 0:30845 � 0:00289 0:17643 � 0:00833 0:01506 � 0:00051

9...................................... 0:31108 � 0:00282 0:21196 � 0:00749 0:00921 � 0:00025

10.................................... 0:29867 � 0:00511 0:16642 � 0:01406 0:0092 � 0:00057

11.................................... 0:31828 � 0:00318 0:17945 � 0:00895 0:00949 � 0:00034

3 See ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS.
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system. It can be interpreted as if the system is constantly re-
adjusting to an equilibrium solution that stubbornly refuses to set
still. For this case, according to our model, the solution should be
an attractor, i.e., a limit closed curve in the phase space.

As mentioned in x 2, this phase space represents the solutions
of a nonlinear oscillator thatmixes both van der Pol andDuffing os-
cillators. From the classical point of viewof dynamical systems, the
degree of randomness that the phase space (see Fig. 1, bottom) pres-
ents in itself qualifies the system as having stochastic or chaotic
behavior. However, we know that, on average, the system pres-
ents a cyclic behavior, the solar cycle itself. Therefore, our approx-
imative model should at least be able to capture some of these
well-behaved solutions. Also, according to our model, we know
that the characteristic parameters, !, �, etc., that we previously
defined as spatial coefficients, are not strictly constants. They de-
pend on the characteristics of the background (plasma velocity,
diffusivity, etc.) which in turn can evolve slowly over time. Having
in mind this slow evolution in time, we assume that each solar
cycle corresponds to an equilibrium solution for this dynamical
system, characterized by a specific set of parameters. Although the
background parameters might change continuously in time, our
assumption implies a discretization of the presented results.

This leads us to the following question: which background
parameter is the more likely to account for the differences seen
between consecutive cycles? To find an answer to this we focus
our attention on the asymmetry parameter �. Besides the simple
dependence it has on the background quantities (see eq. [18]), in
this type of oscillator, this parameter usually indicates the strength
of the nonlinear damping and, consequently, the system’s ener-
getic behavior. This is also the parameter that controls the asym-
metry between the rising and falling parts of the peaks, which is
also commonly seen in the solar cycle.

In order to study the slow evolution of the background pa-
rameters present in �, we divided our B(t) series into individual
magnetic cycles and fitted each one individually in the phase
space. We used the fact that equation (13) can be described using
the dynamical system’s standard form, and in an analogous way
toMininni et al. (2001) and using a least-squares fit method (with
the Levenberg-Marquardt algorithm), we are able to find the
parameters !, �, 	, and k that best fitted each cycle’s phase

Fig. 2.—Gray dots correspond to the experimental dataB(t), and the black line
corresponds to the fitted model. Each graph represents an individual cycle.

Fig. 3.—Fitted result for each cycle (lines) superposed on the smoothed B(t)
series ( gray dots).

Fig. 4.—Top: Inferred variation of vp relative to its mean value for each con-
sidered magnetic cycle. Bottom: Black circles connected by dashed line represent
the real period of each magnetic cycle. Gray triangles connected by thick line
show the period (1/!) inferred from the fits to the data.
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space (see Table 1). The fit values for k are at least 2 orders of
magnitude smaller than all the other parameters, and we neglect
them for now. In Figures 2 and 3 we can see a comparison of the
overall results of several fits in the phase space and superposed
on the experimental data.

4. MERIDIONAL CIRCULATION VARIATIONS

An interesting fact is that, from all the quantities present in �,
vp is, in our opinion, the more likely to change over the solar
cycle timescale. Besides vp, � also depends on l0 and R (constants
of the system by definition) and �, the magnetic diffusivity. The
latter is usually defined as � ¼ �þ �, where � represents the
molecular magnetic diffusivity and � is the turbulent magnetic
diffusivity. Usually, � is much smaller than � and in most of the
cases it can be neglected. Since, to our knowledge, there is no
evidence that turbulence changes its regime through the solar
cycle, it is plausible to assume a constant � in the considered time
frame. Therefore, if we study the evolution of � from cycle to
cycle, we can, in a first approximation, assume that it directly re-
flects changes in vp.

Figure 4 shows the deduced behavior of vp that is inferred
from this low-order model. It represents the relative variation of
the meridional circulation, �vp, at the surface. As a validation
test, we also present the period from each cycle calculated using
our methodology and compare it to the experimental measured
values. The overall behavior is the same leading us to believe
that the curve for �vp is acceptable.

A comparison between the two graphs of Figure 4 also shows
that there is an anticorrelation between vp and the cycle’s period.
This is in agreement with the evidence presented in Hathaway
et al. (2003) and can be explained by the fact that a faster me-
ridional circulation advects the poloidal field into the convection
zone more efficiently decreasing the cycle’s period. It is this po-
loidal field, which is transported to the bottom of the convection
zone, that will be stretched by differential rotation and trans-
formed into toroidal field of the next cycle. The amount of po-
loidal field inserted into the convection zone may have some
influence on the amplitude of the following cycle (Choudhuri
et al. 2007; Dikpati et al. 2006). From these arguments we can
deduce that meridional circulation influences the period and am-
plitude of the solar cycle.

