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ABSTRACT

This paper introduces a new, practical routing algorithm, Maze-
routing, to tolerate faults in network-on-chips. The algorithm is the
first to provide all of the following properties at the same time: 1)
fully-distributed with no centralized component, 2) guaranteed de-
livery (it guarantees to deliver packets when a path exists between
nodes, or otherwise indicate that destination is unreachable, while
being deadlock and livelock free), 3) low area cost, 4) low recon-
figuration overhead upon a fault. To achieve all these properties,
we propose Maze-routing, a new variant of face routing in on-chip
networks and make use of deflections in routing. Our evaluations
show that Maze-routing has 16X less area overhead than other al-
gorithms that provide guaranteed delivery. Our Maze-routing algo-
rithm is also high performance: for example, when up to 5 links are
broken, it provides 50% higher saturation throughput compared to
the state-of-the-art.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems—
Fault tolerance

General Terms

Algorithms, Performance, Reliability, Design

Keywords

Network-on-chips, permanent fault, link failure, routing algorithm,
face routing, deflection routing, distributed algorithms

1. INTRODUCTION
Aggressive scaling of transistor feature size comes with bene-

fits and curses. The key benefit is the ability to integrate many
more computational and storage components, including many pro-
cessors, cache slices, memory controllers, and specialized acceler-
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ators, on the same die, which leads to greatly increased computa-
tional power in a System-on-a-Chip (SoC). To take advantage of
this computational power effectively, these integrated components
need to be connected to each other with an effective communication
substrate. Network-on-chips (NoCs) are a promising way to inter-
connect on-chip components as they are shown to be more scalable
than traditional bus-based interconnects [9, 14, 23, 41].

A major curse of aggressive transistor scaling is the reduced re-
liability of the on-chip components [8]. For example, fault mech-
anisms such as device wear-out caused by oxide breakdown, elec-
tromigration, and thermal cycling [8, 10], are expected to be ex-
acerbated in future technology nodes, leading to more failed com-
ponents during operation, as the SoC device ages [13]. Hence, it
is critical to design both the components and the interconnect to

operate in the presence of faulty components.1

While a faulty computational or storage component (e.g., a core
or a cache slice) degrades SoC performance, a fault in a network-
on-chip component (e.g., a router or a link) can be even more se-
rious as the NoC provides the communication substrate between
multiple components. Such a fault can potentially cripple system
performance and perhaps even more severely become a single point
of failure [19]. It is projected, therefore, that NoCs need to tol-
erate at least tens of randomly-located failures [32], in order to
keep up with fault-tolerant processor designs. A (large) number
of randomly-located failures can easily convert a regular network
topology (with a simple routing algorithm) into a complicated maze
of routers connected by links with some connections (i.e., routers
or links) missing [3]. In such an SoC with some faulty NoC com-
ponents, it is therefore critically important to have an efficient rout-
ing algorithm that can deliver packets to destinations through the
available links and routers (or otherwise find out the destination is
unreachable), in order to guarantee continued operation.

We posit that a practical, effective and efficient routing algorithm
that can tolerate NoC faults should satisfy the following properties.
First, guaranteed delivery: it should guarantee to deliver a packet to
its destination when a path between the source and the destination
exists or else indicate that the destination is unreachable, regardless
of the number and location of faults. We also call this property full
(fault) coverage. Second, it should be fully distributed: it should
have no centralized component in finding non-faulty paths through
the network to deliver a packet because a centralized component
is not only a scalability bottleneck but also can constitute a single

1Faults can be permanent, transient and intermittent [24]. While
we do not target a particular category of faults in this work, our
discussion is focused more on permanent faults, i.e., faults that stay
after they appear until the faulty components are repaired.
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point of failure in a fault-tolerant system. Third, it should have low
hardware area cost, as any additional area overhead increases not
only implementation cost but also vulnerability of the SoC to faults.
Finally, it should have low reconfiguration overhead: when a new
faulty component is identified, the network should continue normal
operation and adapt the routing mechanisms without affecting the
system and applications running on it. We find that, while some
past fault-tolerant routing algorithm designs satisfy one, two or at
most three of these goals, no previous work provides an algorithm
that satisfies all four requirements.

Our goal in this work is to devise a new, practical fault-tolerant
routing algorithm that achieves all of these four goals. To this end,
we develop a new algorithm called Maze-routing, taking inspira-
tion from the idea of face routing, which was originally proposed
for ad-hoc wireless networks [11]. Our algorithm, called Maze-
routing, provides guaranteed delivery in a fully-distributed manner
at low cost and low reconfiguration overhead. We make several
key choices in our design. First, to keep the algorithm simple and
fully-distributed, each router makes standalone decisions based on
limited local information. While this sometimes leads to routing
via suboptimal paths, it greatly reduces hardware complexity and
cost without compromising fault coverage. Second, to eliminate
any need for routing tables, we use an algorithmic approach to rout-
ing that is based on face routing. This reduces the hardware cost
and complexity in each router. Third, by eliminating the need for
routing tables and ensuring that our algorithm is fully-distributed,
we achieve the goal of low reconfiguration overhead as each router
discovers feasible paths on the fly based only on local informa-
tion without the need for global information or routing table up-
dates. Finally, to avoid any deadlocks (and livelocks) when routing
with limited connectivity, we make use of deflection routing mech-
anisms [16] that have been proven to be deadlock- and livelock-
free [15, 16]. While our four major design choices can potentially
(but not always) lead to routing via suboptimal paths in the net-
work, resulting in slightly increased network latency under some
conditions (which we evaluate in Section 4.2), they 1) greatly re-
duce hardware complexity and cost, 2) enable the four goals in the
design of a fault-tolerant routing algorithm, and 3) lead to increased
saturation throughput with our algorithm compared to state-of-the-
art fault-tolerant routing algorithms as face routing (and, hence,
Maze-routing) can better exploit the NoC path diversity (which we
evaluate in Section 4.2).

