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Abstract
A new asynchronous interconnection network is introduced

for globally-asynchronous locally-synchronous (GALS) chip
multiprocessors. The network eliminates the need for global
clock distribution, and can interface multiple synchronous tim-
ing domains operating at unrelated clock rates. In particular,
two new highly-concurrent asynchronous components are in-
troduced which provide simple routing and arbitration/merge
functions. Post-layout simulations in identical commercial
90nm technology indicate that comparable recent synchronous
router nodes have 5.6-10.7x more energy per packet and 2.8-
6.4x greater area than the new asynchronous nodes. Under
random traffic, the network provides significantly lower latency
and competitive throughput over the entire operating rangeof
the 800 MHz network and through mid-range traffic rates for
the 1.36 GHz network, but with degradation at higher traffic
rates. Preliminary evaluations are also presented for a mixed-
timing (GALS) network in a shared-memory parallel architec-
ture, running both random traffic and parallel benchmark ker-
nels, as well as directions for further improvement.
1 Introduction

A recent NSF-sponsored workshop on networks-on-chip
(NoCs) focused on the research challenge of maintaining the
scalability of interconnection networks [24]. The consensus is
that current techniques, when extrapolated to future technolo-
gies, will face significant shortcomings in several key areas.
First, power consumption is expected to exceed the budgets for
commercial chip multiprocessors (CMPs) by afactor of 10xby
2015 following the projected technology roadmap. In addition,
latency and throughput are predicted to become significant bot-
tlenecks for system performance. Finally, there are less quan-
tifiable, but significant, issues of increased design time and sup-
port for scalability, reliability and ease-of-integration of com-
plex heterogeneous systems. These latter issues are expected to
be important requirements for implementating future systems,
specifically handling synchronous domains with arbitrary unre-
lated clock frequencies and allowing dynamic voltage scaling.

The goal of this paper is to address some of these bottle-
necks, with the design and evaluation of a low-overhead and
flexible asynchronous interconnection network. This work is
part of theC-MAIN Project (Columbia University/University
of Maryland Asynchronous Interconnection Network), an on-
going effort to develop low-cost and flexible NOCs for high-
performance shared memory architectures. The target design
is a mixed-timing network, shown in Figure 1, consisting of
the core asynchronous network surrounded by mixed-timing
interfaces. In particular, the network provides fine-grained
pipelined integration of synchronous components in a globally-
asynchronous locally-synchronous (i.e.GALS) style architec-
ture [6, 31, 28]. The synchronous components may be pro-
cessing cores, function units or memory modules. To support
scalability, synchronous components may have arbitrary unre-
lated clock rates, i.e. the goal is to integrateheterochronous
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Figure 1. Mixed-timing network
systems [31].1

The first contribution is two new highly-concurrent asyn-
chronous network primitives, to support the routing and arbi-
tration functions of the network. Each primitive is carefully de-
signed for high performance and low area and power overheads,
using atransition-signalling, i.e. two-phase, communication
protocol [29], which has only one roundtrip communication per
channel per transaction. In principle, transition-signaling is a
preferred match for high-performance asynchronous systems,
yet it presents major practical design challenges: most exist-
ing two-phase asynchronous pipeline components are complex,
with large latency, area and power overheads. Mixed-timingin-
terfaces are then designed, based on the approach of [9], with
new customized protocol converters. An important overall tar-
get of this work is to use standard cell design whereever pos-
sible, with static gates and simple one-sided (i.e. “bundled”)
timing constraints.

The second contribution is the detailed evaluation of the in-
terconnection network at both the circuit and system level.Lay-
outs of the routing and arbitration network primitives are im-
plemented in a commercial 90nm technology following a stan-
dard cell methodology, and each primitive is compared in de-
tail with recently-published comparable synchronous primitives
implemented in the same technology [2], which use a latency-
insensitive style of synchronous communication. The primi-
tives are then assembled into a variant Mesh-of-trees (MoT)
topology (see Section 2.1), a network that has proven to be ef-
fective in a high-performance, single-chip synchronous parallel
processing architecture based on a shared-memory model [2].
This network uses deterministic wormhole routing [4, 23, 5]
and extremely simple binary router nodes with low functional-
ity. Reported results on a synchronous shared-memory proces-
sor using this topology and node structure have demonstrated
its viability for a number of high-performance CMP applica-
tions [2], as opposed to the more complex 5-ported routing
nodes typical in many NOCs for distributed embedded proces-
sors [11, 23, 5]. Hence, a direct comparison was targeted, from
asynchronous node implementations to system-level intercon-
nection network.

A detailed evaluation was conducted at many levels of in-
tegration. Initial simulations of the new asynchronous routing
and arbitration circuits are promising, showing significant ben-

1In contrast, some recent solutions have been proposed for specialized sys-
tems with narrower bounds on operation, such asmesochronous(all compo-
nents operate at the same clock rate, with stable but unknownphase differences)
andplesiochronous(all components operate at nominally identical clock rates,
but with slight frequency mismatch) systems [31].



efits in power and area, and roughly comparable performance,
when compared to synchronous components in identical tech-
nology. Detailed simulations were also conducted on an asyn-
chronous network and a mixed-timing version of the network,
which were compared to synchronous networks from 400MHz
to 1.36 GHz. Finally, the mixed-timing network was embedded
and co-simulated with an XMT shared-memory processor [20]
on several parallel kernels. The new GALS XMT processor
provides comparable performance to the existing synchronous
XMT except in the most challenging cases of high clock rate or
high traffic rate. Future directions for performance optimization
are also outlined.
Related Work.

