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Abstract

A new asynchronous interconnection network is introduced se |
for globally-asynchronous locally-synchronous (GALS)pch :
multiprocessors. The network eliminates the need for dloba ! |
clock distribution, and can interface multiple synchroadin- S E"" "": R
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ing domains operating at unrelated clock rates. In partasul ASTIE [
two new highly-concurrent asynchronous components are in- -.-. S[As] sne
1ttroduced which plrovide simplle routing a(rjld arbi}rationr/Tr%Fr '
unctions. Post-layout simulations in identical commairci = =,
90nm technology indicate that comparable recent synchusno Sync ~il- =l Sync
router nodes have 5.6-10.7x more energy per packet and 2.8- L _____ |
6.4x greater area than the new asynchronous nodes. Under Figure 1. Mixed-timing network
random traffic, the network provides significantly loweefaty ~ systems [31f. = _
and competitive throughput over the entire operating range The first contribution is two new highly-concurrent asyn-
the 800 MHz network and through mid-range traffic rates forchronous network primitives, to support the routing and-arb
the 1.36 GHz network, but with degradation at higher traffictration functions of the network. Each primitive is caréfule-
rates. Preliminary evaluations are also presented for agdix signed for high performance and low area and power overheads
timing (GALS) network in a shared-memory parallel architec using atransition-signalling i.e. two-phase, communication
ture, running both random traffic and parallel benchmark-ker protocol [29], which has only one roundtrip communicatien p
nels, as well as directions for further improvement. channel per transaction. In principle, transition-sigmgis a
1 Introduction preferred match for high-performance asynchronous system
yet it presents major practical design challenges: mogit-exi

A recent NSF-sponsored workshop on networks-on-chifhg two-phase asynchronous pipeline components are cample
(NoCs) focused on the research challenge of maintaining thgith large latency, area and power overheads. Mixed-tiriting
scalability of interconnection networks [24]. The consens  terfaces are then designed, based on the approach of [8], wit
that current techniques, when extrapolated to future ®loRn new customized protocol converters. An important oveeat! t
gies, will face significant shortcomings in several key area get of this work is to use standard cell design whereever pos-
First, power consumption is expected to exceed the budgets fsiple, with static gates and simple one-sided (i.e. “budigjle
commercial chip multiprocessors (CMPs) bfaator of 10xby  timing constraints.
2015 following the projected technology roadmap. In addifi The second contribution is the detailed evaluation of the in
latency and throughput are predicted to become signifiaant b terconnection network at both the circuit and system levay-
tlenecks for system performance. Finally, there are lessiqu outs of the routing and arbitration network primitives ame i
tifiable, but significant, issues of increased design tintesap-  plemented in a commercial 90nm technology following a stan-
port for scalability, reliability and ease-of-integratiof com-  dard cell methodology, and each primitive is compared in de-
plex heterogeneous systems. These latter issues are@apect taijl with recently-published comparable synchronous jies
be important requirements for implementating future syste  implemented in the same technology [2], which use a latency-
specifically handling synchronous domains with arbitramyed  insensitive style of synchronous communication. The primi
lated clock frequencies and allowing dynamic voltage scali  tives are then assembled into a variant Mesh-of-trees (MoT)

The goal of this paper is to address some of these bottlgopology (see Section 2.1), a network that has proven to-be ef
necks, with the design and evaluation of a low-overhead anféctive in a high-performance, single-chip synchronousite
flexible asynchronous interconnection network. This wark i processing architecture based on a shared-memory model [2]
part of theC-MAIN Project (Columbia University/University This network uses deterministic wormhole routing [4, 23, 5]
of Maryland Asynchronous Interconnection Network), an onand extremely simple binary router nodes with low functiena
going effort to develop low-cost and flexible NOCs for high-ity. Reported results on a synchronous shared-memory groce
performance shared memory architectures. The targetrdesigor using this topology and node structure have demondtrate
Is a mixed-timing network, shown in Figure 1, consisting ofits viability for a number of high-performance CMP applica-
the core asynchronous network surrounded by mixed-timingons [2], ‘as opposed to the more complex 5-ported routing
interfaces. In particular, the network provides fine-geain nodes typical in many NOCs for distributed embedded proces-
pipelined integration of synchronous componentsin a digba sors [11, 23, 5]. Hence, a direct comparison was targeteoh, fr
asynchronous locally-synchronous (i.€ALS style architec- asynchronous node implementations to system-level ioterc
ture [6, 31, 28]. The synchronous components may be prarection network.
cessing cores, function units or memory modules. To support A detailed evaluation was conducted at many levels of in-
scalability, synchronous components may have arbitrarg-un tegration. Initial simulations of the new asynchronoustirm
lated clock rates, i.e. the goal is to integraeterochronous and arbitration circuits are promising, showing significaen-
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efits in power and area, and roughly comparable performance,
when compared to synchronous components in identical tech-
nology. Detailed simulations were also conducted on an-asyn
chronous network and a mixed-timing version of the network,
which were compared to synchronous networks from 400MHz
to 1.36 GHz. Finally, the mixed-timing network was embedded
and co-simulated with an XMT shared-memory processor [20]
on several parallel kernels. The new GALS XMT processor @
provides comparable performance to the existing synchusno
XMT except in the most challenging cases of high clock rate or
high traffic rate. Future directions for performance optation

are also outlined.

Related Work.

