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Abstract

We present the first gesture recognition system im-

plemented end-to-end on event-based hardware, using a

TrueNorth neurosynaptic processor to recognize hand ges-

tures in real-time at low power from events streamed live by

a Dynamic Vision Sensor (DVS). The biologically inspired

DVS transmits data only when a pixel detects a change, un-

like traditional frame-based cameras which sample every

pixel at a fixed frame rate. This sparse, asynchronous data

representation lets event-based cameras operate at much

lower power than frame-based cameras. However, much of

the energy efficiency is lost if, as in previous work, the event

stream is interpreted by conventional synchronous proces-

sors. Here, for the first time, we process a live DVS event

stream using TrueNorth, a natively event-based processor

with 1 million spiking neurons. Configured here as a con-

volutional neural network (CNN), the TrueNorth chip iden-

tifies the onset of a gesture with a latency of 105 ms while

consuming less than 200mW . The CNN achieves 96.5%
out-of-sample accuracy on a newly collected DVS dataset

(DvsGesture) comprising 11 hand gesture categories from

29 subjects under 3 illumination conditions.

1. Introduction

Event-based computation, used by the eye and the brain,

is a biologically inspired paradigm for using sparse, asyn-

chronous events to represent data more efficiently than the

dense, synchronous frames that are captured and processed

by most modern sensors and computing devices. Remark-

ably, despite the slower speed of biological neurons and

synapses compared to silicon transistors, biological sys-

tems still solve complex vision problems faster and at lower

power than conventional computers, leveraging parallel,

distributed, event-based computation to operate efficiently

in real-time, resource-constrained environments.

The prime example of a frame-based computing device

is a digital camera, which repeatedly scans out its entire ar-

ray of pixels at a predetermined frame rate, independent of

any activity actually observed in the scene. Frame-based

cameras have two major drawbacks. First, the camera’s re-

action speed is limited to its frame rate, typically 30 frames

per second. Second, consecutive video frames are highly

redundant, and acquisition of redundant data wastes consid-

erable resources, both in the camera itself and in any down-

stream devices, since energy and bandwidth requirements

are driven by the rate of data transfer [36].

Event-based cameras mimic the biological retina by

sending an asynchronous event whenever a pixel detects a

change in brightness, eliminating redundant data transmis-

sion [2, 36, 22]. The data transfer rate can vary from very

few events when observing a static scene, to many events

when a large fraction of the scene changes, allowing energy

and bandwidth consumption to scale dynamically with ac-

tual demand. The high temporal resolution is an effective

sampling rate that can only be matched by a high-speed

frame-based camera with dramatically higher energy and

bandwidth requirements. Event-based cameras also have

very high dynamic range relative to standard cameras.

The advantages of event-based sensors are diluted if

their event streams must be cast back into synchronous

frames for the benefit of conventional processors down-

stream. Conventional processors, like CPUs and GPUs,

are efficient in processing dense, synchronously delivered

data structures, not sparse, asynchronous event streams.

Throughput is maintained by keeping the instruction and

data pipelines as full as possible, even at the cost of execut-

ing redundant computations on unchanging data [7].

Recently, a new generation of natively event-based neu-

romorphic processors has appeared that can operate on sen-

sor event streams directly [11]. These many-core systems

instantiate large populations of spiking neurons in mas-

sively parallel, low-power hardware, and inherit all of the

advantages of event-based sensors, such as efficient, data-
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driven resource consumption. Processing latency can be as

fast as the event propagation time through the longest chain

of neurons, so a neural network running on these systems

can react to a stimulus in tens of milliseconds, fast enough

to identify quick motions like hand gestures in real-time.

Real-time hand-gesture recognition is a practical prob-

lem well-suited to event-based computation. Hand ges-

tures are ubiquitous in visual cognition, pervading body lan-

guage in all ages and cultures and tightly integrated with

verbal communication [16]. Hand gestures are actively

used in human-computer interaction in applications span-

ning sign-language recognition, virtual manipulation, daily

assistance, gaming, and human-robot interaction [6]. Low

latency is an important factor in gesture-recognition sys-

tems as perceptually smooth interactions require systems to

respond within 100−200ms [3, 25], allowing 30 fps camera

systems only a few frames to operate. Conventional cam-

eras can suffer from various motion-related artifacts (mo-

tion blur, rolling shutter, etc.) which may impact perfor-

mance for rapid gestures. Challenging lighting conditions

constitute another confounding variable, and are typically

addressed by fusing data from different sensing modalities

[32], increasing power consumption. The system presented

in this paper offers a solution to these problems.