GALS and Asynchronous NOCs.There has been a surge
of interest in recent years in GALS design [8, 31], espe-
cially for low- and moderate-performance distributed embed-
ded systems. More recently, several GALS NoC solutions
have been proposed to enable structured system design. The
CHAIN chip area interconnect [1] provides robust self-timed
communication for system-on-chip (SoC) designs, including
for a specialized multiprocessor for neural simulations [25].
The Nexus asynchronous crossbar [18] provides system-level
communication and has been used in recent Ethernet routing
chips. The NoC solution in [4] presents a low-latency ser-
vice mesh network with an innovative system-level modeling
framework. MANGO [6] supports quality-of-service guran-
tees and adaptive routing. The prototype GALS NoC of [26]
supports SoC system debugging. The RasP network [15] uses
pulse-based asynchronous pipelines to achieve high perfor-
mance and small wire-area footprint. Earlier work providedan
asynchronous node architecture and implementation for coarse-
grain complex-functionality routing nodes [11].

Several of these approaches have been highly effective, es-
pecially for low- and moderate-performancedistributed embed-
ded systems [1, 4], thus targeting a different point in the de-
sign space than the proposed work. Some have lower through-
put (e.g., 200 to 250 MHz) [25, 4], while those with mod-
erate throughput (e.g. near 500 MHz) [6, 28]) often have
significant overheads in router node latency. Most use high-
functionality coarse-grained routing nodes (with 4 routing ports
and 1 entrance/exit port, routing tables, crossbar, and extra
buffering) [6, 28] based on a standard 5-ported node architec-
ture [11]. Almost all use four-phase return-to-zero protocols,
involving two entire roundtrip channel communications chan-
nel per transaction (rather than the single roundtrip communica-
tion targeted in the proposed work), as well as delay-insensitive
data encoding, i.e. dual-rail, 1-of-4, m-of-n (which results in
lower coding efficiency than the single-rail bundled encoding
used in our work) [1, 6, 11, 25, 18, 28, 4]. Finally, several
approaches use specialized circuits with dynamic logic [18] or
pulse-mode [15] operation. Closer to our work is a promising
recent approach targeting a two-phase protocol using a com-
mercial CAD flow [26]. However, it has overheads due to a
delay-insensitive (LEDR) data encoding and flipflop-based reg-
isters, and is not currently suitable as a general GALS NOC: it
does not provide any routing nodes, only channel multiplexers
to support silicon debugging. The GALS neural network sys-
tem of [25] also includes two-phase channels between chips,
with four-phase channels on chip; the former use m-of-n delay-
insensitive codes with large encoding and decoding overheads.

Asynchronous Transition-Signaling Pipelines.The proposed
NoC is based on Mousetrap pipelines [29], which use a low-
overhead latch-based architecture (see Section 2.2). In this pa-
per, these pipeline components are enhanced to support rout-
ing and arbitration. Several previous transition-signaling lin-
ear asynchronous pipelines have been proposed, but most have
significant overheads. Some use complex and expensive latch
structures, including specialized capture-pass latches [30] and
double-edge-triggered flipflops [7]. Others uses lightweight
transparent latches, but require double latch registers per stage
(whereas Mousetrap only requires single registers) [27].

Closest to our work are the recent non-linear routing and
arbitration nodes by Gill and Singh [13], and extended by Man-
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Figure 2. Mesh-of-trees network (N=4)
nakkara and Yoneda [19]. This work makes useful advances in
two-phase asynchronous pipeline design, but designs are rela-
tively unoptimized. For the routing primitives, all prior designs
stall when one output channel is congested, while the proposed
design allows pass-through traffic to the uncongested output
channel. In addition, the prior FF-based designs are expected
to have higher energy per transaction than the proposed latch-
based design. For the arbitration primitives, the prior designs
use 2 FF-based data registers vs. only 1 latch-based data regis-
ter in the proposed design, which should result in significantly
worse area, energy, latency and throughput than the proposed
design, though ours may have higher glitch power when the
latches are transparent. In addition, our design supports worm-
hole routing, while these do not.
2 Background
2.1 Mesh-of-trees network

The Mesh-of-trees (MoT) network [2] used in this paper and
in recent publications is a variant the traditional mesh-of-trees
network [17], designed to provide the needed bandwidth for a
high-performance, fine-grained parallel processor using global
shared memory. It has been proven effective in recent detailed
evaluations on a range of traffic for on-chip parallel processing.
Recent extensions have been proposed to reduce area overhead
through a hybrid MoT/butterfly topology, which maintains the
throughput and latency benefits of MoT with the area advan-
tages of butterfly [3].

The MoT network consists of two main structures: a set of
fan-out trees and a set of fan-in trees. Figure 2(b) shows the
binary fan-out trees, where each source is a root and connects
to two children, and each child has two children of their own.
The 16 leaf nodes also represent the leaf nodes in the binary fan-
in trees that have destinations as their roots (Figure 2(c)). An
MoT network that connectsN sources andN destinations has
logN levels of fan-out andlogN levels of fan-in trees. There is
a unique path between each source-destination pair.

A memory request packet travels from the root to one of the
leaves of the corresponding fan-out tree. It passes to the leaf of
a corresponding fan-in tree, and travels to the root of that fan-in
tree to reach its destination (Figure 2(d)). In general, contention
can occur when two packets from different sources to differ-
ent destinations compete for a shared resource. In the MoT
network, fan-out trees eliminate competition between packets
from different sources, and fan-in trees eliminate competition
between packets to different destinations. This separation guar-
antees that, unless the memory access traffic is extremely unbal-
anced, packets between different sources and destinationswill
not interfere. Therefore, the MoT network provides high aver-
age throughput that is very close to its peak throughput. There
are three switching primitives in a MoT network: (a) routing,
(b) arbitration, and (c) linear pipeline primitives (the latter is
optional for performance improvement as a microarchitectural
“repeater” to divide long wires into multiple short segments).