GALS and Asynchronous NOC&here has been a surge
of interest in recent years in GALS design [8, 31], espe-
cially for low- and moderate-performance distributed etibe © @
ded systems. More recently, several GALS NoC solutions Figure 2. Mesh-of-trees network (N=4)

have been proposed to enable structured system design. Th&yara and Yoneda [19]. This work makes useful advances in
CHAIN chip area interconnect [1] provides robust self-tme 1,4 nhase asynchronous pipeline design, but designs ke re
communication for system-on-chip (SoC) designs, inclgdin el unoptimized. For the routing primitives, all prioegigns
stall when one output channel is congested, while the pexpos
The Nexus asynchronous crossbar [18] provides systenh-leVgasign allows pass-through traffic to the uncongested outpu
communication and has been used in recent Ethernet routiRganne| |n addition, the prior FF-based designs are eggect
chips. The NoC solution in [4] presents a low-latency sery, haye higher energy per transaction than the proposetlatc
vice mesh network with an innovative system-level modeling,;¢eq design. For the arbitration primitives, the prior
framework. MANGO [6] supports quality-of-service guran-, e 2 FF-hased data registers vs. only 1 latch-based daga reg
tees and gd:éptlve routén%. The pr$tﬁty£e %ALS NOE ‘13; [26}er in the proposed design, which should result in signifigan
supports SoC system debugging. The RasP network [15] USg e area, energy, latency and throughput than the prdpose
pulse-based asynchronous pipelines to achieve high peeriesign, though ours may have higher glitch power when the

mance and small wire-area footprint. Earlier work provided  |iches are transparent. in addition, our design suppantsw
asynchronous node architecture and implementation foseea e routing, while these do not.

grain complex-functionality routing nodes [11]. Back d

Several of these approaches have been highly effective, 8- Backgroun
pecially for low- and moderate-performance distributedecy =~ 2.1 Mesh-of-trees network o
ded systems [1, 4], thus targeting a different point in the de_ The Mesh-of-trees (MoT) network [2] used in this paper and
sign space than the proposed work. Some have lower througli-récent publications is a variant the traditional mestreés
put (e.g., 200 to 250 MHz) [25, 4], while those with mod- network [17], designed to provide the needed bandwidth for a
erate throughput (e.g. near 500 MHz) [6, 28]) often havédligh-performance, fine-grained parallel processor uslogad
significant overheads in router node latency. Most use higighared memory. It has been proven effective in recent deltail
functionality coarse-grained routing nodes (with 4 roggoorts ~ €valuations on a range of traffic for on-chip parallel preues.
and 1 entrance/exit port, routing tables, crossbar, anchextRecent extensions have been proposed to reduce area averhea
buffering) [6, 28] based on a standard 5-ported node architethrough a hybrid MoT/butterfly topology, which maintaingth
ture [11]. Almost all use four-phase return-to-zero proteg throughput and latency benefits of MoT with the area advan-
involving two entire roundtrip channel communicationsicha tages of butterfly [3]. _ _ _
nel per transaction (rather than the single roundtrip comioa4 The MoT network consists of two main structures: a set of
tion targeted in the proposed work), as well as delay-intieas fan-out trees and a set of fan-in trees. Figure 2(b) shows the
data encoding, i.e. dual-rail, 1-of-4, m-of-n (which resth binary fan-out trees, where each source is a root and canect

i ici i -rai i to two children, and each child has two children of their own.
[fsvé%r iﬁoghnrg\,ﬁﬁllgeﬁ,cysfhfﬁ t£15e' S{g?'ggfal{]F’”Eﬂgﬁf@g@g}aghe 16 leaf nodes also represent the leaf nodes in the biaiary f

approaches use specialized circuits with dynamic logi¢ ¢t8 In trees that have destinations as their roots (Figure 2@))
pulse-mode [15] operation. Closer to our work is a promisind/0T network that connectd/ sources andV destinations has
recent approach targeting a two-phase protocol using a cory/V levels of fan-out andog N levels of fan-in trees. There is
mercial CAD flow [26]. However, it has overheads due to & Unhique path between each source-destination pair.
delay-insensitive (LEDR) data encoding and flipflop-basedr A memory request packet travels from the root to one of the
isters, and is not currently suitable as a general GALS N®C: |eaves of the corresponding fan-out tree. It passes to #iefe
does not provide any routing nodes, only channel multiptexe & corresponding fan-in tree, and travels to the root of dadif
to support silicon debugging. The GALS neural network sysiree to reach its destination (Figure 2(d)). In generalfeaimon
tem of [25] also includes two-phase channels between chipg§ah occur when two packets from different sources to differ-
with four-phase channels on chip; the former use m-of-nydela €nt destinations compete for a shared resource. In the MoT
insensitive codes with large encoding and decoding oveihea Network, fan-out trees eliminate competition between pek
Asynchronous Transition-Signaling Pipelinde proposed 10M d|fferentksourcg$f,f and fé\n-ln trees eI_||_mh!nate conioex|
NoC is based on Mousetrap pipelines [29], which use a low2€Ween packets to different destinations. This separgiar-
overhead latch-based architecture (see Section 2.2)ispah antees that, unless the memory access traffic is extremidf-un

Piglie ced, packets between different sources and destinatifins
per, these pipeline components are enhanced to support rofit = . :
ing'and arbitration. Several previous transition-signglin- ﬁgt interfere. Therefore, the MoT network provides highrave

ear asynchronous pipelines have been proposed, but mast h%fe throughput that is very close to its peak throughputr&he
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significant overheads. Some use complex and expensive latpff (hree switching primitives in a MoT network: (&) routing

: : ol bitration, and (c) linear pipeline primitives (thetéa is
structures, including specialized capture-pass latcB@lsdnd ar . . 5
double-edge-triggered flipflops [7]. Others uses lightheig optional for performance improvement as a microarchitettu

transparent latches, but require double latch registerstpge  'cPeater” to divide long wires into multiple short segmgnt
(whereas Mousetrap only requires single registers) [27]. 2.2 Mousetrap pipelines