This paper describes a low-power, real-time, event-based

hand gesture recognition system. Events from a Dynamic

Vision Sensor (DVS) [22] are passed to a deep convolu-

tional neural network (CNN) running on TrueNorth – an

asynchronous, low-power, event-based neuromorphic pro-

cessor [24] which achieves significant power and speed ad-

vantages over mobile GPUs [29]. TrueNorth output events

indicate the recognized gesture, producing 1000 classifica-

tions per second with an average 105 ms latency from the

start of a gesture.

The contribution of this paper is twofold. First, a gesture

recognition system is implemented on event-based hard-

ware that operates on live event streams in real-time. Sec-

ond, a new hand-gesture dataset is collected with an event-

based camera.

2. Related work

Real-time gesture recognition systems are varied in the

hardware and algorithms used for gesture classification and

localization. [35] provides a recent review of the algorithms

for RGB and RGB-D based hand gesture recognition.

Non-event-based gesture and action recognition systems

rely on either handcrafted features or learned features.

Handcrafted feature extraction consists of a feature detec-

tion stage followed by a feature description stage [46].

Spatio-temporal feature detectors such as Harris3D [19],

Cuboid [8] and Hessian3D [45] are typically used to local-

ize interesting video keypoints, from which feature descrip-

tors are extracted [38, 17, 43, 34]. However, it is generally

Figure 1: Picture of the setup. The DVS128 camera is con-

nected to the NS1e board using a USB cable. The board

exhibits a power cord and an Ethernet cable.

acknowledged that there is no single optimal handcrafted

feature [44]. Convolutional neural networks (CNNs) have

been applied successfully to hand gesture recognition and

localization [27, 32, 18, 40, 14], as have recurrent neural

networks [28]. Multimodal systems [46, 31, 33, 15] have

also been used to improve performance.

Work on low-power gesture recognition systems centers

on developing either energy-efficient cameras or “smart”

systems that save energy by optimizing power usage with

traditional hardware. [5] achieved a real-time low-power

gesture recognition system by reducing the frame rates and

putting the sensor in standby mode to reduce the power

requirements. Such efforts focus on reducing energy for

frame-based gesture recognition, but these systems face a

latency-power tradeoff wherein the low latencies required

for gesture interaction can only be achieved by high sample

rates that continuously burn higher power.

While there is a large body of work on hand gesture

recognition, including many real-time systems [26, 47, 30],

and a growing number of publications on event-based sen-

sors like the DAVIS [2], ATIS [36], and DVS [22], there is

very little work in the intersection of the two. [20] were the

first to show an event-based gesture recognition system with

a Dynamic Vision Sensor (DVS) and to show a postpro-

cessing step with leaky-integrate-and-fire neurons (LIF), al-

though this system can be further improved in performance

and scalability. The event-based SpiNNaker processor has

been used to run a 5-layer CNN on prerecorded DVS events

to recognize playing cards [39], but we know of no prior

work that combines an event-based sensor with an event-

based processor to perform gesture recognition in real-time.

3. Event-based hardware

Our event-based gesture recognition system uses two

devices: a DVS128 camera to generate input events, and

a TrueNorth processor to inspect the input event stream
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Figure 2: The system described in this paper operates on

the data shown in the final row. Frame-based and event-

based camera output for a large circle gesture. Top: 24-

bit RGB video frames taken at 30 fps. Note the motion

blur. Middle: Positive (magenta) and negative (cyan) DVS

events over time. Red shaded planes indicate the times at

which frames were sampled. Note the dense sampling of

the DVS events compared to the RGB frames. Bottom:

4 ms of DVS event data displayed as 1 ms image slices.

The first image is aligned to the first RGB video frame.

for recognized gestures. Here, the TrueNorth processor is

hosted on an NS1e development board that receives input

events from the DVS128 via USB 2.0, and sends output

events via Ethernet to a laptop for visualization (Fig. 1).