2.2 Mousetrap pipelines
The new asynchronous network primitives for fan-out and

fan-in nodes, introduced in the following section, are based on
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an existing linear asynchronous pipeline called Mousetrap[29].
Mousetrap is a low-overhead asynchronous pipeline that pro-
vides high-throughput operation. Each Mousetrap stage uses
a single register based on level-sensitive latches (ratherthan
edge-triggered flipflops) to store data, and simple stage control
consisting of only a single combinational gate. These designs
use single-rail bundled data encoding, where a synchronous-
style data channel is augmented with an extrareq wire, and a
single transition on the req accompanying the data “bundle”in-
dicates the data is valid. The req wire has a simple one-sided
timing constraint that its delay is always slightly greaterthan
the data channel. (For further details, see [29].)

3 Asynchronous Primitives
This section introduces the two new asynchronous compo-

nents: therouting andarbitration network primitives. These
components are the fundamental building blocks of the asyn-
chronous Mesh-of-trees network, and can also be used to con-
struct alternative network topologies. A basic overview ispro-
vided, further details can be found in [16, 22].

3.1 Routing primitive
The routing primitive performs a fan-out (i.e. demultiplex-

ing) operation, with one input port and two output ports, shown
in Figure 3. During the operation, packets arriving at the input
port are directed to exactly one of the two output ports.
Basic operation. Figure 3 shows the structure of the rout-
ing primitive. Adjacent primitives communicate using request
(req) and acknowledgment (ack) signals following a transition-
signaling protocol. The basic operation, assuming an empty
primitive, begins with new data arriving along with a routing
signalB. An important feature of the routing primitive is that,
unlike Mousetrap pipeline stages, the registers arenormally
opaque(i.e. disabled), preventing data from propogating to
subsequent stages before the routing decision is made. After
the data inputs are stable and valid, a request transition onReq
occurs at the input. The latch controller selected by the routing
signal,B, enables its latches (i.e. makes them transparent) and
data advances to the selected output channel. The toggle ele-
ment generates a request transition onReq0/1to the following
stage. Then, in parallel, the latches are quickly closed, safely
storing data, and an acknowledgment transition onAck is sent
to the previous stage.
Architecture of the routing primitive . Each primitive con-
sists of two registers and latch controllers, one pair per output
port. Each register is a standard level-sensitive D-type trans-
parent latch register that is normally opaque, preventing data
from passing through. Each latch controller, shown in Figure 4,
is responsible for controlling three signals, which enabledata
storage and inter-stage communication: (i) the register enable
signal (En); (ii) the corresponding request output (Req0/1) to
the next stage; and (iii) the acknowledgment (Ack) to the previ-
ous stage. The toggle element converts an inputReqtransition
to an outputReq0/1transition on the appropriate port. The tog-
gle output for a specific port will transition once for every data
item, when both toggle input (y0/1) and enable (En) inputs are
high. The acknowledgment (Ack) signal to the left environment
is generated by the XOR gate shown in Figure 3. The XOR gate

Toggle 0
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Figure 4. Latch controller of routing primitive
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merges two transition signals,Req0andReq1.3
Enhanced concurrency feature. The routing primitive in-
cludes a powerful capability to decouple processing between
the two output routing channels. In particular, if one of the
output channels is stalled, awaiting acknowledgment, the other
output channel can successively processmultiple full transac-
tions. This concurrency feature has the potential for signifi-
cant system-level performance benefits, since it entirely avoids
stalling input packets heading to an unblocked output channel.

3.2 Arbitration primitive
The arbitration primitive accepts data from exactly one of

two input ports and forwards it to a single output port, thus
providing complementary functionality to the routing primitive.
Basic operation. Figure 5 shows the design of the basic arbi-
tration primitive. An operation begins with new data appearing
at the input of an empty primitive followed by a request transi-
tion from the previous stage to the flow control unit. The flow
control unit will arbitrate the request through a mutex compo-
nent and perform two actions: setting the correct multiplexer
select signal (muxselect) and forwarding the winning request
to the latch controller by enabling either L1 or L2. The latch
controller will then store the new data and concurrently gener-
ate a request to the next stage while acknowledging to the flow
control unit that data has been safely stored. At this point,the
flow control unit will reset the mutex and then acknowledge to
the previous stage that it may accept new data on that channel,
thereby completing the transaction.
Architecture of the basic arbitration primitive . Figure 5
shows the structure of the arbitration primitive. The arbitra-
tion functionality is performed by the mutual exclusion ele-
ment (mutex), an analog arbiter circuit. The design features
seven standard level-sensitive D-type transparent latches (num-
bered L1 through L7). Latches L3 through L7 are all normally
transparent (enabled). Latches L1 and L2 are normally opaque
(disabled). XOR gates are used at the inputs of the mutex as