Closest to our work are the recent non-linear routing and The new asynchronous network primitives for fan-out and
arbitration nodes by Gill and Singh [13], and extended by Manfan-in nodes, introduced in the following section, are blase
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Figure 3. Structure of routing primitive Figure 4. Latch controller of routing primitive
an existing linear asynchronous pipeline called Mousd@ap FIO: Control Unit Latch Controller
Mousetrap is a low-overhead asynchronous pipeline that pro Ack1<—E} ;
vides high-throughput operation. Each Mousetrap stage use % =] |
a single register based on level-sensitive latches (ratter Acko %) :
edge-triggered flipflops) to store data, and simple stag&gaon |
consisting of only a single combinational gate. These ahesig ' —Ack
use single-rail bundled data encoding, where a synchrenous :
style data channel is augmented with an exé@wire, and a woex | !
single transition on the req accompanying the data “buridle” 1 : b o——Req
dicates the data is valid. The req wire has a simple one-sided R0 ﬁ ! il
timing constraint that its delay is always slightly greatesan a i ! [ict]
the data channel. (For further details, see [29].) Reql D !
3 Asynchronous Primitives - R S
mux_select  [TE |
This section introduces the two new asynchronous compo- Datad ’ Data
nents: therouting and arbitration network primitives. These Datal .
components are the fundamental building blocks of the asyn- lnegl
chronous Mesh-of-trees network, and can also be used to con- Datapath
struct alternative network topologies. A basic overvieyris- Figure 5. Structure of arbitration primitive
vided, further details can be found in [16, 22]. " .
. o [ ] merges two transition signaRegqOandReq1®
3.1 Routing primitive Enhanced concurrency feature The routing primitive in-

cludes a powerful capability to decouple processing betwee
the two output routing channels. In particular, if one of the
output channels is stalled, awaiting acknowledgment, thero
output channel can successively processtiple full transac-
tions. This concurrency feature has the potential for $igni

The routing primitive performs a fan-out (i.e. demultiplex
ing) operation, with one input port and two output ports vsho
in Figure 3. During the operation, packets arriving at thguin
port are directed to exactly one of the two output ports.

Basic operation Figure 3 shows the structure of the rout-cant system-level performance benefits, since it entinatjds
ing primitive. Adjacent primitives communicate using re§ll - g45jing input packets heading to an unblocked output cann
(req) and acknowledgmenack signals following a transition- e o

signaling protocol. The basic operation, assuming an emp®.2 Arbitration primitive

primitive, begins with new data arriving along with a rogfin ~ Tpe arbitration primitive accepts data from exactly one of
signalB. An important feature of the routing primitive is that, yyq input ports and forwards it to a single output port, thus
unlike Mousetrap pipeline stages, the registers revemally oBroviding complementary functionality to the routing piiive.
opaque(i.e. disabled), preventing data from propogating toBasic operation Figure 5 shows the design of the basic arbi-
subsequent stages before the routing decision is mader Aft@aiion primitive. An operation begins with new data apjegr
the data inputs are stable and valid, a request transitid®en 5 the input of an empty primitive followed by a request tians
occurs at the input. The latch controller selected by théimgu ion from the previous stage to the flow control unit. The flow
signal,B, enables its latches (i.e. makes them transparent) a"émrol unit will arbitrate the request through a mutex comp
data advances to the selected output channel. The toggle efnt and perform two actions: setting the correct multiptex
ment generates a request transitiorReq0/1to the following  geject signal fiuxselec) and forwarding the winning request
stage. Then, in parallel, the latches are quickly closef@lsa g the Jatch controller by enabling either L1 or L2. The latch
storing data, and an acknowledgment transitiorAckis sent  congroller will then store the new data and concurrentlyegen
to the previous stage. o o ate a request to the next stage while acknowledging to the flow
Architecture of the routing primitive . Each primitive con-  control unit that data has been safely stored. At this ptfiet,
sists of two registers and latch controllers, one pair pép@u  fiow control unit will reset the mutex and then acknowledge to
port. Each register is a standard level-sensitive D-typesir  the previous stage that it may accept new data on that channel
parent latch register that is normally opaque, preventat d thereby completing the transaction.

from passing through. Each latch controller, shown in Feglir - Architecture of the basic arbitration primitive . Figure 5

is responsible for controlling three signals, which enaldéa  shows the structure of the arbitration primitive. The aebit
storage and inter-stage communication: (i) the registablen  tjon functionality is performed by the mutual exclusion-ele
signal €n); (i) the corresponding request outpiRgq0/) 0 ment (mutex), an analog arbiter circuit. The design feature
the next stage; and (iii) the acknowledgmehtk) to the previ-  seven standard level-sensitive D-type transparent lathem-
ous stage. The toggle element converts an ifjrgtransition  pered L1 through L7). Latches L3 through L7 are all normally
to an outpuReq0/Itransition on the appropriate port. The tog-transparent (enabled). Latches L1 and L2 are normally apaqu

gle output for a specific port will transition once for evetal  (disabled). XOR gates are used at the inputs of the mutex as
item, when both toggle inpuyQ/1) and enableEn) inputs are

high. The acknowledgmenACK) signal to the left environment 3For simplicity, initialization circuitry is omitted, but is included for all
is generated by the XOR gate shown in Figure 3. The XOR gateported experiments.
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“inequality” testers, generating a request transitionhi® tnu-

tex when new data has arrived and then resetting the mutax aft

that data has been stored in the register. Another XOR gate

the input of latch L5 functions as a “merge” element, join

two transition-signaling signalfeqO0andReq1 into a single

signal,Req The XNOR gate is used as a Mousetrap latch
able with feedback path from the output of L5. Finally, thisr

one multiplexer and register (transparent latch) per diatha b

The optimization in Figure 6 eliminates this glitching. Siie

an SR latch to store the most recent mutex decision at the e
of each transaction. The result of this optimization is that

muxselectis limited to at most one transition per transacti

The resulting power savings can be significant, since themaj

ity of the power is consumed in the datapath.