3.1. DVS128 camera

The iniLabs DVS128 camera is a 128 × 128-pixel Dy-

namic Vision Sensor that generates events only when a

pixel value changes magnitude by a user-tunable threshold

[21, 22] (this work used the default settings provided by

the cAER configuration software [23]). Each event encodes

the spatial coordinates of a pixel reporting a change and a

timestamp indicating when that change happened. The de-

vice offers a high dynamic range (120 dB) and a typical and

maximum event rate of 100K and 1M events/sec.

3.2. TrueNorth processor

The IBM TrueNorth chip is a reconfigurable, non-von

Neumann processor containing 1 million spiking neurons

and 256 million synapses distributed across 4096 paral-

lel, event-driven, neurosynaptic cores [24]. Cores are tiled

in a 64 × 64 array, embedded in a fully asynchronous

network-on-chip. Under normal workloads, the chip con-

sumes 70 mW when operating at a 1 ms computation tick.

Each neurosynaptic core connects 256 inputs to 256 neu-

rons using a crossbar of 256 × 256 synapses with about

communication fabric

neurons

axons

dendrites synaptic 
crossbar

neurosynaptic core

Buffer

Buffer

Buffer

PRNG

Buffer

Figure 3: TrueNorth architecture. Neurosynaptic cores

connect inputs to neurons using a synaptic crossbar. An

asynchronous communication fabric routes events between

cores.

2 bits of weight precision. A neuron state variable called

a membrane potential integrates synaptically weighted in-

put events with an optional leak decay. Neurons can be

configured to either generate an output event deterministi-

cally, whenever the membrane potential exceeds a thresh-

old; or stochastically, with a pseudorandom probability re-

lated to the difference between the membrane potential and

its threshold [4].

Each neuron can send output events to exactly one core

in the array, where they can be delivered to any or all of the

core’s neurons via the synaptic crossbar. Every core input

has a delay buffer that can cache incoming events for up to

15 ticks before releasing them into the crossbar.

Algorithms for TrueNorth must satisfy the constraints

imposed by the architecture — neurons output binary

events, not continuous values; synapses have low precision,

not high precision; connectivity is core-to-core, not all-to-

all. TrueNorth programs are written in the Corelet Pro-

gramming Language, a hierarchical, compositional, object-

oriented language implemented in MATLAB [1].

3.3. NS1e development board

The NS1e development board is a modular and compact

platform for mobile embedded application development us-

ing a single TrueNorth processor. The TrueNorth chip is re-

sponsible for about 6% of board power consumption, which
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is typically around 2 or 3 W . The board has an area of

125×69 mm2 and weighs 98 g.

A Xilinx Zynq Z-7020 system-on-chip provides the in-

terface between the TrueNorth chip and an assortment of

onboard sensors and connectors. Two ARM Cortex-A9

cores run the Linux operating system and the software stack

for streaming events between TrueNorth and standard inter-

faces, including USB and Ethernet. An FPGA fabric han-

dles data conversion and address translation. Although not

used in this work, the NS1e includes connectors that sup-

port direct, pin-to-pin access to the TrueNorth chip, which

permits an event-based sensor like the DVS to stream events

directly into TrueNorth, bypassing the Zynq SoC entirely.

4. Gesture recognition on TrueNorth

Our gesture recognition algorithm runs entirely on

TrueNorth, and has four major components (Fig. 4). First,

a temporal filter cascade captures a sequence of snapshots

of the DVS event stream. Second, the concatenated snap-

shots are presented as input features to a stack of convolu-

tion layers trained offline using GPU acceleration. Third, a

winner-take-all decoder identifies the gesture with the high-

est response from the final convolution layer. Finally, the

resulting stream of instantaneous gesture classifications is

cleaned up by a sliding window filter.

The entire software workflow described in this section,

including source code, has been released as a reference ex-

ample included in the TrueNorth developer toolkit.

4.1. Temporal filter cascade

To capture the sequence information required to encode

gesture identity, a cascade of K delayed temporal filters col-

lects a sequence of DVS events as they enter TrueNorth.