3For simplicity, initialization circuitry is omitted, but it is included for all
reported experiments.
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“inequality” testers, generating a request transition to the mu-
tex when new data has arrived and then resetting the mutex after
that data has been stored in the register. Another XOR gate at
the input of latch L5 functions as a “merge” element, joining
two transition-signaling signals,Req0andReq1, into a single
signal,Req. The XNOR gate is used as a Mousetrap latch en-
able with feedback path from the output of L5. Finally, thereis
one multiplexer and register (transparent latch) per data bit.3
Power optimization. The basic design of Figure 5 allows un-
necessary glitch power consumption to occur on the datapath.
The optimization in Figure 6 eliminates this glitching. Specif-
ically, themuxselectsignal may transition more than once per
cycle for transactions on theReq1port. The optimization adds
an SR latch to store the most recent mutex decision at the end
of each transaction. The result of this optimization is thatthe
muxselectis limited to at most one transition per transaction.
The resulting power savings can be significant, since the major-
ity of the power is consumed in the datapath.
Wormhole routing capability . The final enhancement in Fig-
ure 6 is support for wormhole routing of multi-flit packets [4].
A flow-control unit, or flit, is the smallest granularity of mes-
sage sent through the network. Wide packets are split into
multiple flits that travel contiguously through the network. In
wormhole routing, once arbitration is won by a packet head flit
in an arbitration node, each remaining flit in the packet mustbe
guaranteed unarbitrated access through the node until the last
flit of the packet exits. In the design, to bias the selection of the
mutex so that the next flit of a multi-flit packet is guaranteed
to advance without new arbitration, a “kill your rival” protocol
is implemented. When the first flit of a multi-flit packet wins
the mutex, the opposing request input to the mutex is forced to
zero, or “killed”. This operation either prevents future requests
at the other mutex input from occurring, or in the case where
a request was already pending, kills the opposing request until
the entire multi-flit packet has advanced. The kill functionis
achieved using a NOR gate located at the input of the mutex.

4 Mixed-Timing Interfaces
Mixed-timing interfaces are now introduced to allow for in-

tegration into a GALS system with robust communication be-
tween synchronous terminals through the asynchronous net-
work, as shown in Figure 1. The mixed-timing interfaces are
designed using existing mixed-timing FIFOs [9] and new cus-
tom asynchronous protocol converters.

Each mixed-timing FIFO is a token ring of identical storage
cells that have data enqueued from one timing domain and de-
queued from another. The synchronous portions of the FIFOs
have full or empty detectors. Detection circuits generate signals
to stall synchronous terminals in order to to prevent overrun or
underrun conditions in the FIFO. The asynchronous portionsdo
not require explicit full or empty detection, as they will simply
withhold acknowledgment until an operation can be performed.
The mixed-timing interfaces provide communication between
synchronous terminals and the asynchronous network. Figure
1 shows the interfaces instantiated in the mixed-timing network
(marked as “S→A” and “A→S”).

Details of the mixed-timing interfaces are shown in Figures
7 and 8. Each interface contains a mixed-timing FIFO and
custom protocol converter. The protocol converter translates
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handshaking signals between the two-phase transition signaling
of the asynchronous network and the four-phase return-to-zero
signaling of the existing mixed-timing FIFO. Each converter is
designed as a low-latency burst-mode asynchronous controller
using the MINIMALIST CAD tool [12, 21].

To improve throughput, a Mousetrap pipeline stage [29] is
added to the synchronous-asynchronous interface (Figure 7) be-
tween the protocol converter and the routing primitive at the
root of the fan-out tree. The Mousetrap stage, when empty, will
store new data and acknowledge the mixed-timing FIFO faster
than the routing primitive.
5 Experimental Evaluation

Detailed evaluations of the new interconnect network are
now presented, as well as comparisons to an existing fabricated
synchronous version [2], at several distinct levels. Theserange
from detailed post-layout simulation of network primitives
to pre-layout system-level evaluation of fully-assemblednet-
works, both asynchronous and mixed-timing (using intercon-
nected post-layout components interconnected with delaysex-
trapolated from a comparable synchronous chip floorplan [2]).
Finally, several parallel kernels are run on the mixed-timing net-
work in shared-memory CMP simulation environment.

5.1 Asynchronous primitives
The asynchronous primitives are evaluated using four met-

rics – area, power, latency and maximum throughput – and are
compared in detail with the synchronous primitives recently
proposed in [2]. In particular, Balkanet al. [2] provide detailed
physical layouts in a commercial 90 nm technology library. The
asynchronous primitives were designed in the same technology
for the purpose of direct comparison. Results are presentedfor
both primitives with 8-bit wide datapath, simulated at 1.2 Vand
25◦C in the nominal process using Cadence NC-Sim.

These experiments do no currently assess the potential im-
pact of clock gating, since the synchronous chip in [2] did not
include this optimization. High-level clock gating (e.g. of an
entire tree) is unlikely to provide significant benefits because
of the path diversity and rapidly-changing memory access pat-
terns in this topology and architectural domain. While low-level
clock gating is certainly possible (e.g. per routing primitive
cell), it is expected to add significant area and power overheads,
due to the fine granularity of the network nodes. In addition,
clock gating still requires global clock distribution, anddoes
not fit well with the heterochronous system goals of this work.
Area and power. As indicated in Table 1, the asynchronous
primitives achieve significant power and area savings compared
to existing synchronous designs, using 36% and 16% of the cell
area respectively and 18% and 9% of the energy per packet of
the existing synchronous designs.

Several metrics are used to assess area and power consump-
tion. Area is measured as the total cell area occupied by a
single primitive. Energy per packet is reported as the average
energy consumed by a primitive during simulation with a se-
quence of 100 packets containing random data either routed to,
or arriving at, random destinations. Leakage power is reported
as the subthreshold leakage power consumed by the regular-Vt



cells. Idle power is measured when no requests arrive to either
primitive at a clock rate of 1 GHz with no clock-gating opti-
mizations. Even with efficient clock-gating schemes, dynamic
power is consumed due to the local clock network, while the
asynchronous does not consume dynamic power when idle.