Wormbhole routing capability . The final enhancement in Fig

ure 6 is support for wormhole routing of multi-flit packetd.[

A flow-control unit, or flit, is the smallest granularity of e

sage sent through the network. Wide packets are split
multiple flits that travel contiguously through the netwoik

wormhole routing, once arbitration is won by a packet head fli
in an arbitration node, each remaining flit in the packet rbest
guaranteed unarbitrated access through the node untiashe |

flit of the packet exits. In the design, to bias the selectiihe

mutex so that the next flit of a multi-flit packet is guaranteedri c

to advance without new arbitration, a “kill your rival” paitol
is implemented. When the first flit of a multi-flit packet wi

the mutex, the opposing request input to the mutex is forged
zero, or “killed”. This operation either prevents futurguests

at the other mutex input from occurring, or in the case wher
a request was already pending, kills the opposing requeit un
the entire multi-flit packet has advanced. The kill functien
achieved using a NOR gate located at the input of the mutex.

4 Mixed-Timing Interfaces

tom asynchronous protocol converters.

have full or empty detectors. Detection circuits generigtesss

to stall synchronous terminals in order to to prevent owvemu  primitives achieve significant power and area savings coatp
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Figure 8. Async/Sync interface block diagram

ﬁéndshaking signals between the two-phase transitioalsign
the asynchronous network and the four-phase returretto-z
signaling of the existing mixed-timing FIFO. Each conveite

€Ndesigned as a low-latency burst-mode asynchronous ctamtrol

e

using the MINIMALIST CAD tool [12, 21].

lexer e _ ) _ To improve throughput, a Mousetrap pipeline stage [29] is
Power optimization. The basic design of Figure 5 allows un- added to the synchronous-asynchronousinterface (Figue-7
necessary glitch power consumption to occur on the datapatfiveen the protocol converter and the routing primitive a th

_ | e root of the fan-out tree. The Mousetrap stage, when emplly, wi
ically, themuxselectsignal may transition more than once perstore new data and acknowledge the mixed-timing FIFO faster
cycle for transactions on thieeqlport. The optimization adds than the routing primitive.

on.

Experimental Evaluation

Detailed evaluations of the new interconnect network are
now presented, as well as comparisons to an existing fabdca
synchronous version [2], at several distinct levels. Thasge
_ from detailed post-layout simulation of network primitive
2 to pre-layout system-level evaluation of fully-assembihed-

works, both asynchronous and mixed-timing (using intercon
intaected post-layout components interconnected with delays

trapolated from a comparable synchronous chip floorplan [2]

ns

Finally, several parallel kernels are run on the mixed-tigmet-
work In shared-memory CMP simulation environment.

5.1 Asynchronous primitives

The asynchronous primitives are evaluated using four met-
s — area, power, latency and maximum throughput — and are
compared in detail with the synchronous primitives regentl
roposed in [2]. In particular, Balkaat al. [2] provide detailed
hysical layouts in a commercial 90 nm technology libratye T
synchronous primitives were designed in the same tecgyolo
or the purpose of direct comparison. Results are presdated
both primitives with 8-bit wide datapath, simulated at 1.and
25°C in the nominal process using Cadence NC-Sim.
These experiments do no currently assess the potential im-

pact of clock gating, since the synchronous chip in [2] ditl no
Mixed-timing interfaces are now introduced to allow for in- include this optimization. High-level clock gating (e.gf an
tegration into a GALS system with robust communication beentire tree) is unlikely to provide significant benefits hes=
tween synchronous terminals through the asynchronous netf the path diversity and rapidly-changing memory access pa
work, as shown in Figure 1. The mixed-timing interfaces argerns in this topology and architectural domain. While lewel
designed using existing mixed-timing FIFOs [9] and new cuselock gating is certainly possible (e.g. per routing privet
cell), it is expected to add significant area and power o\sdbe
Each mixed-timing FIFO is a token ring of identical storagedue to the fine granularity of the network nodes. In addition,
cells that have data enqueued from one timing domain and delock gating still requires global clock distribution, addes
queued from another. The synchronous portions of the FIFQwot fit well with the heterochronous system goals of this work
Area and power. As indicated in Table 1, the asynchronous

a

underrun conditions in the FIFO. The asynchronous portions to existing synchronous designs, using 36% and 16% of tte cel
. . . area respectively and 18% and 9% of the energy per packet of
withhold acknowledgment until an operation can be perfarme the existing synchronous designs.

not require explicit full or empty detection, as they wilirgly

The mixed-timing interfaces provide communication betwee

Several metrics are used to assess area and power consump-

synchronous terminals and the asynchronous network. €&igution. Area is measured as the total cell area occupied by a
single primitive. Energy per packet is reported as the aera
energy consumed by a primitive during simulation with a se-
Details of the mixed-timing interfaces are shown in Figuregjuence of 100 packets containing random data either roated t
7 and 8. Each interface contains a mixed-timing FIFO anar arriving at, random destinations. Leakage power is itepor
custom protocol converter. The protocol converter tramsla as the subthreshold leakage power consumed by the regular-V

1 shows the interfaces instantiated in the mixed-timingvoet
(marked as “S»A” and “A—S").