Maze-routing works as follows at a high-level. A router tries

to forward each packet to a productive output port2, as long as
possible. If this is possible, the packet is considered to be in
normal mode. If the packet enters a router with no productive
output port (i.e., encounters an obstacle due to faulty NoC com-
ponents), the packet traverses around the faulty region hop by hop
(called traversal mode) until it enters a node where it is safe to
revert back to normal mode. This procedure continues until the
packet reaches its destination or one of the routers it visits detects
that the destination is unreachable. We describe the details of our
algorithm, including exact conditions for entry and exit into the
traversal mode and proof of its delivery guarantee, in the rest of
the paper (Sections 3.2 and 3.3).

We make the following contributions in this paper:
• We propose the first fault-tolerant routing algorithm, Maze-

routing, for mesh-based NoCs that provides all of the following
properties at the same time: 1) fully-distributed with no central-
ized component, 2) guaranteed delivery with livelock and deadlock
freedom, 3) low area cost, 4) low reconfiguration overhead upon
a fault (§3.2). We made the source code of our algorithm and our
simulator publicly available [1].
•We prove that our algorithm finds the path to destination, if one

exists, regardless of the number and location of faults in the NoC
(Section 3.3). We show that our algorithm can also detect when no
such path exists, i.e., when the packet cannot reach its destination

2A productive output port is one that moves the packet closer to its
destination.

due to disconnected partitions in the network (Section 3.4).
•We show that our proposed design avoids deadlocks (and live-

locks) when routing with limited connectivity, via the use of deflec-
tion routing mechanisms [16] that have been proven to be deadlock-
and livelock-free [15, 16] (Section 3.5).
• We extensively evaluate the hardware cost, performance and

fault tolerance capability of Maze-routing in comparison to other
works that aim to provide guaranteed delivery, with three major
conclusions. First, our HDL synthesis results show that the area
overhead of Maze-routing is 16 times smaller than the mechanism
with the smallest routing table in literature (Section 4.1). Second,
our performance evaluation shows, among other things, that Maze-
routing is also high performance: for example, when up to 5 links
are broken, it provides 50% higher saturation throughput compared
to the state-of-the-art [3, 32] (Section 4.2). Third, Maze-routing
incurs much smaller reconfiguration overhead than the state-of-the-
art when a new fault is discovered in the NoC (Section 4.3).

2. MOTIVATION AND RELATED WORK
There is an enormous amount of research carried out in detec-

tion and tolerance of different types of faults (permanent, transient,
etc.) affecting operation of NoCs. In the following, we motivate
four goals of this work in the design of a practical fault-tolerant
routing algorithm, by reviewing some of the existing works. How-
ever, tolerating non-permanent faults, as well as proposing fault
detection techniques fall beyond scope of this paper. As such, we
narrow down our literature review to existing routing algorithms for
tolerating permanent faults in NoC links and routers, a summary of
which is reported in Table 1.

Table 1: Comparison of state-of-the-art. Desirable characteris-

tics are in bold.
Coverage Reconfiguration O(Area) O(Reconf.)

Zhang et al. [43] few fully dist. low on the fly

LBDR [35] moderate central low N/A

d2-LBDR [7] moderate central low N/A
OSR-Lite [38] moderate central low moderate
TOSR [5] moderate distributed high fast

BLINC [25] moderate distributed high fast

uLBDR [36] high central high N/A
Wachter et al. [39] high distributed high slow
Fick et al. [19] high distributed high slow
Face routing [11] high fully dist. excessive on the fly

FTDR-H [18] high fully dist. high fast

uDIREC [32] full central high excessive
ARIADNE [3] full distributed high slow
Maze-routing full fully dist. low on the fly

Goal 1: Full Fault Coverage. As mentioned before, a large
number of randomly placed failures may occur in NoC compo-
nents, which may lead to disconnected (unreachable) destinations.
As such, this work sets its first goal as to achieve full (fault) cover-
age, which is to guarantee to deliver a packet to its destination when
a path between the source and the destination exists or else indicate
that the destination is unreachable, regardless of the number and
location of faults. However, most of the past works only support
a limited number and placement of faults [43]. For instance, the
routing algorithm in [43] handles only one faulty router/region.

On the other hand, some works (e.g. [11,19,36,39]), denoted as
high coverage, overcome a high number of faults, but do not guar-
antee a full coverage in all circumstances and/or cannot detect or
tolerate unreachable destinations. Works with moderate coverage
are also not limited to only few failures, but they place strict limi-
tations on tolerable fault patterns as the number of faults grows.