Table 1. Network primitives: area and power
Component Type Area Energy/

Packet
Leakage
Power

Idle
Power

(µm
2) (pJ) (µW) (µW)

Routing Async 358.4 0.37 0.56 0.6
Routing Sync 988.6 2.06 1.82 225.6
Arbitration Async 349.3 0.33 0.50 0.5
Arbitration Sync 2240.3 3.53 4.13 388.6

The above results indicate a substantial reduction in area and
dynamic and static power for both asynchronous primitives over
their synchronous counterparts. The synchronous designs use
two registers at input ports of routing and arbitration primitives
[2] in order to provide better throughput in congested scenarios,
and to support a latency-insensitive style dynamic flow control,
for a total ofsix datapath registersbetween the two primitives.
In contrast, the asynchronous primitives have a total of only
three datapath registersbetween the two nodes. Furthermore,
due to the Mousetrap-based design style, each asynchronous
register is a single bank oftransparent D-latches,while each
synchronous register is a single bank of more expensiveedge-
triggered flipflops. Finally, in spite of the single-latch-based
asynchronous methodology, each asynchronous latch register,
in congested scenarios, can still hold adistinct data item,and
therefore the network provides 100% storage capacity. As a
result, the asynchronous primitives provide significantlylower
area and power overheads, as well as a flexible “data-driven”
operation (i.e. processing data items only on demand).
Latency and throughput. The asynchronous primitives ex-
hibit competitive performance in terms of latency and max-
imum throughput, while using less area and power than the
synchronous designs. Latency is measured as the delay from
a request transition on an input interface to its appearanceat
an output of an empty primitive. Maximum throughput, given
in Giga-flits per second (GFPS), is evaluated under different
steady-state traffic patterns. Throughput is measured at the root
primitive of a 3-level fan-out or fan-in tree which which cap-
tures the interactions between neighboring primitives.

Table 2 shows results of latency and throughput experiments
for the routing primitive. For this primitive, throughput is eval-
uated for three steady-state traffic patterns where consecutive
packets are routed to asingle, randomor alternatingdestina-
tion port. The initial performance results for the routing primi-
tive are encouraging, as the latency and highest throughputap-
proach the results measured from the synchronous design. The
latency of the asynchronous primitive is only 6% higher than
the synchronous, indicating that in lightly-loaded scenarios, the
asynchronous fan-out tree is expected to have similar totalla-
tency as a synchronous fan-out tree operating near 2 GHz. With
sufficiently distributed routing destinations, the expected per-
formance is therandomcase, which can take advantage of the
concurrent operation between ports to achieve 69% of the syn-
chronous maximum throughput. Future work on system-level
optimization is expected to increase the maximum throughput
in the randomcase. In particular, initial analysis indicates that
the addition of linear pipeline primitives (i.e. Mousetrapstages)
near the root of the fan-out tree will further improve perfor-
mance.

Table 2. Routing primitive: performance
Component Latency Max. Throughput (GFPS)
Type (ps) Single Random Alternating
Async 546 1.07 1.34 1.70
Sync 516 1.93 1.93 1.93

Table 3 shows results of latency and throughput experiments
for the arbitration primitive. For this primitive, maximum
throughput is measured for two steady-state traffic scenarios

Table 3. Arbitration primitive: performance
Component Latency Max. Throughput (GFPS)
Type (ps) Single All
Async 489 1.08 2.04
Sync 474 2.09 2.09

690.8 µm

138.16 µm

554.4 µm

277.2 µm

Figure 9. Projected 8-terminal asynchronous network floorplan

where successive packets arrive at asingleport or simultane-
ously atall ports. The latency and highest throughput of the two
arbitration primitives are nearly identical. This result indicates
the high performance of the arbitration primitive. In a lightly-
loaded network, latency is the dominant factor for performance,
and the asynchronous primitives should operate comparableto
synchronous primitives with clock frequency near 2 GHz. In
a heavily-loaded network, the throughput of the root arbitration
primitives determine the total output traffic. With well-balanced
traffic, the throughput of the asynchronous fan-in tree should
approach theall scenario.
Mutual exclusion element. A final component of this evalu-
ation is on the performance of the the mutual exclusion (“mu-
tex”) element in the arbitration primitive of Figure 5. Unlike the
fixed-latency synchronous arbitration of the previous MoT net-
work [2] and other synchronous NOCs. asynchronous arbitra-
tion is implemented by an analog component with variable-time
resolution. Theoretically, this element may exhibit arbitrary fi-
nite resolution time depending on input scenarios. However,
detailed simulations show that this component exhibits nearly
fixed delay except for extreme and rare cases: a baseline latency
of 150ps when receiving single requests (i.e. no contention),
and only noticeable degradation beginning when two compet-
ing inputs arrive within the same 2 picosecond interval.

5.2 Mixed-timing interfaces
The performance of the mixed-timing interfaces is now eval-

uated. Two metrics have been simulated:latencyandmaximum
throughput. Latency is the delay from a request at the input
channel to its appearance at the output channel, beginning with
an empty FIFO. Maximum throughput is defined as the high-
est operating rate where the FIFO does not report full or empty
with a highly-active input environment. Table 4 shows simu-
lation results for mixed-timing interfaces with 3-place FIFOs.
The latency of the asynchronous-synchronous FIFO varies de-
pending on the exact moment when data items are enqueued
during a clock cycle, hence theMin andMaxcolumns.