The first filter outputs a stream of events delayed by one

tick, and creates a second copy of its input which is passed

to the next filter in the cascade. Each subsequent filter

caches its incoming events in the delay buffers that are at-

tached to each of a core’s 256 input axons, accumulating

16 ticks of delay per stage, for a total of 1+16(K−1) ms.
The output event streams of all K filters are concatenated to

form the input features for the first convolution layer. The

neurons in these filters are configured to generate events

stochastically, using a constant leak to decay the membrane

potential linearly with time. Using a stochastic decay makes

the rate (or probability) of filter output events proportional

to the time since the corresponding event was received at the

filter input (after delay). This “short term memory” gradu-

ally forgets its input events as time elapses.

The temporal filter cascade may be compared to stacking

frames to create a spatio-temporal input to CNN, such as in

[14], or the temporal channel in [10], although with frames

the temporal history usually does not decay stochastically.

4.2. Convolution layers

A convolutional neural network (CNN) is a multilayer

feedforward network whose layers are neurons that collec-

tively perform a convolutional filtering of the input or a

prior layer (Fig. 5). Neurons within a layer are arranged in

two spatial dimensions, corresponding to shifts in the con-

volution filter, and one feature dimension, corresponding to

different filters.

CNNs are mapped to TrueNorth using the Energy-

efficient deep networks (Eedn) algorithm [9], implemented

in MATLAB using the MatConvNet library to enable GPU-

accelerated training [42]. The Eedn algorithm satisfies

the TrueNorth architecture constraints by restricting net-

work precision to binary neuron output and trinary weights

{−1, 0, 1}, and by limiting neuron fan-in and fan-out.

1. Binary neuron output: Instead of the standard recti-

fied linear unit (ReLU) activation function, which pro-

duces multivalued neuron output, Eedn uses a binary

step function that can be implemented by TrueNorth

neurons operating as threshold logic units with inte-

ger biases. The derivative of a step function is a delta

function, which is not finite as required by backprop-

agation, so it is approximated with a triangle function
∂y
∂r

≈ max (0, 1−|r|) where r is the filter response and

y is the neuron output. Filter output is computed us-

ing batch normalization [13] during training, with the

batch normalization parameters rolled into the neuron

threshold for deployment.

2. Trinary weights: Trinary weights w are trained offline

using an adaptation of the standard backpropagation

algorithm. The trinary weights are used during the for-

ward and backpropagation passes. However, the re-

sulting weight updates are applied to a shadow network

of high-precision proxy weights wh. Trinary weights

are updated by rounding with hysteresis their corre-

sponding shadow weights:

w(t) =



















−1 if wh(t) ≤ −0.5− h,

0 if |wh(t)| ≤ 0.5− h

1 if wh(t) ≥ 0.5 + h,

w(t− 1) otherwise,

where h is a hysteresis parameter set to 0.1.

3. Neuron fan-in: Group constraints are used to accom-

modate the limited fan-in constraint of 128 inputs per

neuron (while TrueNorth allows 256 inputs per neu-

ron, two inputs are used per synapse to allow trinary

weights). Specifically, in a layer which uses G groups,

each neuron receives connections from only N/G fea-

tures from the N features in the source layer. For ex-

ample, a convolution layer with a 1×1 kernel receiving
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Figure 4: System block diagram showing how many of the 4096 TrueNorth cores are allocated to each component (for one of

the experiments); examples of instantaneous event maps output by a) the DVS, b) the temporal filter cascade, and c–g) layers

1, 3, 8, 12, and 15 of the CNN described in Table 1; and histograms of events corresponding to the 11 gesture categories after

h) the final convolution layer, i) the winner-take-all decoder, and j) the sliding window filter. All events are taken from the

same 1 ms tick.

Figure 5: Two layers of a convolutional network, where

each layer is a rows × columns × features collection of

outputs from filters applied to the prior layer. Each output

neuron has a topographically aligned filter support region

in its source layer. Adjacent features have their receptive

field shifted by the stride in the source layer. A layer can be

divided into multiple groups along the feature dimension,

where each group has a filter support region that covers a

different set of features in the source layer. Two groups are

highlighted (green, blue).

input from 256 features in the source layer must use 2

groups in order to reduce the fan-in to 1 × 1 × 256/2
= 128 inputs per neuron. (The blue and green neurons

in Fig. 5 are in two different groups.)

