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W E A R A B L E  C O M P U T I N G  A N D  H E A L T H C A R E

W
ith the world population 
aging rapidly, providing 
timely care for the elderly 
is becoming increasingly 
important. For instance, 

more than 5,000 people experience sudden car-
diac arrest (SCA) every week in the US. The only 
de nitive treatment for SCA is early de brilla-
tion—no more than six minutes from arrest to 
 rst shock. The chance for survival drops 10 
percent per minute without de brillation, and 
today, more than 95 percent of SCA victims die.1 

In addition, in the US alone, 
approximately 2,000 infants 
die each year from sudden 
infant death syndrome (SIDS). 
Because a slow heart rate (bra-
dycardia) is an important indi-
cator of SIDS,2 early detection 
could save many lives.

Wireless networks of context-aware, body-
mounted sensors have come into prominence 
recently for providing timely care via pervasive 
patient monitoring.3,4 However, to be effective, 
these systems should be unobtrusive, robust, 
and inexpensive. We’ve designed a wearable tag 
that can monitor multiple biomedical signals—
heart sounds (phonocardiogram; PCG), elec-
trical heart signals (electrocardiogram; EKG), 
blood oxygen saturation (photoplethysmogram; 
PPG), respiratory sounds,5 blood pressure, and 
body temperature. The tag generates an alarm 
when it suspects a patient emergency. To quickly 
cover a large portion of the population at risk, 

we kept the tag affordable (less than US$2 each 
when manufactured in volume), disposable, 
small, and easy to use. Such tags would be use-
ful for hospitals, facilities for infants and the 
elderly, and ordinary homes to detect and alert 
caregivers to possible problems including SCA 
and SIDS.

System Design
In this instantiation, we use sounds, not electri-
cal signals, for heart monitoring—that is, PCG 
instead of EKG. PCG has three advantages over 
EKG. First, it doesn’t require electrical contact 
with the body, which is often dif cult with dry 
skin. Second, because the heart is the loudest 
organ in the body and easy to sense acousti-
cally, PCG can use a very low-power, cheap mi-
crophone. Third, it requires little maintenance.

Alarm Types

Our tag uses multiple sensors to generate three 
types of alarms: disconnection from the body, 
device malfunction, and patient emergency. 
As Figure 1 shows, the device has two micro-
phones, one facing up (away from the body) 
and the other down. The downward-facing mi-
crophone monitors heart sounds; the upward- 
facing one is usually switched off to save 
power, turning on only when the other mi-
crophone doesn’t detect heart sounds. If, at 
this point, both microphones pick up simi-
lar environmental sounds, a disconnection 

alarm sounds because the tag is probably no 
longer near the skin. A patient-emergency 
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alarm sounds if the downward-facing 
microphone doesn’t pick up environ-
mental sounds but the upward-facing 
one does, because in this case, the tag 
likely is still attached and the heart 
has stopped. If neither microphone 
picks up any sounds, the tag is prob-
ably malfunctioning, so a device-

malfunction alarm sounds. Each tag 
contains a unique identi cation code; 
a fixed base station communicates 
with multiple tags and decides, on 
the basis of transmitted patient data, 
whether it should trigger an alarm.

Energy Harvesting

The tag contains a low-power inte-
grated circuit that provides power-

harvesting, sensing, and actuation 
capabilities. Figure 2 shows a block di-
agram of the chip. We designed it to be 
extremely low power by incorporating 
only minimally acceptable amounts of 
computation and signal processing; the 
 xed base station performs the more 
complex computations. The chip can 
harvest radiated radio frequency (RF) 
power,6 making a low-cost, battery-
free tag possible. A two-stage comple-
mentary metal-oxide semiconductor 
(CMOS) recti er connects to the an-
tenna7 shown in Figure 1. The chip’s 
input capacitance, CL, resonates with 
the antenna’s inductive input reactance 
at the operating frequency. The resul-
tant L-type impedance match provides 

passive voltage gain that reduces the 
amount of RF power needed to over-
come the recti er’s dead zone, thereby 
increasing operating range.