Table 3. Arbitration primitive: performance

cells. Idle power is measured when no requests arrive tereith Component Latency | Max. Throughput (GFPS)
primitive at a clock rate of 1 GHz with no clock-gating opti- Type (P9 Single All
mizations. Even with efficient clock-gating schemes, dyitam Async 489 1.08 2.04
power is consumed due to the local clock network, while the [S¥nc 474 2.09 2.09

asynchronous does not consume dynamic power when idle.

690.8 jum

Table 1. Network primitives: area and power

Component Type Area Energy/ Leakage Idle 2772um
Packet Power Power
(wm?) | (p) (W) (uW)
[Routing Async [ 358.4] 0.37 ] 0.56 ] 0.6 |
[Routing Sync | 988.6 | 2.06 | 182 2256
[Arbitration Async [ 349.3] 0.33 ] 0.50 ] 0.5 ]
[Arbifration Sync | 2240.3 ] 3.53 ] 413 ] 3886 |

g The_abO\ae results indic?teba s#bstantri]al reduction in aréa a
namic and static power for both asynchronous primitiveso _. . .
thyeir synchronous Eoumerparts_ Th%: synchrono%s desims JFigure 9. Projected 8-terminal asynchronous network flaorp
two registers at input ports of routing and arbitration ptives ) . . )

[2] in order to provide better throughput in congested sdesa  Where successive packets arrive airggle port or simultane-
and to support a latency-insensitive style dynamic flowant ously atall ports. The latency and highest throughput of the two
for a total ofsix datapath registerbetween the two primitives. arbitration primitives are nearly identical. This resuiticates

In contrast, the asynchronous primitives have a total of onlthe high performance of the arbitration primitive. In a ligh
three datapath registersetween the two nodes. Furthermore,loaded network, latency is the dominant factor for perfanoe
due to the Mousetrap-based design style, each asynchrondul the asynchronous primitives should operate compatable
register is a single bank afansparent D-latchesyhile each ~ Synchronous primitives with clock frequency near 2 GHz. In
synchronous register is a single bank of more expermige- @ heavily-loaded network, the throughput of the root aatin
triggered flipflops. Finally, in spite of the single-latch-based primitives determine the total output traffic. With welltaaced
asynchronous methodology, each asynchronous latch eegistiraffic, the throughput of the asynchronous fan-in tree &hou
in congested scenarios, can still holdiiatinct data itemand  approach thall scenario. _ _

therefore the network provides 100% storage capacity. As Mutual exclusion element A final component of this evalu-
result, the asynchronous primitives provide significatdiyer ~ ation is on the performance of the the mutual exclusion (“mu-
area and power overheads, as well as a flexible “data-drivefex”) elementin the arbitration primitive of Figure 5. Ukdithe
operation (i.e. processing data items only on demand). fixed-latency synchronous arbitration of the previous Met-n
Latency and throughput. The asynchronous primitives ex- Work [2] and other synchronous NOCs. asynchronous arbitra-
hibit competitive performance in terms of latency and maxiion isimplemented by an analog componentwith variabteeti
imum throughput, while using less area and power than thisolution. Theoretically, this element may exhibit awduy fi-
synchronous designs. Latency is measured as the delay frdifie resolution time depending on input scenarios. However
a request transition on an input interface to its appearafce detailed simulations show that this component exhibitsigea
an output of an empty primitive. Maximum throughput, givenfixed delay except for extreme and rare cases: a baselimejate
in Giga-flits per second (GFPS), is evaluated under differerpf 150ps when receiving single requests (i.e. no conteption
steady-state traffic patterns. Throughputis measureeéabtit and only noticeable degradation beginning when two compet-
primitive of a 3-level fan-out or fan-in tree which which ecap ing inputs arrive within the same 2 picosecond interval.

tures the interactions between neighboring primitives. %2 Mixed-timing interfaces

Table 2 sh Its of | h h [ ) Lo .
able 2 shows results of latency and throughpuit experimen The performance of the mixed-timing interfaces is now eval-

for the routing primitive. For this primitive, throughput eéval- " - !

uated for three steady-state traffic patterns where cotigecu Uated. Two metrics have been simulatedencyandmaximum

packets are routed tosingle randomor alternatingdestina-  throughput Latency is the delay from a request at the input
channel to its appearance at the output channel, beginnthg w

tion port. The initial performance results for the routinmgu- c . ! )
tive are encouraging, as the latency and highest througtgput @n empty FIFO. Maximum throughput is defined as the high-

proach the results measured from the synchronous design. TBSt Operating rate where the FIFO does not report full or gmpt
latency of the asynchronous primitive is only 6% higher tharyVith @ highly-active input environment. Table 4 shows simu-
the synchronous, indicating that in lightly-loaded scessthe  lation results for mixed-timing interfaces with 3-placeFEls.
asynchronous fan-out tree is expected to have similar katal The latency of the asynchronous-synchronous FIFO varies de
tency as a synchronous fan-out tree operating near 2 GHa. Wipending on the exact moment when data items are enqueued
sufficiently distributed routing destinations, the exgecper- during a clock cycle, hence ttin andMax columns.

formance is theandomcase, which can take advantage of the Table 4. Mixed-timing interfaces: performance
concurrent operation between ports to achieve 69% of the syn

138.16 um

: Interface Latency (n§ [ Max. Throughput
chronous maximum throughput. Future work on system-level Type Min | Max MH2)
optimization is expected to increase the maximum throughpu Sync-Async 0.97 9328
in therandomcase. In particular, initial analysis indicates that Async-Sync| 2.95 [ 3.56 843.2

the addition of linear pipeline primitives (i.e. Mousetistpges)
near the root of the fan-out tree will further improve perfor 5-3 Asynchronous network

mance. This section presents the preliminary system-level perfor
Table 2. Routing primitive: performance mance evaluation of an 8-terminal pre-layout asynchronets
. : work.
Spezonent e e eanom. . Alternating Projected network floorplan. The projected asynchronous
AsSync TG T 07 132 T70 floorplan is shown in Figure 9. It is based on the floorplan for
Sync 516 T.03 1.93 T.93 the comparable fabricated synchronous MoT network [2].