Varyingmeridional circulation is not a new idea, but our meth-
odology can give us some clues about how it varied in the past.
Also, evidence for a varying meridional circulation can be found
in the literature (González Hernádez et al. 2006; Hathaway et al.
2003), further supporting our results.

5. DISCUSSION AND CONCLUSIONS

We began with the standard equations for a mean field axi-
symmetric � -� dynamo and simplified it in order to obtain a
low-order dynamo model. The temporal behavior of the toroidal
component of the magnetic field was derived and corresponds to
a modified van der Pol /Duffing oscillator. We used the sunspot
number between 1750 and 2000 to construct the phase space of a
quantity, B(t), that behaves in an analogous ways to the toroidal
component of the solar magnetic field. The resulting diagram
(Fig. 1) indicates that B(t) can be interpreted as a dynamical
system that tends to an equilibrium solution that changes over
time (this is the reason for some of the trajectories crossing in
the phase space). Afterward we divided our B(t) data series into
individual solar magnetic cycles (�22 yr) and fitted each one
of them individually to our model. This was done under the as-

sumption that each solar cycle corresponds to an equilibrium tra-
jectory on the phase space (Passos & Lopes 2008). The values
obtained through the fits give us some information about the
physical parameters that are involved in the spatial coefficients.
The different fit parameters obtained from cycle to cycle illustrate
the evolution of the background quantities.
We chose one of the parameters,�, and studied its dependence

on some background quantities, namely, magnetic diffusivity and
meridional circulation. In this work we consider that the magnetic
diffusivity does not changewithin the cycle timescale, and we fur-
ther investigated the possibility that the variability observed in
the phase space might be explained by a varying meridional cir-
culation, vp.
Concerning our methodology, we would like to point out that

when the shape of the cycle in the phase space is very irregular
(far form a van der Pol), the fitting process becomes unstable and
the initial fitting values must be carefully introduced. In our case
this happened mainly in magnetic cycles 3 and 6. In the case of
cycle 3, the 80% deviation from average and the big error bar
indicate that the fitting process probably cannot be applied here.
Possibly the truncated model used is too simple to account for all
existing mechanisms and simply cannot handle this extreme
behavior. Although, if one believes in the values obtained with
the used model for cycle 3, this would mean that �, in that case,
did not depend directly on vp. In this particular case, the value of
	 (see Table 1) is of the same order of magnitude. In the context
of our model, this would mean that cycle 3 had a special depen-
dence on the magnetic buoyancy term (see eqs. [13] and [19]). In
this case, one can only try to speculate a possible explanation.
This episode could be related with the intensity of the magnetic
field in cycle 3 influencing the rising of the flux tubes that orig-
inate sunspots. These two cycles (3 and 6) have in common the
fact that they are small when compared to their preceding ones,
and interestingly, this odd behavior can be correlated to high
solar activity episodes during the previous cycle. The odd behav-
ior that begins around the end of magnetic cycle 2 (near 1788)
and continues on to cycle 3 is associated with evidence of high
solar activity based on auroral observations at low geomagnetic
amplitudes (Vaquero & Trigo 2006). For cycle 6, the odd be-
havior began at the end of cycle 5, near 1859, the year which is
associated to a super solar storm that caused problems in tele-
graph lines all over Europe and the United States. These events
occurred during the beginning of the descendant phase of the
sunspot cycle which corresponds to the inflection present in
the top left quadrant and bottom right quadrant of the phase
space. In the scope of our simplified model, this could suggest
that, when we have a very active Sun andmuch of the magnetic
energy is released, e.g., through magnetic reconnection (asso-
ciated with flares or other phenomena), the magnetic field of
the following cycle has lower intensity. This low-intensity field
then does not spread out up through the chromosphere and co-
rona, confining the field more closely to the photosphere. Then
the Lorentz feedback of the field acts more actively on the
plasma flows and the meridional circulation slows down. Since
the meridional circulation acts as a clock controlling the cycle
length, this also could explain the increase in the period. This
scenario is also valid for changes in the differential rotation of
the Sun and agrees with previous works (Javaraiah 2003; Antia
et al. 2008).
Finally, we would like to note that although the construction

of the time series, B(t) might be questionable, the truth is that
experimental measurements from the Wilcox Solar Observatory
show a good agreement between SSN and B�. The phase-space

PASSOS & LOPES1424 Vol. 686



analysis presented here, in addition to the more developed dy-
namo model, can be used in more refined ways and should be
perceived as a technique capable of using existing data to study
the evolution of some solar parameters.
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support of ‘‘Fundação para a Ciência e Tecnologia’’ and
‘‘Fundação Calouste Gulbenkian.’’
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