4. Neuron fan-out: TrueNorth neurons can target a sin-

gle core. Therefore neuron copies are used to provide

multiple neuron outputs for the weight representation

scheme, and where filter overlap necessitates targeting

multiple cores. A neuron is copied by replicating its

parameters using free neurons on its own core, or by

using splitter neurons on additional cores.

Each group of neurons in a layer at a given row and col-

umn in the feature map (i.e. boxes of the same color in

Layer n + 1 in Fig. 5) is mapped to a separate TrueNorth

core. Each core can compute up to 256 features from one

location in a given feature map.

Despite these constraints, Eedn networks running on

TrueNorth approached state-of-art classification accuracy

on 8 image and audio datasets while achieving a peak

throughput of 1200–2600 frames per second and consum-

ing only 25–275 mW [9].
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4.3. Winnertakeall decoder

A winner-take-all (WTA) decoder creates a single ges-

ture prediction based on the population code that is out-

put by the final convolution layer, which contains groups

of output neurons for each class. The strength of a class

is determined by the number of spikes output by its neu-

rons in a tick. The decoder is a preconfigured neural net-

work in which the largest-valued class neurons inhibit all

the smaller-valued inputs and only the strongest class sur-

vives to be output as the winner.

4.4. Sliding window filter

The sliding window filter smooths the stream of instan-

taneous gesture classifications that are produced every mil-

lisecond by the winner-take-all decoder. Using a window

of 80 ms, the sliding window filter improves out-of-sample

classification accuracy from 91.77% coming out of the de-

coder to 94.59%. The filter effect is shown in Fig 6. For

each class, independently, the filter counts the number of

classification events observed within the window (up to 80),

and spikes if the count exceeds a user-defined threshold. By

using a threshold equal to 50% the window size, at most one

class can spike. Such a filter is implemented using 8 neu-

rons per class (one core for all classes). The sliding win-

dow filter adds 40 ms to the system latency, but preserves

the 1 ms time resolution in determining the beginning and

end time of the gesture. Shorter windows yield even lower

latency, but might impair classification accuracy.

Figure 6: The winner-take-all output (WTA) and sliding-

window filter (SW) showing an out-of-sample classification

sequence of 11 gestures detected over 87214 ticks (millisec-

onds). The WTA and SWF can both produce up to one clas-

sification per tick, and in this case generate similar numbers

of classifications, 75535 and 73133, respectively. Notably,

the SWF output is about 2-4% more accurate.

5. Experiments

5.1. Dataset collection

A plethora of hand gesture datasets have been created in

recent years, as thoroughly reviewed in [37]. Most of these

datasets place subjects at a fixed distance from a single sen-

sor – such as a Kinect, Wiimote, stereo camera, or regular

color camera – that is typically frame-based. As a result, Hu

et al. [12] reported an urgent need for DVS datasets in or-

der to advance research into event-based computer vision.

They converted four frame-based datasets to event-based

representation by recording the output of a DVS camera

pointed at a screen displaying the data. However, as noted

in [41], the microsecond temporal resolution produced by

a DVS camera pointed directly at the scene cannot be re-

produced from the tens-of-milliseconds frame, and the con-

verted data also contain additional undesired artifacts. Since

the only extant DVS dataset for gesture recognition is not

large enough to reliably train a CNN [20], we used the

DVS128 to create a new hand gesture dataset that includes

timestamped DVS128 event files, RGB videos from a web-

cam mounted next to the DVS, and ground-truth files with

gesture labels and start and stop times.

The DvsGesture dataset comprises 1,342 instances of a

set of 11 hand and arm gestures (Fig. 7), grouped in 122

trials collected from 29 subjects under 3 different lighting

conditions. During each trial one subject stood against a

stationary background and performed all 11 gestures se-

quentially under the same lighting condition. The gestures

include hand waving (both arms), large straight arm rota-

tions (both arms, clockwise and counterclockwise), forearm

rolling (forward and backward), air guitar, air drums, and an

“Other” gesture invented by the subject. The 3 lighting con-

ditions are combinations of natural light, fluorescent light,

and LED light, which were selected to control the effect of

shadows and fluorescent light flicker on the DVS128. Each

gesture lasts about 6 seconds.

To evaluate classifier performance, 23 subjects are desig-

nated as the training set, and the remaining 6 subjects are re-

served for out-of-sample validation. The dataset is available

at http://research.ibm.com/dvsgesture/.