As in [2], the MoT network is partitioned into four physical
slices, each interfacing to two source terminals and twai-des
Table 3 shows results of latency and throughput experimentgtion terminals, indicated by the white horizontal stsip€he

for the arbitration primitive. For this primitive, maximum gray horizontal stripes contain inter-partition routifgaanels.
throughput is measured for two steady-state traffic scesariIn the synchronous network, the primitives are placed,edut



Simulation results. System-level performance evaluation for
the asynchronous network is shown in Figure 10, where it is
also compared with synchronous results for the three éiffier
i clock frequencies (400 MHz, 800 MHz and 1.36 GHz). Experi-
ments are conducted for a wide range of input traffic ratesup t
i the maximum input traffic rate of the 1.36 GHz synchronous
i network. The 1.36 GHz, 800 MHz and 400 MHz networks
e 208 @80 s00 S have maximum input traffic rates of 348.2 Gbps, 204.8 Gbps
and 102.4 Gbps, respectively (for 8 terminals and 32-baplat
ath), so no further data exists beyond this point on the isge
graphsin Figure 10.

For throughput, of the asynchronous network tracks the 1.36
GHz synchronous network up to an input traffic rate near 200
Gbps, where the asynchronous network reaches saturatien. T
throughputs of the 400 MHz and 800 MHz synchronous net-
5 = TR T works likewise track up to their individual maximum inputr

Iput Traffic Rete (Gbps) fic rates (102.4 and 204.8 Gbps, respectively), at whichtpoin
Figure 10. Performance comparison: asynchronous and syil€y are cut off. The asynchrononous network, in contrast, i
chronous networks capable of accepting higher traffic rates, since it not iahtly

limited by a clock rate, hence its graph continues but with no

and optimized by CAD tools. For the asynchronous networkfurther change in throughput.
the tools could not be directly applied while preservingrasy Note that one of the driving goals in using the MoT topology
chronous timing constraints, hence the routing and athitra s that it sustain high throughput and low latency at the &ggh
primitives are treated as hard macros, and assigned platemeraffic rates, to satisfy the high traffic demands of the XMT-pa
at regular intervals within the partitions (indicated byitettir-  allel processor. The figure validates the use of this topglog
cles). Then, derived wire delays based on this placememtsare since the synchronous saturation throughput is 91% of maxi-
signed to inter-primitive connections for simulation. Tp@h  mum rate [2].
shown in the figure illustrates one fan-out tree of the neftwor For latency, the asynchronous network always has signifi-
Experimental setup Performance is evaluated based on twacantly lower latency than both the 400 MHz and 800 MHz syn-
metrics:throughputandlatency The evaluation for these met- chronous networks, over their entire operating rangeslistt a
rics is performed following the approach proposed by Datligt a has lower latency than the 1.36 GHz synchronous network at
Towles [10], adapted to accommodate the analysis of an asyal input traffic rates up to 150 Gbps, which is at 43.1% of the
chronous network. In particular, throughput, given in Gig® maximum input rate for this synchronous network; beyons thi
per second (Gbps), is the output data rate of the network dupoint, these latency diverge rapidly as the asynchronotis ne
Ing the “measurement phase” of the simulation. Latencymiv work reaches saturation.
in nanoseconds (ns), is measured as the time from creation Bbttleneck Analysis and Directions for Further Improve-
a packet until it reaches its destination. Specifically,kgé& ment. These results on throughput and latency for the asyn-
are first placed into source queues at input ports of the m&twochronous network are promising, and competitive over agang
before they can be inserted. This method ensures thanstalliof scenarios, but also indicate some bottlenecks. In partic
effects at the inputs are captured in latency results. lar, while the asynchronous network dominates both the 400

Three clock rates (400 MHz, 800 MHz and 1.36 GHz) areand 800 MHz synchronous networks, its saturation point and
chosen for a detailed performance comparison with the neachievable throughput still fall short compared to the 1G3&
asynchronous network. The synchronous network at 800 MHgynchronous network for higher input traffic rates. To idfgnt
was selected since it provides fairly high performance nmit the bottleneck sources, it is useful to analyze performaace
peak rate operation, and 400 MHz was selected to show modults in Tables 2 and 3.
erate performance. The 1.36 GHz clock rate was selected to In that section, the synchronous primitive components had
show an extreme comparison, where the synchronous desigrtisoughputs of 1.93 and 2.09 GHz, respectively, withoutrgir
operating at its maximum possible rate, as determined big stadelays [2]. After layout, the synchronous primitives coofekr-
timing analysis (see [2]). ate only up to 1.36 GHz. Hence, a synchronous derating factor

Experiments are conducted under uniformly random trafef approximately 70% occurs on the achievable throughput be
fic with packet source queues installed at network inputsporttween pre- and post-layout.
for injecting traffic to accurately measure network perfarnoe By extrapolation, a similar derating would be expected for
[10]. In the synchronous case, packets are generated at eahk asychronous primitives. Interestingly, in an asynobrs
port at random clock edges and inserted into queues (impl@oT network — unlike synchronous — the performance de-
mented in hardware), depending on the desired average rateand is greatest at two nodes, which are critical bottlesieck
[2]. For the asynchronous, packets are generated at randahe root of the routing (i.e. fan-out) networénd theroot of
intervals, following an exponential distribution with tiheean the arbitration (i.e. fan-in) networkThis node streams pack-
corresponding to the desired input traffic rate, and indért®  ets from the source, and receive converging streams atrtkge si
gueues (implemented in behavioral Verilog). hence must be activated with highest frequency. Given that i