Table 4. Mixed-timing interfaces: performance
Interface Latency (ns) Max. Throughput
Type Min Max (MHz)
Sync-Async 0.97 932.8
Async-Sync 2.95 3.56 843.2

5.3 Asynchronous network
This section presents the preliminary system-level perfor-

mance evaluation of an 8-terminal pre-layout asynchronousnet-
work.
Projected network floorplan. The projected asynchronous
floorplan is shown in Figure 9. It is based on the floorplan for
the comparable fabricated synchronous MoT network [2].

As in [2], the MoT network is partitioned into four physical
slices, each interfacing to two source terminals and two desti-
nation terminals, indicated by the white horizontal stripes. The
gray horizontal stripes contain inter-partition routing channels.
In the synchronous network, the primitives are placed, routed



Figure 10. Performance comparison: asynchronous and syn-
chronous networks

and optimized by CAD tools. For the asynchronous network,
the tools could not be directly applied while preserving asyn-
chronous timing constraints, hence the routing and arbitration
primitives are treated as hard macros, and assigned placement
at regular intervals within the partitions (indicated by white cir-
cles). Then, derived wire delays based on this placement areas-
signed to inter-primitive connections for simulation. Thepath
shown in the figure illustrates one fan-out tree of the network.
Experimental setup. Performance is evaluated based on two
metrics:throughputandlatency. The evaluation for these met-
rics is performed following the approach proposed by Dally and
Towles [10], adapted to accommodate the analysis of an asyn-
chronous network. In particular, throughput, given in Gigabits
per second (Gbps), is the output data rate of the network dur-
ing the “measurement phase” of the simulation. Latency, given
in nanoseconds (ns), is measured as the time from creation of
a packet until it reaches its destination. Specifically, packets
are first placed into source queues at input ports of the network
before they can be inserted. This method ensures that stalling
effects at the inputs are captured in latency results.

Three clock rates (400 MHz, 800 MHz and 1.36 GHz) are
chosen for a detailed performance comparison with the new
asynchronous network. The synchronous network at 800 MHz
was selected since it provides fairly high performance, butnot
peak rate operation, and 400 MHz was selected to show mod-
erate performance. The 1.36 GHz clock rate was selected to
show an extreme comparison, where the synchronous design is
operating at its maximum possible rate, as determined by static
timing analysis (see [2]).

Experiments are conducted under uniformly random traf-
fic with packet source queues installed at network input ports
for injecting traffic to accurately measure network performance
[10]. In the synchronous case, packets are generated at each
port at random clock edges and inserted into queues (imple-
mented in hardware), depending on the desired average rate
[2]. For the asynchronous, packets are generated at random
intervals, following an exponential distribution with themean
corresponding to the desired input traffic rate, and inserted into
queues (implemented in behavioral Verilog).

Note that there is a subtle difference in evaluating the syn-
chronous network versus the asynchronous. The performance
of the asynchronous network only depends on input traffic rate;
since it operates in a data-driven style, the input traffic drives
the simulated behavior. In contrast, the performance of thesyn-
chronous interconnection network depends on two distinct pa-
rameters: input traffic rate and clock frequency. Here, clock fre-
quency determines the range of valid input traffic rates, andthe
input traffic rate (relative to that frequency) determines the per-
formance. In addition, the asynchronous network in this simu-
lation framework can accomodate a wide range of input traffic
rates (even though saturation will eventually occur), while the
maximum input rate of the synchronous network is inherently
limited by the clock frequency.

Simulation results. System-level performance evaluation for
the asynchronous network is shown in Figure 10, where it is
also compared with synchronous results for the three different
clock frequencies (400 MHz, 800 MHz and 1.36 GHz). Experi-
ments are conducted for a wide range of input traffic rates up to
the maximum input traffic rate of the 1.36 GHz synchronous
network. The 1.36 GHz, 800 MHz and 400 MHz networks
have maximum input traffic rates of 348.2 Gbps, 204.8 Gbps
and 102.4 Gbps, respectively (for 8 terminals and 32-bit datap-
ath), so no further data exists beyond this point on the respective
graphs in Figure 10.

For throughput, of the asynchronous network tracks the 1.36
GHz synchronous network up to an input traffic rate near 200
Gbps, where the asynchronous network reaches saturation. The
throughputs of the 400 MHz and 800 MHz synchronous net-
works likewise track up to their individual maximum input traf-
fic rates (102.4 and 204.8 Gbps, respectively), at which point
they are cut off. The asynchrononous network, in contrast, is
capable of accepting higher traffic rates, since it not inherently
limited by a clock rate, hence its graph continues but with no
further change in throughput.

Note that one of the driving goals in using the MoT topology
is that it sustain high throughput and low latency at the highest
traffic rates, to satisfy the high traffic demands of the XMT par-
allel processor. The figure validates the use of this topology,
since the synchronous saturation throughput is 91% of maxi-
mum rate [2].

For latency, the asynchronous network always has signifi-
cantly lower latency than both the 400 MHz and 800 MHz syn-
chronous networks, over their entire operating ranges. It also
has lower latency than the 1.36 GHz synchronous network at
all input traffic rates up to 150 Gbps, which is at 43.1% of the
maximum input rate for this synchronous network; beyond this
point, these latency diverge rapidly as the asynchronous net-
work reaches saturation.
Bottleneck Analysis and Directions for Further Improve-
ment. These results on throughput and latency for the asyn-
chronous network are promising, and competitive over a range
of scenarios, but also indicate some bottlenecks. In particu-
lar, while the asynchronous network dominates both the 400
and 800 MHz synchronous networks, its saturation point and
achievable throughput still fall short compared to the 1.36GHz
synchronous network for higher input traffic rates. To identify
the bottleneck sources, it is useful to analyze performancere-
sults in Tables 2 and 3.