5.2. Classifier training

In order to train the convolution layers on the appropri-

ate signals, we first preprocessed the dataset by feeding the

raw DVS events through the same temporal filter cascade

that shapes the input to the CNN during runtime. The fil-

ter output events were written into a Lightning Memory-

Mapped Database (LMDB), a high-performance database

format preferred by many deep learning frameworks.

We trained a CNN on the preprocessed data using a

GPU-accelerated implementation of the Eedn algorithm.

The network structure (Table 1) was modeled after the best
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Figure 7: Top: 24-bit RGB video frames of the gestures used in this experiment. From left to right the gestures are hand-wave,

large-circle, hand-role, air-guitar, and air-drums. For compactness, only one hand is shown for hand-wave and large-circle,

and only one direction for large-circle. Bottom: DVS ‘frames’ created by superimposing spikes over a 5 ms window aligned

to the onset of each RGB video frame.

map feat kernel stri- pad groups
size -ures de

64×64 6
1 31×31 12 3×3 2 0 1
2 14×14 252 4×4 2 0 2
3 14×14 256 1×1 1 0 2
4 7×7 256 2×2 2 0 2
5 7×7 512 3×3 1 1 32
6 7×7 512 1×1 1 0 4
7 7×7 512 1×1 1 0 4
8 7×7 512 1×1 1 0 4
9 3×3 512 2×2 2 0 16
10 3×3 1024 3×3 1 1 64
11 3×3 024 1×1 1 0 8
12 3×3 1024 1×1 1 0 8
13 1×1 1024 2×2 2 0 32
14 1×1 1024 1×1 1 0 8
15 1×1 968 1×1 1 0 8
16 1×1 2640 1×1 1 0 8

Table 1: CNN specification for the gesture recognition sys-

tem. All network layers are convolutional layers.

single-chip network in [9]. We trained the network for

250,000 iterations with a batch size of 256, using standard

heuristics like momentum (0.9), weight decay (10−7), and

decreasing learning rate (the initial rate of 20 is divided by

10 twice during training at 200,000 and 225,000 iterations).

We used a value of 0.0001 for an Eedn parameter called

spike sparsity, which acts as a regularizer that encourages

the trained network to produce fewer output spikes, con-

serving energy. To improve accuracy, we augmented the

training data by randomly cropping a 64 × 64 region from

larger images created by zero-padding the images with an

8-pixel-wide border region.

5.3. Power measurement

To measure the power consumed by the gesture recog-

nition network running on TrueNorth, we run the network

on a separate NS1t test and characterization board, which

has dedicated circuitry to measure the power consumed by

a TrueNorth chip. Power measurements are sampled at

62.5kHz, and averaged over a three-second DVS event se-

quence containing a full gesture. Boards operate at a supply

voltage of 1.0 V . Total network power is the sum of leakage

power, computed by scaling the measured idle power by the

fraction of the chip’s cores that are in use, and active power,

computed by subtracting idle power from total power mea-

sured when the system is operating on input events.

5.4. Accuracy results

The results from 9 different training experiments are

shown in Table 2. We took the CNN structure and all

training metaparameters without modification from [9], and

explored the impact of dataset preprocessing, varying the

input image sampling (32 × 32, 42 × 42, and 64 × 64),

and lengthening the temporal footprint of each sample by

adding stages to the temporal filter cascade or increasing

the decay period in each stage. We also compare the ef-

fect of augmenting the dataset with spatial translations up

to one-eighth of the image size. For each experiment, we

recorded the training and test accuracy of the CNN, the test

accuracy of the system with and without the ‘Other’ cat-

egory, the number of TrueNorth cores used, and the mea-

sured TrueNorth chip power.

The system from experiment E1 had the highest accu-

racy, a 10-category test score of 96.49%, while consum-

ing only 178.8 mW . The sliding window filter improves

the score by almost 5% over the raw winner-take-all output.

Augmenting the dataset by spatially translating the frames

improves classifier accuracy by about 1.5% (E1 vs E2).