Note that there is a subtle difference in evaluating the syrFigure 10, random inputs are simulated, then the relevant en
chronous network versus the asynchronous. The performanity in Table 2 for the routing primitive root is the “random”
of the asynchronous network only depends on input traffe rat throughput result: 1.34 GFPS. The traffic pattern on thetrarbi
since it operates in a data-driven style, the input traffigedr  tion primitive root is unknown, but lies between random (3al
the simulated behavior. In contrast, the performance ofyne  2.04 GFPS) and single-channel (“single”, 1.08 GFPS) in Ta-
chronous interconnection network depends on two distiaet p ble 3. Therefore, it is likely that the single bottleneck et
rameters: input traffic rate and clock frequency. Here lcfoe= ~ entire asynchronous MoT network is the root of the routirig ne
quency determines the range of valid input traffic rates,tahed work. The derating factor that appears between Table 2 (1.34
input traffic rate (relative to that frequency) determirtesper- GFPS) and the network simulations of Figure 10 (800 GFPS)
formance. In addition, the asynchronous network in thisusim is 59.7%. Given the approximations involved, this deratiag
lation framework can accomodate a wide range of input traffibe regarded as roughly tracking the synchronous factor . 70
rates (even though saturation will eventually occur), wtiie In summary, an important future direction for performance
maximum input rate of the synchronous network is inherentlymprovement in the asynchronous network is to significantly
limited by the clock frequency. optimize the root routing nodes. Three optimizations are
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lg;m Tratic P s p;gyde er p‘;i) | throughput to synchronous at input traffic rates up to 65% and
. ’ . - 2%, respectively, and lower latency than synchronouspattin
Figure 11. Performance comparison: mixed-timing anqr’raff?c ratgs up toyeo% and 29%, resypectivel%l.
synchronous-only networks (normalized to clock cycles) Further design improvements to the mixed-timing interface
of [9], especially for the async-sync interface (when thecsy

promising: () at thecircuit level to apply gate resizing interface is stalled and empty, waiting for a new item, reasgl

and better repeater insertion at this node, to improve d¢gten d :
and throughput; (ii) at thenicro-architecture levelthe asyn- the large latency overhead listed in Table 4) are expecteaute

chronous design was not optimized for congestion: inigal r & 1arge impact on further improving system performance.

sults suggest that insertion of linear Mousetrap FIFO stage 55 Parallel kernelsin a GALS CMP architecture
its ports can improve overall system throughput; and (iifja This section presents simulation results on several paral-

node d§3|gn Ie_ve?o explore higher-throughput variants. lel kernels on an existing shared-memory parallel proagesso
5.4 Mixed-timing network XMT [20, 14], incorporating the proposed mixed-timing net-
After evaluating the performance of the asynchronous nework. These simulations provide realistic traffic loads tlog
work, mixed-timing FIFOs are added to form the final mixed-network, as opposed to uniformly random traffic used in previ
timing network. The mixed-timing network, unlike the syn- ous experiments. .
chronous, provides the capability of easily integratirtginet- XMT overview. The XMT shared-memory architecture tar-
erogeneous timing systems with multiple synchronous dosnai gets fine-grain thread parallelism, and has shown significan
operating at arbitrary or dynamically-variable clock fueg- benefits in handling complex and dynamically-varying compu
cies. Latency and throughput are again evaluated followirg tation (e.g. ray tracing) as well as regular computationg. (e
methodology from Dally and Towles [10]. indexed-tree database searches). Centered around a sibaple
In this comparison of networks having synchronous termistraction, the XMT processor also provides a useful frame-
nals, including the mixed-timing network, the input traffate ~ work to support the productivity of parallel programmerJ[32
and throughput are given iflits per cycle per portthe aver- An existing synchronous CMP implementation incorporates a
age rate at which flits enter and exit network ports. Latencglocked MoT network between multiple cores and multiple
is normalized to the number of cycles. Using the normalizethemories. For our experiments, the synchronous MoT network
values, the synchronous will hatlee same performance at all is replaced by the new mixed-timing MoT network. The result-
valid clock rates relative to clock cycles. The performanceing GALS CMP architecture is capable of supporting multiple
of the mixed-timing network, however, depends on the selfsynchronous cores operating at unrelated clock rates.
timed asynchronous network, and will change with the cloclDetails of XMT parallel interconnect network. The XMT
frequency. simulation assumes an 8-terminal mixed-timing MoT network
Figure 11 shows performance results for the mixed-timingontaining 8 source terminals and 8 destination terminals.
network, a flexible asynchronous network capable of interfa In particular, for this CMP platform, the mesh serves as a
ing with multiple synchronous domains operating at arbjtra high-speed parallel interconnect between cores andipag
clock frequencies. Since Table 4 of Section 5.2 indicatas thshared L1 data cache [20, 14]. Each of the 8 coreqror
the mixed-timing interfaces have somewhat lower perforrean cessing clusterstself contains 16 separate processing units, or
than the asynchronous primitives, the mixed-timing nekwsr thread control units (TCUs)or a total of 128 TCUs. In XMT,
evaluated at three clock rates that operate below theirmaxi  no data is cached locally in a TCU. The shared L1 cache is
operating rates: 400, 600 and 800MHz. partitioned into 8 smaller cache modules, and each TCU may
The normalized results of Figure 11 indicate a wide range adiccess any cache module. Since the interconnect is designed
behavior, from comparable throughput and significantlydow to support loads and stores, two distinct new mixed-timieg n
latency for the 400 MHz mixed-timing network, to a mix of works are modelled: one from processing clusters to caches
advantages and performance degradation in the 600 and 880d one from caches to processing clusters. Each load opera-
MHz mixed-timing networks. At higher clock frequencies,tion uses a 1-flit packet, and each store operation uses & 2-fli
the performance of the mixed-timing network is affected bypacket [20, 14].
bottlenecks introduced by mixed-timing interfaces. Th® 60 Experimental setup. Three different clock frequencies were
MHz and 800 MHz mixed-timing networks achieve maximumselected: 200, 400 and 700MHz. Speedup results for the mixed
throughputs that are 67% and 55% of a synchronous netwotkming network are normalized relative to performance @& th
operating at those frequencies, respectively. Performbaot  synchronous network. The synchronous network has speedup
tlenecks occur due to synchronization overheads in thednixeof 1.0 in all cases. In addition, four different XMT parallel
timing interfaces. In particular, the mixed-timing int@cks kernels were simulatedirray summation (add)each parallel
must stall when FIFOs approach near-full or near-emptyee pr thread computes the sum of a sub array serially, and the re-
vent FIFO errors. As the clock rate increases and approachsslting sums are added to compute the total for the entiegyarr
the maximum throughput of the interfaces, these penalties o(size 3M); matrix multiplication (mmul):the product of two
cur more often, resulting in lower throughput of the mixed-64 x 64 matrices is computed, where each parallel thread com-
timing network. putes one row of the result matrigreadth-first search (bfska
On the positive side, however, it is noteworthy that the 60@arallel BFS algorithm is executed on a graph with 100K ver-
MHz and 800 MHz mixed-timing networks provide identical tices and 1M edges; aradray increment (anc): each parallel