We designed the  rst recti er stage 
with low-output impedance because it 
powers up external sensors, which typi-
cally consume much more power than 
the chip itself. The second stage, which 
provides a higher-impedance output, 
powers up the chip. Overvoltage pro-
tection circuits at the power supply and 
RF input nodes prevent large RF ampli-
tudes from damaging the chip.

Path loss models predict the loss of 
radiated power density Pr (in W/m2) 
with distance D from the transmitter. 
A simple version commonly used for 
modeling indoor environments recog-
nizes two zones:

P D
r

n∝ − 1 for D D≤
0

and

P D
r

n∝ − 2 for D D> 0,

where D0, n1, and n2 are constants.8 
Typically, n1 ≈ 2, the free-space value, 
and n2 varies between 2.5 and 4. The 
value of n2 exceeds 2 because of RF 
absorption and re¢ection by environ-
mental obstacles, such as furniture and 
people. We assumed the following con-
servative values: D0 = 5 m, n1 = 2, and 
n2 = 3.5.

We developed a model that accurately 
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Figure 1. A simpli�ed version of our 

patient-monitoring tag with two 

microphones and an antenna. (a) A 

conceptual view of the tag attached 

to a �exible, adhesive surface and 

(b) a photograph of the 800-MHz 

prototype that we tested. We estimate 

that product designers can halve the 

prototype’s area by using a smaller 

package for the chip and an optimized 

antenna. In addition, the pins at the 

bottom of the prototype were for 

testing purposes and aren’t necessary 

for a commercial system.

Figure 2. A block diagram of the low-power patient-monitoring chip. The chip 

accepts inputs from up to four sensors and powers up to four actuators. It harvests 

RF energy from the environment using an external antenna and uses backscatter 

modulation to send data to a remote base station.
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predicts our recti er’s output voltage as 
a function of available RF power and 
the output load (described in greater 
detail in “Low-Power CMOS Recti-
 er Design for RFID Applications”7). 
Combining the predicted path loss with 
this recti er model gives us the power-
harvesting limits shown in Figure 3, 
where PA is the RF power that we can 
harvest at different distances from the 
transmitter. The graph assumes that 
the equivalent isotropic radiated power 
(EIRP) is 4 W, which is the maximum 
allowed for RFID applications in the 
US. It shows PA as a function of D at 
two popular RFID frequencies: 900 
MHz and 2.4 GHz. The main reason 
for going to higher operating frequen-
cies is to reduce the antenna size.

The various curves in Figure 3 cor-
respond to different rectifier-driven 
load resistances RL. They decrease 
rapidly at greater distances because 
the received RF amplitude becomes 
smaller than the recti er’s dead zone. 
The power that the off-chip sensors 
consume—and not the chip itself—
usually dominates the load resistance. 
For example, a microphone biased at 
30 µA and 0.5 V (typical values used 
in our experiments) dissipates 15 µW, 
corresponding to an effective recti er-
driven load of RL = 16.7 kΩ.7

The graph in Figure 3 predicts an 
operating range of approximately 12 m 
at 900 MHz and 3 m at 2.4 GHz. In 
practice, the reliable operating range 
will be somewhat smaller because 
some tags will be mistuned by their 
proximity to conductive and dielectric 
surfaces. In addition, we allow for tran-
sient drops in received RF power level 
(fades), which are ubiquitous in indoor 
environments because the received 
signal is the superposition of multiple 

waves with time-varying amplitude and 
phase. A single base station operating 
at 900 MHz is suf cient for a moder-
ately sized room.

Signal-Processing Channels

Our chip contains four independent 
channels that can interface with vari-
ous sensors. These channels’ outputs 
are digital spikes, or event signals, 
which can combine in a ¢exible way us-
ing a programmable logic array (PLA) 
that can implement a variety of Bool-
ean logic functions. Our PLA is a four- 
input, four-output design with an 8 × 
8 AND plane and a 4 × 8 OR plane. It 

lets us implement any of the 22
4

 pos-
sible logic functions of four inputs for 
any of its four outputs in a program-
mable fashion. We can monitor these 
outputs individually, which lets us im-
plement rudimentary sensor-fusion al-
gorithms that combine multiple chan-
nels’ outputs.