Some researchers (e.g. [7, 32, 34–36, 38]) propose methods with
full/high/moderate coverage, where upon new failures, a central
controller collects the fault information, computes the new con-
figuration, and distributes it back among routers. Such central-
ized methods suffer from two main challenges. First, the central
controller can easily become the single point of failure as it is
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on the critical path of the reconfiguration process [5]. Moreover,
there needs to be an extremely reliable means for fault informa-
tion collection, and routing distribution, usually addressed by use

of TMR3-based methods [32]. Thus, centralized approaches may
become impractical and/or expensive to tolerate run-time faults.

Goal 2: Fully Distributed Operation. Several researchers pro-
pose distributed reconfiguration methods [3, 5, 19, 25, 39], where
new failures are handled through a cooperative reconfiguration pro-
cess of routers. Though the reconfiguration process is carried out
without any central component, these methods are prone to failure
within their reconfiguration hardware/network. That is, a failed re-
configuration unit in any single router cripples the functionality of
the whole system, or a portion of it. For instance, [3, 5, 25, 39] re-
quire the use of TMR-based methods and/or error-correcting codes
to shield their reconfiguration process from run-time failures. This
introduces a single points of failure in such otherwise distributed
methods.

We posit that a practical fault-tolerant method must work in
a fully-distributed manner: any failed component of the network
should have only local impact and there should not be a single point
of failure in the network. Few works, including ours, propose meth-
ods with this property. The ability of the network to route around
failures and find the path to destination is an innate ability of our
proposed routing algorithm. There is no separate reconfiguration
unit, and a failure in any parts of the network, including our al-
gorithm instantiations, results only in the disabling of specific net-
work link(s).

Goal 3: Low Area Overhead. The imposed area overhead of a
routing algorithm is of a great concern. The imposed overhead adds
up not only to the implementation costs and power dissipation, but
also to the vulnerability of the algorithm to run-time faults. How-
ever, most of the works that overcome a high number of faults make
use of one or several routing tables [3,5,18,19,25,32,33,39]. For in-
stance, routing tables of each node in a 8x8 network may need 256
bits [3], ∼500 bits [5, 25], or even ∼8K bits [39] to store healthy
paths to destinations. As we will show in Section 4.1, routing ta-
bles significantly contribute to the area overhead of fault-tolerant
algorithms. Specially, since they need to have five read ports for si-
multaneous accesses of different ports of a mesh router. As a failed
routing table or reconfiguration logic cripples the functionality of
the whole router, their imposed area overhead directly translates to
increased fault probability within the whole router.

Goal 4: Low Reconfiguration Overhead. Finally, but also im-
portantly, a practical fault-tolerance algorithm should provide unin-
terrupted operation of the network once some components become
disabled. Fast reconfiguration becomes a necessity especially with
the use of aggressive online testing, where network components
(e.g. network link) become unavailable not only because of de-
tected faults, but also periodically and frequently during their on-
line testing [25, 27]. As a result, it has attracted attention newly as
studied in recent literature [5,25,38]. However, most of the existing
works with moderate/high/full fault coverage suffer from long re-
configuration phases [3,19,32,39], during which they interrupt the
normal operation of the network and pause the delivery of packets
until the end of reconfiguration. For instance, in a 10x10 network,
upon a new fault occurrence, it takes up to 10K cycles [3], ∼ 100K
cycles [39] or even ∼ 100ms [32] to reconfigure the network. As
opposed to works with fast reconfiguration, works with on the fly
reconfiguration, including this work, have no separate reconfigura-
tion phase: a new path to destination is dynamically calculated per
packet as the packet travels through the network.

Summary. As shown in Table 1, to the best of our knowledge,
this is the first work that can satisfy all of the four mentioned goals.
Our Maze-routing algorithm guarantees to deliver a packet to its
destination when a path exists and to indicate it when destination is
unreachable, i.e. it provides full coverage. In addition, our routers
do not require any routing table, work in a fully distributed manner,
and forward packets through the faulty network on the fly.

3Triple Modular Redundancy.

3. MAZE-ROUTING
We first provide definitions and assumptions needed for the de-

scription and proof of our Maze-routing algorithm (§3.1). Af-
terwards, we introduce our proposed fully-distributed algorithm
(source-code available at [1]) for fault-tolerant routing in meshes
(§3.2), and prove that it guarantees to find a path when exists (§3.3).
Further, we extend our algorithm to detect when the network is par-
titioned and the destination is unreachable (§3.4). Then, we explain
our use of deflection-based router design to provide deadlock free-
dom, and changes required to keep the original properties of our
algorithm (§3.5). Finally, we provide a qualitative comparison be-
tween this work and some of recent related works (§3.6).

3.1 Preliminaries
Fault Model: as mentioned above, we propose our fault-tolerant

routing algorithm for mesh-based faulty NoCs, as shown in Fig. 1
(a). We model permanent failures in transistors of network com-
ponents as one or several disabled links [3]. Accordingly, a failed
router is modeled by disabling all of its four links.
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Figure 1: (a) Architectural diagram of a 4x4 mesh NoC with

faulty routers and links. (b) The equivalent planar graph.

