
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 24, 2022

A low-power ASK demodulator for inductively coupled implantable electronics

Gudnason, Gunnar

Published in:
Proceedings of the 26th European Solid-State Circuits Conference

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gudnason, G. (2000). A low-power ASK demodulator for inductively coupled implantable electronics. In
Proceedings of the 26th European Solid-State Circuits Conference (pp. 385-388)

https://orbit.dtu.dk/en/publications/c4cd8c70-7f01-4776-9837-5634d301571a


A low-power ASK demodulator for inductively coupled implantable electronics

Gunnar Gudnason

Dept. of Information Technology, Technical University of Denmark, DK-2800 Lyngby

gg@it.dtu.dk

Abstract

An amplitude shift keying (ASK) demodulator is pre-

sented which is suitable for implantable electronic de-

vices that are powered through an inductive link. The de-

modulator has been tested with carrier frequencies in the

range 1–15 MHz, covering most commonly used frequen-

cies. Data rates up to several 100kbit/s are supported,

suitable for complex implants such as stimulating elec-

trode arrays or visual implants. The circuit is compatible

with modulation depths in the range 10–100%. The low

end of the range permits data transmission without signif-

icant reduction in power transfer, or the use of transmit-

ter designs with limited modulation capability. The power

consumption is 60 µW from a 3 V supply. The circuit has

been implemented in a standard CMOS process.

1. Introduction

Inductively coupled links are widely used nowadays in

conjunction with high-performance implantable devices,

to provide wireless power and data transmission to the im-

plant. The link consists of two resonant RLC circuits, with

the external primary circuit driven by a power amplifier,

and the implanted secondary circuit acting as an antenna.

Several different circuit topologies are possible [1] but it

will be assumed here without loss of generality that the

secondary circuit is parallel resonant. The power ampli-

fier is usually a switching type such as a class D or E with

an amplitude modulated output [2]. Efficient transmitter

design and power transfer requirements can limit the AM

modulation depth to 10–20%.

One of the special requirements of implantable systems

is that maximum power transfer may be desired during pe-

riods when the data link is idle, as for example between

stimulation commands in a stimulator system. Modula-

tion of the carrier during idle periods is unwanted in such

cases, and the idle periods can therefore not be used to

establish the modulation levels in the detector.

The operating conditions for implantable electronics

are in many respects similar to those experienced by con-

tactless smart card ICs. The main difference is the avail-

able power in the transmitter. An ASK method based on

sensing the current passed through an on-chip shunt regu-

lator is presented in [3], but in a portable battery-operating

system, the ideal situation is when little or no current is

wasted in a shunt regulator. Ideally, the supply voltage of

the implant is regulated by varying the transmitted power

instead. This can be done by monitoring the supply volt-

age through a bidirectional data link, and regulating the

transmitted power accordingly.

The weak coupling commonly found between the pri-

mary and secondary coils means that the power transfer is

very inefficient. Any reduction in the power consump-

tion of an implant can therefore significantly affect the

power economy of the system as a whole, and in the case

of battery-operated external transmitters, increase battery

life.

One of the basic parts found in all digitally controlled

implants is the demodulator, and this paper presents a ver-

satile ASK demodulator, which features a low power con-

sumption without limiting the bit rate or setting unreason-

able constraints on the modulation form.

2. System overview

Figure 1 shows a block diagram of the demodulator.

The input signal and power are received through an an-

tenna consisting of a tuned parallel LC resonator. The

power for the implant is extracted by a bridge rectifier and

accumulated in a storage capacitor (not shown). Depend-

ing on the technology, the rectifier may be on-chip or ex-

ternal. The RF signal is taken from one side of the antenna

and fed through a passive input network to a current-mode

squarer. The squarer has a differential output which is

connected to a differential low-pass filter, and an extracted

carrier output which can be used as a system clock. The

output of the LPF is connected to a level detector which

extracts the digital modulation data from the envelope in-

formation.

2.1. Input network

The amplitude of the antenna signal can be far greater

than that which can be handled by modern CMOS tech-

nologies. The signal can therefore not be connected di-

rectly to a transistor gate or diffusion, but must be condi-

tioned in some way. Input protection diodes are not used

since they would interfere with the operation of the bridge

rectifier. In some cases it is desirable to maintain a supply

voltage external to the chip which is higher than the on-

chip supply. In that case, a voltage regulator is inserted

into the supply path to the chip in figure 1, so the bridge

rectifier does not provide sufficient input protection.