Programmable output selection logic 
multiplexes the four PLA outputs into 
a single signal that’s transmitted to the 
base station as event packets contain-
ing the chip identification code and 
time stamps. Data is transmitted us-
ing backscatter modulation:9 a 100-fF 
capacitor is added to or subtracted from 
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Figure 3. Theoretical limits on harvested 

radio frequency power as a function 

of distance from the transmitter. The 

graph shows PA as a function of D at two 

popular RFID frequencies, 900 MHz and 

2.4 GHz.

Figure 4. A single on-chip signal-processing channel. The channel contains a sensing 

path with a preampli�er, a comparator for detecting events, logic for rejecting 

unwanted events, and an actuation path that supplies bias current to an external 

sensor, such as a microphone.
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CL to change the amount of RF power 
the tag scatters. Backscatter modula-
tion is popular in passive RFID systems 
because it pushes all the complexity and 
power consumption to the base station; 
the tag remains simple and consumes 
little power.

Figure 4 shows a block diagram of 
a single channel. The preampli er con-
sists of a common-source stage with ca-
pacitive feedback; the feedback capaci-
tor’s size can vary between C0 and 16 
C0 to set the gain. The ampli er rejects 
very low-frequency signals, which usu-
ally contain no useful information; the 

transfer function is band-pass with a 
low cut-in frequency (typically less than 
1 Hz). It uses a nominal bias current of 
10 nA and C0 = 0.5 pF, resulting in a 
bandwidth that decreases from 12 kHz 
to 6 kHz as the gain increases from 1 
to 16. 

The comparator generates events 
whenever the ampli er’s output volt-
age differs from its quiescent value by 
more than a  xed threshold voltage 
Vth = 80 mV. We use a matched copy 
of the ampli er (minus the capacitors) 
to determine the quiescent value. There 
are two event types: positive-going, in 
which the output voltage is larger than 
its quiescent value by Vth or more, and 
negative-going, in which it is smaller. 
The smallest input amplitude that 
triggers a spike decreases from Vth to 
Vth/16 (80 mV to 5 mV) as the pream-
pli er gain increases from 1 to 16. 

The comparator output in each chan-
nel is connected to spike selection logic, 
which allows detection of positive- 
going spikes, negative-going spikes, 
both, or neither. A pulse-stretcher cir-
cuit follows this combinatorial block, 

adding hysteresis in the time domain 
to prevent noise from causing multiple 
transitions when the comparator de-
tects an event. It also ensures that out-
put spikes last long enough for at least 
one complete data packet to broadcast 
during each spike. The pulse-stretcher 
circuit is a digitally timed one-shot: it 
allows an incoming event edge to set 
its output high and a delayed version of 
this edge to reset it low.

The pulse stretcher is followed by a 
programmable hold-timer circuit. This 
circuit imposes a hold time Thold after 
each spike, during which no new spikes 

can be generated. By placing an upper 
bound of 1/Thold on the spiking rate, 
the hold timer greatly reduces the prob-
ability of timing collisions between dif-
ferent tags. The average value of Thold 
can vary from 94 ms to 1.4 sec.

We designed a programmable DC 
current source for each channel. This 
current source can power up external 
sensors, such as microphones, and con-
sists of an 8-bit binary-weighted cur-
rent digital-analog converter (DAC) 
that can supply between 0.5 µA and 
128 µA. To reduce power consump-
tion, we designed the chip to operate 
on power supply voltages as low as 0.8 
V for the core and 0.5 V for the pro-
grammable current sources.

An on-chip serial interface lets users 
program the PLA, the channel selec-
tion logic, the 16-bit chip identi cation 
code, and channel parameters such as 
sensor current, preampli er gain, and 
hold time. The static power consump-
tion with no external sensors is only 1.0 
µW. The power consumption with sen-
sors present depends on their bias cur-
rents, which are application dependent.