Planar Graph: In graph theory, a graph (G) is called planar if
one can draw it on a plane without having edges crossing each
other [42]. Accordingly, a (potentially faulty) mesh NoC can be
represented as a planar graph, shown in Fig. 1 (b).

Note that in this work we only consider mesh topologies. How-
ever, one can modify our algorithm to fit in other topologies, as
long as the topology can be represented as a planar graph.

Face: A planar graph partitions the plane into regions (faces) that
are bounded by edges of the graph. Each connected component of
a graph may have several inner faces (F1–F4 in Fig. 1 (b)), and has
one outer face.

Right/Left hand rule: Assuming a packet entering a node (e.g.
(0, 1) in Fig. 1) from a direction (e.g. south), right/left hand rule
(denoted as � / �) decides that the packet exits the node from the
first output on the packet’s right/left side (e.g. east/north). Note
that following either � or � rules makes the packet traverse the
boundary of inner (outer) faces in clockwise (counterclockwise)
and counterclockwise (clockwise) directions, respectively.

PROPERTY 1: Let src and dst be nodes of a planar graph G with
an existing path between them. Starting from src, by traversing the
face F underlying line(src,dst), the packet will definitely intersect
line(src,dst) at some point (p) other than src [20]. ✷

For instance, starting from src in Fig. 1 (b), traversing the un-
derlying face (F1) in both directions will intersect line(src,dst) in
point p. Note that p can be on either a node or an edge of the face.
We refer interested readers to [20] regarding the proof of PROP-
ERTY 1.

3.2 Maze-routing Algorithm
Algorithm 1 shows the pseudo-code of our distributed routing

algorithm. Our algorithm routes a packet from source node (src)
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to its destination (dst). As listed in Table 2, a packet carries along
4 new pieces of data. The first two are required for guaranteeing
the delivery of packets, while the two other are meant for detecting
unreachable destinations (§3.4). MDbest stores the closest (Man-
hattan) distance (MD) to dst that the packet has reached so far.4

Mode denotes the routing mode used for the packet. Initially, the
packet is routed in normal mode. In some circumstances, a packet
might enter the traversal mode, wherein, the packet follows either
the right hand (�) or left hand (�) rules.

Algorithm 1 The basic Maze-routing algorithm.

Inputs:

Packet header as listed in Table 2, src and dst.
cur indicates the coordinates of the current router.
Productive output ports are calculated based on cur and dst.
Healthiness of output ports is given by online testing modules.

Outputs:

dirout: the direction in which the packet is forwarded.
Algorithm might also update values of packet header.

1: if cur = dst then

2: dirout ← LOCAL;
3: else if MDbest = MDcur,dst and ∃(healthy & productive out-

put) then

4: MDbest ← MDbest − 1;
5: dirout ← one of the healthy and productive outputs;
6: mode← normal;
7: else if mode ∈ traversal then

8: dirout ← The direction given by � / � rule;
9: else

10: mode← � / �;
11: dirout ← The first output in the left/right of line(cur,dst);
12: end if

13: return dirout;

While the packet is in normal mode, each router tries to forward
it to a productive output port (lines 3–6), until the packet reaches
its destination. However, during normal mode, the packet might
enter a router with no productive output port. In this case (line 9
onwards), the packet enters the traversal mode and starts travers-
ing the face F underlying the line(cur,dst). This is implemented by
taking the first healthy output to the left or right of the line(cur,dst)
(line 11) and following the � and � rules5, respectively, in the next
routers (line 8). In this work, we select the hand rule (� or �) ran-
domly. This does not void the full coverage guarantees of our algo-

rithm (§3.3), but can potentially lead to suboptimal paths.6 The
packet stays in traversal mode until it enters a router with 1)
MDcur,dst = MDbest and 2) at least one productive and healthy
output towards dst. In other words, a packet reverts to normal
mode when it enters a router that can forward the packet closer to
its destination than what is stored as MDbest.

Later in Section 3.3, we prove that if a packet with a reachable
destination enters traversal mode, it will definitely exit this mode
at some node; i.e., MDbest is definitely decremented. Accordingly,
since it is guaranteed that MDbest is gradually decrementing until
zero, the packet is guaranteed to eventually reach the destination.

Example. We now explain our algorithm in detail with an exam-
ple that is based on the faulty NoC on Fig. 1 (b). Let us assume,

4MD is computed assuming a fault-free mesh.
5Once a hand rule is picked (as � or �), it cannot be changed while
the packet is in traversal mode.
6We leave it to future work to develop a mechanism to pick a hand
rule that can maximize performace.

Table 2: Packet header fields needed by our algorithm.