The passive input network consists of a capacitive di-

vider and a resistor R1 in series with the input resistance

Ri of the squarer. This network has two purposes. One is
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to convert the input voltage VA to an input current of suit-

able amplitude for the squarer, and the other is to reduce

the signal voltage seen by the active devices in the cir-

cuit. The capacitors are implemented using metal layers,

so they can withstand quite high voltages. The capacitors

are stacked on top of each other so that the chip substrate

is shielded from input signal by the bottom plate of C2.

Along with the source resistance RS of the induc-

tive link, the network has a second-order bandpass trans-

fer function. Assuming that the corner frequencies are

well separated (a decade or more), the transfer function

in the middle of the band is approximately Iin/VA =
C1/((C1 + C2)(R1 + Ri)). The lower and upper cor-

ner frequencies are 1/ωl = (R1 + Ri)(C1 + C2) and

1/ωu = RSC1 respectively. These must be fitted to the

used carrier frequency range.

2.2. Squarer

The current squarer is shown in figure 2. It is based on

a four-quadrant class AB multiplier presented in [4], and

uses the square-law characteristic of the MOS transistor

in strong inversion. The output is given by (Io+ − Io−) =
I2
in/8Ib where Ib is the bias current of the input transis-

tors.

One of the features which makes this circuit attrac-

tive for our purposes is that a relatively high small-signal

bandwidth can be achieved with low power levels. Simu-

lations show a bandwidth greater than 30 MHz with a total

bias current of 5 µA. The supply current of the squarer is

signal-dependent due to the class AB operation, and rises
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from 5 µA to 10 µA at the maximum specified signal am-

plitude.

One limitation of the circuit is that it relies on matching

of P- and N-type devices to implement the quadratic trans-

fer function. While this is impossible to achieve in prac-

tice, it does not matter in this application since the squarer

is only used as an envelope detector. The mismatch of the

current mirrors, which are implemented with high-swing

cascodes, also affects the accuracy of the circuit, but to a

much lesser extent.

The two current mirrors have secondary outputs which

are connected together. The high-impedance node at

these secondary outputs slews to the positive supply or to

ground according to the sign of the input current, thus cre-

ating a clock signal corresponding to the carrier frequency.

Many implantable electronic devices use the signal carrier

as a timing reference and to clock sequential logic.

2.3. Low-pass filter

The low-pass filter is used to extract the envelope data

from the squared input signal. It is a differential third-

order filter, consisting of a passive first-order section and

an active section which is implemented as a Gm–C filter.

Figure 3 shows the filter.

The cutoff frequency of the filter is set with respect to

the highest intended modulation frequency, taking process

variations into account. In this case it was set to a nominal

frequency of 350 kHz, to permit unencoded data rates of

up to approximately 200kbit/s.

Figure 4 shows the transconductor used in the filter im-

plementation, along with the common-mode feedback cir-

cuit which is necessary for each of the two internal differ-

ential nodes of the filter. The CMFB circuit is a current-
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steering type which causes relatively little distortion of

the differential mode signal. The transconductor itself is

based on a simple differential pair. The nonlinearity of the

transconductor is of little importance at the applied sig-

nal level (up to 200 mV differential). The 3dB-frequency

of the transconductors is approximately 10 MHz, which is

sufficiently high not to affect the transfer function of the

filter.

2.4. Level detector

The power requirements of the implant and consider-

ations of the efficiency of the link generally require that

the transmitter be operated at a constant level while the

data link is idle. For much the same reason it is desirable

to eliminate long synchronization/start sequences before

each transmission. The ASK modulation levels are there-

fore not known by the demodulator a priori, and must be

established quickly to detect the transmitted data. This

eliminates the possibility of a LP filter with a long time

constant to determine the average signal level. A method

commonly used in sophisticated receivers, like the digital

conversion and storage of the transmitted envelope with

a posteriori processing, is not compatible with the power

consumption criteria.

The level detector presented here uses only a pair of

start bits for a simple baseband modulation scheme, or

a single start bit in the case of biphase (“Manchester”)

encoding, to identify the two modulation levels and the

threshold level.

A diagram of the detector is shown in figure 5. It uses

three single-ended transconductors with multiple outputs.

All three transconductors have the same transconductance

G, except for the third output of G1 which has twice the

magnitude of the other outputs, I3 = 2I2 = 2I1.

The positive peak voltage at the input is stored on Cp

(referred to VREF ), while the negative peak is stored on

Cn. In the following calculation of the transfer function

from the input to the positive peak voltage Vp, the diode

transistor M1 can be ignored. The justification for this

will be apparent from the results.