Experiments and Results
We performed three sets of experi-
ments to test our tag’s range, monitor 
the heart, and verify that we could lo-
cate our tag using acoustic time delays. 
We selected the WM-63PR, a small, 
cheap, and thin (6 mm in diameter and 
1.3 mm thick) Panasonic omnidirec-
tional electret condenser microphone 
in a plastic enclosure, as our primary 
sensor. Microphones are normally 
placed on the chest for monitoring 
heart activity; however, the micro-
phone membrane can’t vibrate freely 
if it’s directly attached to the skin. So, 
we added a small air chamber (approx-
imately 1 mm thick) below our sensor. 
The chamber has no vents, reducing 
the amount of ambient noise, but its 
diameter and shape have little effect 
on sound pickup.

To save power, we biased our mi-
crophone’s internal buffer, which con-
sists of a junction  eld effect transistor 
(JFET), at much lower currents than 
recommended by the manufacturer. In 
this regime, the JFET is unsaturated 
and acts as a voltage-controlled resis-
tor, making signal gain proportional to 
the bias current Ibias. By varying Ibias 
with the on-chip DAC, we can trade 
sensitivity for bandwidth and power 
consumption.10 In practice, we save 
considerable amounts of power because 
heart sounds are relatively loud and low 
in bandwidth, typically 20 to 250 Hz.

Operating Range

In a cluttered laboratory environment, 
we were able to obtain 15 µW of out-
put power at a distance of 3.1 m from 
an RF source broadcasting 800 mW 
EIRP at 800 MHz. This is enough to 
run the chip and one microphone at a 
typical bias current of 30 µA. Increas-
ing the transmit power to the allowed 
maximum of 4 W gives us a free-space 
range of 7 m. We can further increase  
the operating range by a factor of ap-
proximately 1.4 by using a smaller 
package for the chip.7 A circularly po-
larized transmitter antenna makes the 
power the tag receives less sensitive to 

An on-chip serial interface lets  

users program the PLA, the channel selection 

logic, the 16-bit chip identi�cation code,  

and channel parameters.
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propagation barriers and its own spa-
tial orientation.

The tag’s operation was largely un-
affected by the presence of the human 
body up to approximately 1 cm from 
the skin. The received power decreased 
sharply for smaller separations. Also, 
to operate normally, the microphone 
mustn’t touch the skin. We solved both 
problems by backing the tag with di-
electric foam approximately 1 cm thick. 
At 3 m from the source, the presence 
of another person directly between the 
source and the tag had almost no ef-
fect on received power, presumably be-
cause of multipath effects. Finally, the 
tag continued to operate at 2 m when 
the user wasn’t facing the transmitter or 
was lying, tag downward, on the ¢oor.

Monitoring the Heart

In all our heart-monitoring experi-
ments, we biased microphones using 
on-chip current sources operating 
on a 0.5 V supply. In the  rst experi-
ment, we connected two microphones 
to channels on the chip and attached 
these to the subject’s neck and wrist, 
where we expected a strong pulse. We 
biased each microphone at 30 µA and 
set the preampli er gain to 8. In other 
successful experiments, we placed 
the sensor at its default position, the 
chest. In this position, heart sounds 
are louder, further reducing the micro-
phone bias current.

Figure 5 shows the measured PCG 
waveforms. The waveform at the wrist 
is delayed relative to that at the neck 
by approximately 95 ms because of the 
time the systolic pulse takes to propa-

gate down the arm. This delay can 
provide information about blood pres-
sure.11 The systolic upsurge in blood 
pressure and consequent dilation of 
the arteries cause each large negative 
spike. The high-frequency components 
in conventional PCG waveforms are al-
most completely absent in these record-
ings for two reasons. First, the coupling 
between the skin and the microphone 
is a low-pass  lter. Second, because 
we were interested mainly in heart-
rate information, which resides in the 
loud, low-frequency PCG components 
(10 to 80 Hz), we deliberately kept mi-
crophone sensitivities low by reducing 
their bias currents.

In another experiment, we combined 
the wrist microphone, still biased at 30 
µA, with an external pulse oximeter12 
connected to another channel. We at-
tached the oximeter, which measures 
the blood’s oxygen saturation level, to 
the subject’s index  nger. Pulse oxim-
eters illuminate the skin with a light 
source, such as a light-emitting diode 
(LED), and measure the amount of light 
either transmitted or re¢ected to a sen-
sor, such as a photodiode. The amount 
of detected light varies with time as the 

arteries contract and expand during the 
cardiac cycle. The resulting recording, 
known as a PPG, can be used to infer 
oxygen saturation level. For simplic-
ity, we used an off-the-shelf infrared 
LED light source and a Texas Instru-
ments OPT101 photosensor to measure 
the PPG. The OPT101 consisted of a 
photo diode and transimpedance am-
pli er integrated into a single package, 
and its output fed into our chip.