In that section, the synchronous primitive components had
throughputs of 1.93 and 2.09 GHz, respectively, without wiring
delays [2]. After layout, the synchronous primitives couldoper-
ate only up to 1.36 GHz. Hence, a synchronous derating factor
of approximately 70% occurs on the achievable throughput be-
tween pre- and post-layout.

By extrapolation, a similar derating would be expected for
the asychronous primitives. Interestingly, in an asynchronous
MoT network — unlike synchronous — the performance de-
mand is greatest at two nodes, which are critical bottlenecks:
the root of the routing (i.e. fan-out) networkand theroot of
the arbitration (i.e. fan-in) network. This node streams pack-
ets from the source, and receive converging streams at the sink,
hence must be activated with highest frequency. Given that in
Figure 10, random inputs are simulated, then the relevant en-
try in Table 2 for the routing primitive root is the “random”
throughput result: 1.34 GFPS. The traffic pattern on the arbitra-
tion primitive root is unknown, but lies between random (“all”,
2.04 GFPS) and single-channel (“single”, 1.08 GFPS) in Ta-
ble 3. Therefore, it is likely that the single bottleneck in the
entire asynchronous MoT network is the root of the routing net-
work. The derating factor that appears between Table 2 (1.34
GFPS) and the network simulations of Figure 10 (800 GFPS)
is 59.7%. Given the approximations involved, this deratingcan
be regarded as roughly tracking the synchronous factor of 70%.

In summary, an important future direction for performance
improvement in the asynchronous network is to significantly
optimize the root routing nodes. Three optimizations are



Figure 11. Performance comparison: mixed-timing and
synchronous-only networks (normalized to clock cycles)

promising: (i) at thecircuit level, to apply gate resizing
and better repeater insertion at this node, to improve latency
and throughput; (ii) at themicro-architecture level, the asyn-
chronous design was not optimized for congestion; initial re-
sults suggest that insertion of linear Mousetrap FIFO stages at
its ports can improve overall system throughput; and (iii) at the
node design level, to explore higher-throughput variants.

5.4 Mixed-timing network
After evaluating the performance of the asynchronous net-

work, mixed-timing FIFOs are added to form the final mixed-
timing network. The mixed-timing network, unlike the syn-
chronous, provides the capability of easily integrating into het-
erogeneous timing systems with multiple synchronous domains
operating at arbitrary or dynamically-variable clock frequen-
cies. Latency and throughput are again evaluated followingthe
methodology from Dally and Towles [10].

In this comparison of networks having synchronous termi-
nals, including the mixed-timing network, the input trafficrate
and throughput are given inflits per cycle per port, the aver-
age rate at which flits enter and exit network ports. Latency
is normalized to the number of cycles. Using the normalized
values, the synchronous will havethe same performance at all
valid clock rates, relative to clock cycles. The performance
of the mixed-timing network, however, depends on the self-
timed asynchronous network, and will change with the clock
frequency.

Figure 11 shows performance results for the mixed-timing
network, a flexible asynchronous network capable of interfac-
ing with multiple synchronous domains operating at arbitrary
clock frequencies. Since Table 4 of Section 5.2 indicates that
the mixed-timing interfaces have somewhat lower performance
than the asynchronous primitives, the mixed-timing network is
evaluated at three clock rates that operate below their maximum
operating rates: 400, 600 and 800MHz.

The normalized results of Figure 11 indicate a wide range of
behavior, from comparable throughput and significantly lower
latency for the 400 MHz mixed-timing network, to a mix of
advantages and performance degradation in the 600 and 800
MHz mixed-timing networks. At higher clock frequencies,
the performance of the mixed-timing network is affected by
bottlenecks introduced by mixed-timing interfaces. The 600
MHz and 800 MHz mixed-timing networks achieve maximum
throughputs that are 67% and 55% of a synchronous network
operating at those frequencies, respectively. Performance bot-
tlenecks occur due to synchronization overheads in the mixed-
timing interfaces. In particular, the mixed-timing interfaces
must stall when FIFOs approach near-full or near-empty to pre-
vent FIFO errors. As the clock rate increases and approaches
the maximum throughput of the interfaces, these penalties oc-
cur more often, resulting in lower throughput of the mixed-
timing network.

On the positive side, however, it is noteworthy that the 600
MHz and 800 MHz mixed-timing networks provide identical

Figure 12. Speedup comparison: mixed-timing vs. synchronous
network on 4 parallel XMT kernels (normalized to synchronous
XMT performance)

throughput to synchronous at input traffic rates up to 65% and
52%, respectively, and lower latency than synchronous at input
traffic rates up to 60% and 29%, respectively.

Further design improvements to the mixed-timing interfaces
of [9], especially for the async-sync interface (when the sync
interface is stalled and empty, waiting for a new item, resulting
the large latency overhead listed in Table 4) are expected tohave
a large impact on further improving system performance.