Valid values Initial value Notes

MDbest integers ≥ 0 MDsrc,dst §3.2

mode
normal (N), or

normal §3.2
traversal = {�, �}

Ntrav node coordinates – §3.4

DIRtrav {↑,→, ↓,←} – §3.4

as shown in Fig. 2, a packet that is injected to network from
src(0,0), destined to dst(3,2). Starting from src (MDbest = 5,
and mode = normal), the router looks for at least one produc-
tive and healthy output (line 3 of Alg. 1). There are two candi-
dates: north and east directions. The router arbitrarily chooses
one (dirout ← north in our example), forwards the packet to
north and decrements MDbest (lines 4–6). The same happens in
the next router(0,1) and the packet is forwarded to north router(0,2)
(with MDbest = 3 and mode = normal). Now, in the cur-
rent router(0,2), the only productive output (east) is disabled (be-
cause router(1,2) is faulty) and the packet is not in traversal mode.
Hence (according to lines 9–11), without any changes to the MDbest

value, the packet enters traversal mode and starts to traverse face
F2 using either of the hand rules (mode← � in this example, deter-
mined randomly). The packet is forwarded to the north direction
(the first healthy output to the left of line(cur,dst) – line 11 of algo-
rithm). Traversing the face with � rule (lines 7–8), the router(0,3)
forwards the packet to the east direction. Now in router(1,3),
MDbest = 3 happens to be equal to MDcur,dst and there exists a
productive and healthy output (east direction). So, the packet exits
traversal mode (lines 4–6), decrements MDbest and follows the
productive output (east). Now, there are two productive outputs
in router(2,3) to forward the packet (east and south directions).
Assuming east direction is taken, the next router(3,3) forwards the
packet to the only productive output (south). Thus, the packet
reaches its destination.
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Figure 2: An example showing a possible path to deliver a

packet from src to dst. The right figure shows the coordinates

of the visited nodes and MDbest and mode values of the packet

upon entering each node. The dashed line in the left figure is the

line(cur,dst), upon entering traversal mode in the router(0,2).

Short arrows on each node show cases where more than one

output is eligible according to our algorithm.

Note that, as also seen in the given example, it is an innate abil-
ity of our algorithm to route packets to their destinations in a fully-
distributed manner; i.e., there is no routing table or reconfigura-
tion phase/hardware. This is a key advantage over previous works
which either are not distributed, or require a routing table and/or
reconfiguration hardware to achieve full fault coverage.

On the other hand, as in the example, there are two cases where
the router needs to select between different output directions: 1)
when there are more than one productive and healthy output ports,
and 2) when selecting the hand rule for traversing around a face.
Due to the distributed manner of our algorithm and thus lack of
a global view, local selections done by the router in these two
cases can potentially (but not always) lead to routing via suboptimal
paths. For instance, in our given example, the packet would have
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routed through a minimal path, if router(0,0) (and consequently
router(2,1)) took the east direction. At the same time, the ability
to choose from multiple output ports offers a high path diversity to
our routing algorithm, which leads to improved latency compared
to state-of-the-art when the network load is high (§4.2). We leave it
for future work to develop better heuristics to pick the best output
port when more than one selection is available.

3.3 Delivery Proof
We now prove that our proposed algorithm guarantees to find a

path to destination when one exists. In other words, it does not
lead to livelock as packets will eventually reach their destination.
Note that, in our proof, we refer to PROPERTY 1 of planar graphs,
introduced in Section 3.1.

THEOREM 1. When a path exists between src and dst, using
Alg. 1, a packet from src reaches dst in a finite number of hops.

PROOF. Alg. 1 sends the packet closer to dst through productive
outputs as long as they are healthy (lines 3–6). This continues until
the packet reaches dst (line 1), or reaches a point (u) which does
not have a productive and healthy output towards dst (line 9). In the
latter, the packet enters traversal mode, during which, according
to to PROPERTY 1, the packet eventually will cross line(u,dst), at
p 6= u. Because p is on line(u,dst), MDp,dst < MDu,dst. Before
reaching p, thus, the packet must have entered a node (v) with a
productive and healthy output where MDu,dst = MDv,dst. That
is, before intersecting line(p,dst) at p, the condition of line 3 of
Alg. 1 gets satisfied at v. At that point, the packet exits to normal
mode and MDbest is decremented. Thus, MDbest is guaranteed to be
decremented in traversal mode. Since, MD is a discrete value and
MDbest is guaranteed to be decremented in either modes (normal
or traversal), it eventually reaches zero in a finite number of steps;
i.e. the packet reaches dst in a finite number of hops.✷

To get an intuition of the presented proof, one may replace u
with router(0,2), p with router(2,2), and v with router(1,3) in Fig. 2.

3.4 Detecting Unreachable Nodes
When there is no path between src and dst, it means that the

packet cannot decrement its MDbest value down to zero, but only
to a minimum value of MDmin 6= 0. Accordingly, when the packet
enters a node (called Ntrav) with MDNtrav,dst = MDmin, there
is no productive and healthy output (Otherwise, MDNtrav,dst >
MDmin). In such a case, the packet traverses the current face for-
ever in traversal mode and does not exit to normal mode again
(Otherwise, MDmin is not the minimum MD possible).

To develop an algorithm that can recognize an unreachable des-
tination, we utilize the above reasoning. Algorithm 2 shows our
resulting algorithm. In this algorithm, a packet needs to store the
node it enters traversal mode (Ntrav) and the direction DIRtrav

that it is first forwarded to (lines 15 and 16). The destination is
declared unreachable when the packet is revisiting Ntrav again and
the � / � rule guides to the same output as DIRtrav (lines 9 and 10).