Figure 6 shows measured PCG and 
PPG waveforms. The peaks in the PPG 
waveform align with the negative spikes 
in the PCG because we recorded from 
adjacent locations. The pulse propaga-
tion delay from the wrist to the  nger 
is small.

Tracking Location

Location awareness can improve re-
sponse time to the tag’s audio alarms 
by guiding caregivers directly to the 
patient.13 Caregivers can infer patient 
movement patterns by monitoring lo-
cation versus time; this additional in-
formation can improve the system’s 
robustness and diagnostic capabilities. 
In this experiment, we localized a tag 
in a room via acoustic time-of-¢ight 
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measurements14,15 using a single mi-
crophone attached to the chip and two 
speakers (L and R) placed a distance d 
apart. By measuring the time delays t1 
and t2 between each speaker and the 
microphone, we located the tag’s posi-
tion in two dimensions.

We biased the microphone at 128 
µA and cascaded preampli ers from 
two channels to give a total gain of  
8 × 12 = 96. We placed small speakers 
d = 12 ft. apart and programmed them 
to transmit 100 ms tone bursts at 230 
Hz. To minimize audibility and atten-
uation with distance, we kept the burst 
frequency as low as possible but were 
limited by our small speakers’ poor 
low-frequency response. We spaced 
the bursts 400 ms apart to ensure that 
all echoes from the  rst burst would 
die down before the second one ar-
rived. The measured sound level at the 
center of the room with either speaker 
on was 87 dB SPL (sound pressure 
level), which is loud enough to serve 
as an alarm signal. We performed the 
experiment in a realistically noisy in-
door environment (49 dB SPL, a typi-
cal quiet room being 40 dB SPL) that 
included sound propagation barriers 
in the form of furniture and people.

We estimated the propagation times 
t1 and t2 from the speaker to the tag 
by using a simple threshold-based al-
gorithm to measure the time between 
the onset of each burst and the  rst 
spike the chip detects. By using the  rst 
spike, we measured the time delay cor-
responding to the shortest path—that 
is, line of sight. The microphone’s dis-
tances from each speaker are given by 
d1 = ct1 and d2 = ct2, where c is the 
speed of sound in air—1,130 ft./sec.

Figure 7 shows the localization data 
for nine different tag positions and 20 
trials. The average standard deviation 
in the measured positions was 1.4 ft. 
(0.43 m), and the average error between 
the measured and actual positions was 
1.97 ft. (0.6 m). One signi cant source 
of error is the tag’s signal detection de-
lay—it increases with distance from the 
speaker and contributes approximately 
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1 ft. (0.3 m) of localization error at the 
farthest positions.

Our system’s current accuracy  
already provides important informa-
tion about the patient’s location. For 
example, we can distinguish between 
the bed, a chair, and the bathroom. 
We can increase localization accuracy 
if necessary by using louder sounds or 
a higher transmission frequency to im-
prove timing precision. We can also ex-
tend the system to three dimensions by 
adding a third speaker. Finally, we can 
localize our tags to particular rooms 
by determining which RF transmitter 
powers them up. This information lets 
localization accuracy degrade grace-
fully if the audio scheme fails.

T
he audio alarm and local-
ization technique is quite 
general and can extend to 
other wireless sensor ap-

plications. For example, it can form 
the basis for sensor-fusion algorithms 
in which the audio alarm can activate 
sensors—such as video cameras that 
provide high-bandwidth information—
when it detects abnormal events. This 
reduces the amount of information that 
a human operator needs to monitor 
continuously, and also allows power-
hungry sensors to be turned off most 
of the time. We plan to begin  eld trials 
of our technology in a relatively well-
monitored environment, such as an 
assisted-living center, and later extend 
these trials to less controlled environ-
ments, such as private homes.
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