From the diagram, we have the small-signal currents

i1 = G(vLP− − vLP+) := −Gvd and ip = G(vp −
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vREF ) = Gvp. The voltage on the capacitor is vp =
−(i1 + ip)/sCp. Inserting the expression for the currents,

and solving for the transfer function, we get

vp

vd

=
1

1 + sCp/G
(1)

Two observations can be made at this point. In the first

place, the DC value of this function is 1 (this result pre-

sumes perfect matching of the transconductances), so a

true copy of the peak voltage is effectively stored on Cp.

In the second place, this is a first-order LP function, so the

voltage on the capacitor approaches the final value with no

overshoot. This last fact is the justification for omitting the

diode-connected transistor M1 in the analysis. The result

for the negative peak voltage is similar. The time constants

Cp/G and Cn/G should be set in relation to the length of

the start symbol, to allow the positive and negative peak

voltages time to settle.

The digital data signal is extracted from the input sig-

nal by comparing it to the average of the two peak val-

ues. This is done by summing the currents I3 = −2GVd,

Ip = G(Vp − VREF ) and In = G(Vn − VREF ) at the

output node, and letting it slew to the positive supply or to

ground according to the sign of the result.

The reset signal is used to initialize the values of the ca-

pacitors which store the positive and negative peak signal

voltages. The positive peak voltage Vp is set to VSS by the

reset signal, while the negative peak voltage Vn is set to

approximately four gate-source voltages. This last value

is determined partly by a voltage clamp consisting of three

diode-connected transistors. The purpose of the clamp is

to limit the voltage swing on the summing node for the

negative peak computation. This reduces the amplitude of

the capacitive feed-through to Cn through the diode. No

clamp is necessary for the positive peak since the available

voltage range at the summing node is more limited. The

negative peak reset transistor is not connected to VDD, but

to a current source, in order to limit the current through

M2 and the clamp during reset.
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3. Experimental results

The demodulator was implemented in a standard digi-

tal 0.5 µm CMOS process, with one poly and three metal

layers. The maximum supply voltage is 3.3 V.

All measurement results were obtained with a supply

voltage of 3 V. In order to test the circuit with a wide

range of carrier frequencies, modulation parameters and

signal levels, a signal generator was used for most mea-

surements. The functionality of the circuit was however

verified with transmission through an inductive link with

a carrier frequency of 5 MHz at 200kbit/s.

Due to the nature of the dual power/data link, the peak-

to-peak amplitude of the unmodulated signal is almost

constant, and equal to the supply voltage plus two diode

voltage drops. In the following test results, the unmodu-

lated signal level is fixed at 3.5 Vp-p.

3.1. Carrier extraction

The sensitivity of the carrier extraction mechanism is

limited by the parasitic capacitance on the clk signal out-

put node in the squarer (figure 2). The necessary signal

level for detection rises as the frequency increases, since

the current into the output node is proportional to the sig-

nal. An output buffer was connected to the clk signal, to

drive the signal off-chip for testing purposes. Due to a lay-

out error, the parasitic capacitance on this node is higher

than necessary, and the sensitivity of the carrier extraction

does therefore fall off faster with frequency than expected.

The measurements show that the detection threshold

is approximately 0.4 Vp-p up to 5 MHz, and rises to

3.6 Vp-p at 12 MHz. Simulations of the circuit without the

added parasitic capacitance show a threshold of 0.8 Vp-p
at 15 MHz.

3.2. Detection

The circuit works as expected for carrier frequencies

between 1 and 15 MHz, with 10% AM modulation rates

up to 200kbit/s. Figure 7 show the results for a 10 MHz

carrier modulated at the maximum bit rate.
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3.3. Power consumption

The supply current of the demodulator was measured

for a wide range of operating conditions. At the nominal

input signal level of 3.5 Vp-p the supply current was con-

stant at 20.0 ± 0.5 µA over the carrier frequency range of

1–15 MHz. A weak dependence on the signal amplitude

was found, with the supply current decreasing by a few

percent as the amplitude was reduced to zero. This de-

pendence is due to the class AB operation of the squarer

circuit.

4. Conclusion

A demodulator circuit has been presented, which in ad-

dition to a low power consumption of 60 µW, is versatile

enough to be used in a wide range of implantable devices.

Measurements show that the demodulator can handle up

to 200kbit/s with a carrier frequency of up to 15 MHz.

The sensitivity of the circuit makes it suitable for systems

which must operate with low modulation indexes, either

due to power transfer constraints or transmitter design.

The demodulator is designed for intermittent data

transmissions and does not rely on constant modulation to

determine the modulation levels. This allows maximum

power transmission between data sequences.

The data rate and carrier frequency range can be ex-

tended by modifying the cutoff frequency of the LPF, and

the passive component values in the input network.
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