An example is shown in Fig. 3, where destination dst is un-
reachable. The time-line on the right shows different values in
packet header when entering a node. In the last step, dst is de-
tected unreachable as 1) the packet is revisiting the router(0,2)
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Figure 3: (a) The path a packet takes until its destination dst is

detected unreachable by router0,2. Right figure shows the co-

ordinates of visited nodes and MDbest, mode, DIRtrav and Ntrav

values of the packet upon entering each node.

Algorithm 2 The enhanced Maze-routing algorithm that detects
unreachable nodes.

1: if cur = dst then

2: dirout ← LOCAL;
3: else if MDbest = MDcur,dst and ∃(healthy & productive out-

put) then

4: MDbest ← MDbest − 1;
5: dirout ← one of the healthy and productive outputs;
6: mode← normal;
7: else if mode ∈ traversal then

8: dirout ← The direction given by � / � rule;
9: if cur = Ntrav and dirout = DIRtrav then

10: Indicate dst as unreachable;

11: end if

12: else

13: mode← � / �;
14: dirout ← The first output in the left/right of line(cur,dst);
15: DIRtrav ← dirout;
16: Ntrav ← cur;
17: end if

18: return dirout;

(cur = Ntrav) and 2) the � rule guides the packet to the same
direction (north) as stored in DIRtrav (DIRtrav = north).

Note that our algorithm detects such network partitioning due to
faulty nodes and links, and guarantees the packet delivery within
each partition; i.e., it provides full coverage. However, a higher
level mechanism is required to recover the system from a fault;
e.g., the operating system needs to migrate disconnected threads to
connected nodes. This is a complementary problem and is out of
this paper’s scope.

3.5 Deadlock and Livelock Avoidance
As mentioned before, we use deflection based routing to pro-

vide our algorithm with the flexibility to take any output port, while
avoiding deadlocks and livelocks. At the algorithm level, livelocks
are also prevented as our algorithm guarantees to find the path to
destination, as described in Section 3.3.

Deflection based routing and the design choices to avoid dead-
locks and livelocks are thoroughly studied in literature [4,6,16,21,
28, 29]. Deflection routing can provide deadlock freedom by de-
flecting flits when there is contention. In order to guarantee that
our design has no deadlock, our mechanism always ensures that
the number of output ports is equal to the number of input ports. If
there is a broken input or output link in the router, a correspond-
ing output/input link will also get disabled to ensure the number of
input ports equals to the number of output ports at all times.

In this work, we have modified the deflection router used in
minBD [16] to incorporate our proposed algorithm. In order to
avoid livelocks, minBD applies two mechanisms: 1) golden and
silver flits, which guarantee that each flit will eventually arrive
at its destination [4, 15, 16] and 2) re-transmit once, which guar-
antees that flits can be reassembled at the destination in order to
make forward progress [4, 15, 16]. Furthermore, re-transmit once
flow-control avoids additional buffering cost, otherwise necessary
for deadlock avoidance, by using cache miss buffers (MSHRs) as
reassembly buffers. In conclusion, the combination of deflection
routing, golden and silver flits, and re-transmit once provides end-
to-end guarantees for all flits and ensures that the network is always
deadlock- and livelock-free.

Note that the exact proof of deadlock and livelock freedom of de-
flection based mechanisms is beyond the scope of this paper. We re-
fer interested readers to the original works for details of each mech-
anism [15–17]. Moreover, our algorithm can work with any deflec-
tion based mechanism proposed in literature. We chose minBD
[16] due to its ease of adaptation and high performance.
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Deflection implications. With a deflection-based router, in some
cases, a flit might not be forwarded to the output port indicated by
our routing algorithm (Alg. 1 and 2). As such, a deflected flit is
no longer following our algorithm: it exits the face it is traversing
or takes a non-productive output, both of which, result in incon-
sistency of the MDbest and mode values of the packet. In order
to ensure correct functionality of our algorithm, in the presence of
deflection, the MDbest and mode values of the flit are reset as if
the packet were just injected to the network in the next router, rD
(MDbest ← MDrD,dst and mode← normal).

3.6 Qualitative Comparison with Previous
Methods

Basic face routing algorithm [11] draws line(p,dst) between
sour-ce src and destination dst, and traverses the underlying face
until an edge intersects the line(p,dst). The procedure of shorten-
ing line(p,dst) is continued until reaching dst, as shown in Fig. 4.
The face routing algorithm is not a suitable candidate for on-chip
implementation in its basic form. It needs to store coordinates of
p, which are real (vs. integer) numbers, and requires realization
of floating-point operations (with the associated area and energy
overheads) at every input port. Moreover, the intersection check
can lengthen the critical path of the algorithm and add up to the
hardware overhead. Finally, the basic face routing algorithm does
not provide a method to detect it when nodes become unreachable
due to faults.

src dst
p p p p

The taken path to destination

Figure 4: An example of the basic face-routing algorithm.

line(src,dst) is shown in red, and intersection points are indi-

cated by ✕.