In experiment E4 we decreased the number of time-

delayed channels in the input compared with experiment

E1. Six delayed channels gave better results for a 15 ms
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Exper- Input Cascade Filter Augment CNN CNN System System Neuro- TN TN TN

iment W ×H filters duration (pixels) train test acc. acc. synaptic leak active total

(ticks) acc. acc. 11 cat. 10 cat. cores mW mW mW

E1 64×64 6 32 8 93.06 91.77 94.59 96.49 3838 134.3 44.5 178.8

E2 64×64 6 32 0 98.53 90.29 92.23 93.53 3838 134.3 44.5 178.8

E3 32×32 6 32 4 86.16 88.07 90.78 92.59 3459 122.5 46.5 169.0

E4 64×64 4 32 8 89.98 90.69 93.44 95.25 3625 127.0 45.0 172.1

E5 42×42 6 32 5 90.01 84.59 90.59 91.46 3968 140.2 55.6 195.8

E6 64×64 6 64 8 94.58 88.29 90.57 92.17 3951 138.7 44.2 182.9

E7 42×42 6 64 5 85.16 83.74 86.49 87.62 1936 68.8 19.7 88.5

E8 64×64 6 85 5 92.95 88.49 90.76 92.24 3951 139.0 37.2 176.2

E9 64×64 6 128 8 94.55 91.10 93.15 94.81 3951 142.8 49.7 192.5

Table 2: Classifier parameter exploration. Accuracy is reported in percents. Each network fits on a single TrueNorth chip

(4096 cores).

delay between successive channels used here.

We experimented with downsampling to see how spatial

resolution affects performance, while keeping the network

sizes approximately the same by reducing the stride to 1 in

the first convolutional layer (E3) or the 4th (E5). The best

results were obtained with the largest image size, 64 × 64.

32×32 images resulted in a drop of 4% with approximately

the same sized network. The 42 × 42 input in E5 gave the

lowest accuracy, possibly due to the difference in network

architecture. E7 had a stride of 1 in layers 1 and 9, reduc-

ing the network size and energy by half, but had the lowest

accuracy of all the experiments.

Finally, experiments with the filter duration indicate that

a decay of 32 ticks (E1) produced the best accuracy among

the values explored, with 2-4% degradation for E6, E8, and

E9 having 64, 85, and 128 ticks decay, respectively.

5.5. Latency measurement

Latency was measured on system E1. For this measure-

ment, we aligned annotation and spike test data by remov-

ing all unlabeled events between gestures, as if user motion

only occurred during a gesture. The latency to detect the

start of a gesture is defined as Tstart(i) = tdet(i)−tstart(i),
where tstart(i) is the first tick in which events from the ith

gesture appear in the input stream and tdet(i) is the first tick

in which the gesture class is correctly recognized in the out-

put stream. The search is limited to a narrow time window,

from tstart(i) + 1 to tstart(i) + 217 ticks, representing the

longest period an event can “travel” through the network,

which is the sum of all maximal delays; stochastic decays;

and CNN, WTA, and sliding window latencies. If there is

no correct detection within this window, the gesture start

is considered missed. A similar process applies to the ges-

ture end. The average latency to detect the start and end of

a gesture, over all 10 gestures in all 25 test sequences, is

104.6 ms (with 14 misses) and 120.6 ms (with 13 misses),

respectively. The 16 ms difference might be due to the fil-

ter’s stochastic decay, or “fading memory” after the gesture

has ended, and is equal to half the decay time for E1.

5.6. User experience with the live system

The system was deployed with a live video feed of the

recognized gesture on a computer screen. The system is

very responsive, immediately detecting the gesture in most

cases. A video of the gesture recognition system operating

live can be found in Supplementary Information.

6. Discussion

The work reported in this paper unites a DVS camera

with a TrueNorth processor to create an end-to-end event-

based gesture recognition system. Leveraging recent ad-

vances in deep convolutional neural networks, it processes

and classifies learnt gestures at 1000 Hz with high ac-

curacy (96.49%), low latency (105 ms), and low power

(178.8 mW ), using a spiking neural network with low-

precision weights running entirely on a TrueNorth proces-

sor. This homogeneous computational neuromorphic sub-

strate stands in contrast to much of the other work in ges-

ture recognition, which often utilizes frame-based sensors

and multiple stages of processing – such as filtering, seg-

mentation, tracking, 3D models, and more – prior to the

classifier (CNN-based or otherwise). This observation sug-

gests that such recognition tasks might require much less

data and processing than traditional systems suggest.
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