5.5 Parallel kernels in a GALS CMP architecture
This section presents simulation results on several paral-

lel kernels on an existing shared-memory parallel processor,
XMT [20, 14], incorporating the proposed mixed-timing net-
work. These simulations provide realistic traffic loads forthe
network, as opposed to uniformly random traffic used in previ-
ous experiments.
XMT overview . The XMT shared-memory architecture tar-
gets fine-grain thread parallelism, and has shown significant
benefits in handling complex and dynamically-varying compu-
tation (e.g. ray tracing) as well as regular computations (e.g.
indexed-tree database searches). Centered around a simpleab-
straction, the XMT processor also provides a useful frame-
work to support the productivity of parallel programmer [32].
An existing synchronous CMP implementation incorporates a
clocked MoT network between multiple cores and multiple
memories. For our experiments, the synchronous MoT network
is replaced by the new mixed-timing MoT network. The result-
ing GALS CMP architecture is capable of supporting multiple
synchronous cores operating at unrelated clock rates.
Details of XMT parallel interconnect network . The XMT
simulation assumes an 8-terminal mixed-timing MoT network,
containing 8 source terminals and 8 destination terminals.
In particular, for this CMP platform, the mesh serves as a
high-speed parallel interconnect between cores and partitioned
shared L1 data cache [20, 14]. Each of the 8 cores, orpro-
cessing clusters, itself contains 16 separate processing units, or
thread control units (TCUs), for a total of 128 TCUs. In XMT,
no data is cached locally in a TCU. The shared L1 cache is
partitioned into 8 smaller cache modules, and each TCU may
access any cache module. Since the interconnect is designed
to support loads and stores, two distinct new mixed-timing net-
works are modelled: one from processing clusters to caches
and one from caches to processing clusters. Each load opera-
tion uses a 1-flit packet, and each store operation uses a 2-flit
packet [20, 14].
Experimental setup. Three different clock frequencies were
selected: 200, 400 and 700MHz. Speedup results for the mixed-
timing network are normalized relative to performance of the
synchronous network. The synchronous network has speedup
of 1.0 in all cases. In addition, four different XMT parallel
kernels were simulated:array summation (add):each parallel
thread computes the sum of a sub array serially, and the re-
sulting sums are added to compute the total for the entire array
(size 3M); matrix multiplication (mmul): the product of two
64× 64 matrices is computed, where each parallel thread com-
putes one row of the result matrix;breadth-first search (bfs):a
parallel BFS algorithm is executed on a graph with 100K ver-
tices and 1M edges; andarray increment (ainc): each parallel



thread increments 8 elements of the array (size 32K). The av-
erage network ultilization exhibited by these XMT kernels are:
add: 0.492;mmul:0.395;bfs: 0.091;a inc: 0.927.
Overview of results. Simulation results are shown in Fig-
ure 12. Theadd kernel provides steady traffic throughout the
execution of the program that remains below the saturation
throughput of the network with mixed-timing, hence GALS
XMT performance remains comparable to an XMT with the
synchronous network. Themmulkernel has a lower average
network utilization thanadd; however, this does not reflect the
true pattern of memory access. The traffic appears in bursts,
causing very high traffic, followed by periods of low traffic as
the processing clusters compute the results. In the 700 MHz
case, the burst traffic exceeds the saturation throughput, thereby
degrading the performance of the application. Thebfs kernel
has the lowest traffic rate of all benchmarks; since it operates
below the saturation throughput of the network, performance is
comparable to synchronous for all simulations. Thea inc ker-
nel has extremely high traffic. The average input traffic at 700
MHz will be 164.9 Gb/s, which exceeds the saturation through-
put of 112 Gb/s. The network latency increases exponentially
under that level of traffic, and the performance of the GALS
XMT processor therefore decreases.
5.6 Evaluation summary

Overall, the above results are promising, while still indicat-
ing areas for further improvement. For the XMT experiments,
on bothadd and bfs kernels (where the former had an aver-
age network utilization of nearly 50%), the GALS XMT had
comparable performance to the synchronous XMT at 700MHz.
Performance of kernelmmuldegraded only modestly (by about
14%) at 700MHz. Only kernela inc, which had high average
network utilization (0.927), showed significant degradation (by
about 37%). In each case, there was almost no performance
degradation, and sometimes an improvement, at the lower clock
rates (200MHz, 400MHz). In addition, extrapolating from Fig-
ure 11, the mixed-timing network provides lower latency over
much of this range.

These results confirm two observations from Section 5.4: the
mixed-timing network performs well at (i) relatively high clock
rates with low to moderate input traffic, and (ii) low to moder-
ate clock rates with high input traffic. However, further design
improvements are still needed, to be explored along the guide-
lines outlined in Sections 5.3 and 5.4, to make the mixed-timing
network more competitive at high clock rates.
6 Conclusions and Future Work

A new low-overhead asynchronous network was introduced
for chip multiprocessors, that provides scalable,high-bandwidth
on-chip communication, beginning with the detailed designof
network primitives and extending to initial system-level per-
formance evaluation. Unlike a synchronous network, it pro-
vides support for heterochronous systems consisting of syn-
chronous nodes with unrelated arbitrary clock rates. The syn-
chronous implementations of comparable network primitives
use 5.6-10.7x the energy per packet and 2.8-6.4x the area when
compared with the new asynchronous designs. Mixed-timing
interfaces with new custom protocol converters were then pro-
posed to provide robust communication between synchronous
and asynchronous timing domains. Then, network primitives
were assembled into a Mesh-of-trees [2] topology for pre-
liminary system-level performance evaluation against a syn-
chronous MoT network, first in isolation and then with accom-
panying mixed-timing interfaces. Finally, the mixed-timing
network is embedded and co-simulated with the XMT proces-
sor and the performance is evaluated by running several parallel
kernels. The new GALS XMT processor provides comparable
performance to the existing synchronous XMT except in the
most challenging case of high clock rate and high traffic rate.

As future work, further architectural and circuit-level opti-
mizations discussed in previous sections are expected to im-
prove overall system-level performance, as well as to develop a
CAD flow for automated synthesis, possibly building on [26].
In addition, we aim to redesign the asynchronous MoT network
as an MoT/butterfly hybrid topology, as recently proposed for a
synchronous network [3], to further reduce area overheads.
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