Tunneled OSR (TOSR) [5] tries to overcome two main draw-
backs of its predecessor, OSR-Lite [38]. TOSR reconfigures the
network in a distributed manner, and achieves much faster recon-
figuration. Their reconfiguration speed clearly stands out among
related state-of-the-art [25, 38]. However, TOSR (like OSR-Lite)
has limited coverage capabilities; e.g., it cannot always recover the
network when there are two failed links. Moreover, it makes use of
routing tables (464 bits per router) imposing a high area overhead
(§4.1). In addition, the reconfiguration logic of TOSR needs to be
shielded by use of TMR-based methods (as mentioned in Section
2); otherwise, a failed unit can damage the functionality of the tech-
nique. In contrast, in our method, failed routing logic of a router
can be simply taken offline by disabling the associated input and
output ports.

Logic based distributed routing (LBDR) [35] based methods are
introduced to remove the area overhead of routing tables. LBDR
works with few configuration bits (around 26) per router, and can
implement several routing algorithms. Nevertheless, naïve LBDR
is not capable of providing high coverage in case of failures, when
shortest path routing is not possible. Universal LBDR (uLBDR)
[36] is proposed to overcome this shortcomings. Unfortunately,

d2-LBDR [7] reports 3x area overhead for uLBDR due to the need
of virtual cut through switching, use of FORK modules, and com-
plex arbitration. Moreover, LBDR and its derivatives are not rout-
ing algorithms by themselves and need a central module to collect
fault data, compute new configuration bits, and update each unit
accordingly. Our technique is free of such overheads due to its four
desirable characteristics, explained in Sections 1 and 2.

FTDR-H [18] is a hierarchical reinforcement learning based al-
gorithm which uses deflection based routing. It achieves high cov-
erage and can route packets to their destination on the fly upon new
failures. However, it uses large routing tables (around 600 bits) per
router and leads to livelock once a destination gets disconnected.
Our Maze-routing mechanism is livelock free and does not need
routing tables.

4. RESULTS
We evaluated our proposed algorithm using a publicly available

simulator, NOCulator [2], modeling out-of-order x86 CPUs each
with a private L1 cache and a share L2 cache. The simulator has
been used and verified in many previous works [4,12,15,16,30,31].
L2 cache slices are connected together with a mesh interconnect.
In this work, we model 64 CPU cores in an 8x8 network, each of
them running a SPEC2006 application [22]. In addition, we present
synthetic traffic analysis.

4.1 Area Overhead
For the area overhead evaluation, we implemented our algorithm

using Verilog HDL. We then synthesized the design using Cadence
RC (RTL compiler) tool at the STMicro 60nm technology node.
Five copies of the algorithm are instantiated, one for each input
port of a router.

We also implemented the routing table used by related works
[3, 5, 19, 25, 32, 33, 39]. Among these, ARIADNE [3] uses the
smallest table in comparison to others, and we compare to it. Note
that we did not implement the reconfiguration logic of each work,
which will lead to even a higher area overhead for these past works.
In addition to ARIADNE, for the sake of fair comparison, we im-
plemented LBDRe, a logic based table free method based on the
LBDR [35] method.

Table 3 shows the silicon area required by our mechanism com-
pared to ARIADNE and LBDRe, for 8x8 and 16x16 meshes. Com-
pared to ARIADNE, the area reduction of our mechanism is 3.8
and 15.9 times for 8x8 and 16x16 meshes, respectively. Though
LBDR based method imposes a lower area overhead compared to
our method, both methods scale well as network size increases.
However, LBDR suffers from being a central approach with limited
coverage, and uLBDR [36], an extension to achieve high coverage,
is reported to impose 3x overhead in the entire router area [7].

Table 3: Silicon area (in µm2) required by five instances of our

algorithm (one for each port), routing table of ARIADNE [3],

and logic-based LBDRe mechanism [35].

Mesh size Maze-routing ARIADNE LBDRe
8× 8 1184 4471 568
16× 16 1505 23921 606

In addition to the efficiency and scalability of our algorithm, the
use of deflection routing significantly reduces our technique’s area
overhead as it reduces buffering in routers. The minBD router we
use has 39% smaller area than a buffered wormhole router [16].
In addition, the use of retransmit-once scheme [15] reduces the
buffering overhead at receiving nodes in our technique.

On the other hand, because each flit of a packet is treated inde-
pendently in deflection-based methods [29], the packet header in-
formation listed in Table 2 should be sent along with all flits. This
means that the channel width of routers needs to be lengthened to
accommodate this information, which results in increased area in
channels and routers (there is an almost quadratic relation between
the channel width and the router area [26]). The fields of Table 2
can be coded in 14/17 bits in 8x8/16x16 meshes. Assuming a base-
line router with 144-bit channel width [23] , we need to widen the
channel by 10%/12%, which results in almost 20%/25% increase
in the router area. Note that, even with the imposed overhead of
the widened channels, the area cost of our method is far less than
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methods with routing tables. We leave a more precise and accurate
study/comparison of the area overhead to future work.