thread increments 8 elements of the array (size 32K). The aReferences

erage network ultilization exhibited by these XMT kernels:a  [1]
add: 0.492;mmul: 0.395;bfs: 0.091;a.inc: 0.927.
Overview of results. Simulation results are shown in Fig- [2]

ure 12. Theadd kernel provides steady traffic throughout the
execution of the program that remains below the saturatior}
throughput of the network with mixed-timing, hence GALS !
XMT performance remains comparable to an XMT with the
synchronous network. Themulkernel has a lower average 4
network utilization tharadd, however, this does not reflect the
true pattern of memory access. The traffic appears in bursts,
causing very high traffic, followed by periods of low traffis a [5]
the processing clusters compute the results. In the 700 MHz

case, the burst traffic exceeds the saturation throughyaurgly (6]
degrading the performance of the application. Dfekernel

has the lowest traffic rate of all benchmarks; since it opsrat -
below the saturation throughput of the network, perforneaac 7l
comparable to synchronous for all simulations. Bhiec ker- (8]

nel has extremely high traffic. The average input traffic & 70
MHz will be 164.9 Gb/s, which exceeds the saturation threugh g
put of 112 Gb/s. The network latency increases exponentiall
under that level of traffic, and the performance of the GALS10;
XMT processor therefore decreases.

5.6_ Evaluation summary o oy

Overall, the above results’are promising, while still iradic
ing areas for further improvement. For the XMT experiments}12]
on bothadd and bfs kernels (where the former had an aver-
age network utilization of nearly 50%), the GALS XMT had
comparable performance to the synchronous XMT at 700MH#13l
Performance of kernehmuldegraded only modestly (by about
14%) at 700MHz. Only kernedinc, which had high average 14
network utilization (0.927), showed significant degraoiaiby
about 37%). In each case, there was almost no performange;
degradation, and sometimes an improvement, at the lowek clo
rates (200MHz, 400MHz). In addition, extrapolating frong+i
ure 11, the mixed-timing network provides lower latencyrove
much of this range.

These results confirm two observations from Section 5.4: thﬁ7
mixed-timing network performs well at (i) relatively highock ]
rates with low to moderate input traffic, and (ii) low to moder [18]
ate clock rates with high input traffic. However, further ides
improvements are still needed, to be explored along theeguid;q;
lines outlined in Sections 5.3 and 5.4, to make the mixedhgm
network more competitive at high clock rates.

6 Conclusions and Future Work [20]

A new low-overhead asynchronous network was introduced
for chip multiprocessors, that provides scalable,highevadth o1
on-chip communication, beginning with the detailed desifn [21]
network primitives and extending to initial system-levelrp 22]
formance evaluation. Unlike a synchronous network, it pro-
vides support for heterochronous systems consisting of syn
chronous nodes with unrelated arbitrary clock rates. Time sy [23]
chronous implementations of comparable network prinstive
use 5.6-10.7x the energy per packet and 2.8-6.4x the area whig4]
compared with the new asynchronous designs. Mixed-timing
interfaces with new custom protocol converters were then pr
posed to provide robust communication between synchronolfs)
and asynchronous timing domains. Then, network primitives
were assembled into a Mesh-of-trees [2] topology for prepg
liminary system-level performance evaluation against & sy
chronous MoT network, first in isolation and then with accom-27]
panying mixed-timing interfaces. Finally, the mixed-timgi
network is embedded and co-simulated with the XMT proces-
sor and the performance is evaluated by running severdlglara [28]
kernels. The new GALS XMT processor provides comparable
performance to the existing synchronous XMT except in thcf29
most challenging case of high clock rate and high traffic.rate ]

As future work, further architectural and circuit-leveltbp
mizations discussed in previous sections are expected 4o ir3o
prove overall system-level performance, as well as to d@val (3
CAD flow for automated synthesis, possibly building on [26].

In addition, we aim to redesign the asynchronous MoT networjg2]
as an MoT/butterfly hybrid topology, as recently proposedfo
synchronous network [3], to further reduce area overheads.
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