4.2 Throughput
In order to evaluate the performance of our algorithm, we ex-

tracted the average flit latency in the network under different injec-
tion rates using a uniform traffic. Fig. 5 shows the result for both
our algorithm (blue lines) and the up*/down* [37] (red lines) us-
ing an 8x8 network. We study two cases (1 and 5 randomly failed
links), generate 10 different fault patterns for each case, and pro-
vide average results across all of them. We run the simulations for
10 million cycles.
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Figure 5: Average flit latency for both up*/down* algorithm

and our mechanism, over different injection rates with uni-
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respond to 1 and 5 randomly failed links.

We compare our technique against the up*/down* proposal, as
the latter is the core algorithm implemented in several related works
[3, 32, 35, 36] and can provide full coverage. Our algorithm uti-
lizes a router design proposed in minBD [16] with 16 buffer en-
tries. Up*/down* is implemented using normal buffered wormhole
routers [40], with 40 buffer entries in each router (8 to each port).

As up*/down*, on average, provides a shorter path to destination
compared to our technique, its average packet latency is smaller
at low network loads. However, at high injection rates, our algo-
rithm achieves better latency results as well as higher saturation
throughput due to its better exploration of path diversity compared
to up*/down*.

In another set of experiments, we run a mix of 15 different work-
loads from SPEC CPU2006 [22]. Accordingly, we split bench-
marks into three categories based on their L1 misses per kilo in-
struction (MPKI), as these are the misses that will go over the
network. High intensity benchmarks have MPKI greater than 50,
Medium intensity ones fall between 5 and 50 MPKI, and Low in-
tensity benchmarks are the remainder. Based on these categories,
we randomly pick a number of applications and form the following
mixes: L (all Low), ML (Medium/Low), M (all Medium), and H
(all High).

Table 4 shows the average network latency of the mentioned
workload mixes, when there is no failure and when there are up
to 5 failed links in the network. Our mechanism achieves lower
average packet latency compared to up*/down*, especially in the
high load cases, due to the offered path diversity.

4.3 Reconfiguration Overhead
In this subsection, we evaluate the performance of our algo-

rithm in achieving our fourth goal, minimal reconfiguration over-
head. As described in Section 3.2, there is no reconfiguration phase
that a router enters upon a failure detection. Instead, each router
tries to traverse around the failed link by forwarding the packets in
traversal mode.

In contrast, in related work [3,5,25,32,38,39], a router enters the
reconfiguration phase and network operation is interrupted until a

Table 4: Average packet latency with our techniques vs.

up*/down* on an 8x8 mesh, running different mixtures of

SPEC benchmarks.
workload Up*/Down* Maze-routing
mix 5 failures no failure 5 failures no failure

L 16.7 16.4 17.8 16.4
ML 18.8 18.2 18.9 17.2
M 27.7 25.7 21.6 19.2
H 54.4 50.5 25.8 23.1
AVG 29.4 27.7 21.0 19.0

new routing solution is found. Accordingly, these works’ intrusions
on normal operation of the network increases with the time it takes
to find an alternative solution. For an 8x8 mesh, it is reported that
it can take∼20 [5],∼30 [25],∼350 [38] and even 4K [3] cycles to
reconfigure the network. However, most of these works can work
only for 1 failure per their defined segment [5, 25, 38], and only
ARIADNE can guarantee full coverage as our method.

To demonstrate the on-the-fly reconfiguration capability of our
proposal, we simulate a fault free 8x8 network with injection rate
constantly set to 0.2 flits/node/cycle. We inject two random
link failures to the network, one at cycle 200K, and the other at
cycle 400K. As shown in upper part of Fig. 6, while ARIADNE
takes only 4K cycles to reconfigure the network, it takes over 40K
cycles for the network to return to its steady state latency. This
becomes even worse when the second failure occurs. In contrast,
using our proposed algorithm, the network latency only slightly
increases (∼0.25 cycles) upon every failure (Fig. 6– lower part).
Continuing new failure injection, ARIADNE design gets saturated
once the 5th link fails, while our algorithm continues to deliver flits
with a slight increase in latency (from 16.5 cycles to 18.4, with 6
link failures).

We believe the main advantage of on-the-fly reconfiguration is
that, using our algorithm, one can freely use online testing methods.
Links and network components can be silently disabled to run test
methods on them, without any major impact on performance.
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(upper) It takes several kilo cycles for ARIADNE to return to

steady state. (lower) The zoom-in of the same experiment: us-

ing our algorithm, flits experience around 0.25-cycle additional
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5. CONCLUSION
We introduced Maze-routing, a new, practical fault-tolerant rout-

ing algorithm with delivery guarantees for networks-on-chip. We
have shown that Maze-routing 1) is fully-distributed, 2) guaran-
tees delivery when a path exists and, otherwise, indicates that the
destination is unreachable, 3) has low hardware area overhead, 4)
incurs low reconfiguration overhead upon a new fault. We exper-
imentally evaluated the area overhead, performance, and fault tol-
erance capability of Maze-routing, with comparisons to state-of-
the-art routing algorithms that provide guaranteed delivery. Our
evaluations show much lower area overhead and much higher satu-
ration throughput (when faults exist in the NoC) than the state-of-
the-art. We conclude that our proposal can provide an efficient and
high-performance routing substrate for future NoCs, where fault
tolerance is expected to become increasingly important.
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